Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T23:22:52.108Z Has data issue: false hasContentIssue false

Section 9: - Computation

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Thalamus , pp. 401 - 431
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abbott, L.F. (1997). Synaptic depression and cortical gain control. Science 275, 221224.CrossRefGoogle ScholarPubMed
Abbott, L.F. (2008). Theoretical neuroscience rising. Neuron 60, 489495.Google Scholar
Abbott, L.F., and Regehr, W.G. (2004). Synaptic computation. Nature 431, 796803.Google Scholar
Ahissar, E., and Oram, T. (2013). Thalamic relay or cortico-thalamic processing? Old question, new answers. Cerebral Cortex 25, 845848.Google Scholar
Ahrens, S., Jaramillo, S., Yu, K., Ghosh, S., Hwang, G.R., Paik, R., Lai, C., He, M., Huang, Z.J., and Li, B. (2015). ErbB4 regulation of a thalamic reticular nucleus circuit for sensory selection. Nature Neuroscience 18, 104–11.Google Scholar
Aizenberg, M., Rolón-Martínez, S., Pham, T., Rao, W., Haas, J.S., and Geffen, M.N. (2019). Projection from the amygdala to the thalamic reticular nucleus amplifies cortical sound responses. Cell Reports 28, 605–615.e4.Google Scholar
Alitto, H., Rathbun, D.L., Vandeleest, J.J., Alexander, P.C., and Usrey, W.M. (2019). The augmentation of retinogeniculate communication during thalamic burst mode. Journal of Neuroscience 39, 56975710.Google Scholar
Barthó, P., Slézia, A., Mátyás, F., Faradzs-Zade, L., Ulbert, I., Harris, K.D., and Acsády, L. (2014). Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron 82, 13671379.Google Scholar
Bastos, A.M., Briggs, F., Alitto, H.J., Mangun, G.R., and Usrey, W.M. (2014). Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for gamma-band oscillations. Journal of Neuroscience 34, 76397644.Google Scholar
Bazhenov, M., Timofeev, I., Steriade, M., and Sejnowski, T.J. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. Journal of Neuroscience 22, 86918704.Google Scholar
Béhuret, S., Deleuze, C., and Bal, T. (2015). Corticothalamic synaptic noise as a mechanism for selective attention in thalamic neurons. Frontiers in Neural Circuits 9.Google Scholar
Bourjaily, M.A., and Miller, P. (2012). Dynamic afferent synapses to decision-making networks improve performance in tasks requiring stimulus associations and discriminations. Journal of Neurophysiology 108, 513527.CrossRefGoogle ScholarPubMed
Brown, J.W., Taheri, A., Kenyon, R.V., Berger-Wolf, T.Y., and Llano, D.A. (2020). Signal propagation via open-loop intrathalamic architectures: A computational model. eNeuro 7, ENEURO.0441–19.2020.Google Scholar
Bruno, R.M. (2006). Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312, 16221627.Google Scholar
Burt, J.B., Demirtas¸, M., Eckner, W.J., Navejar, N.M., Ji, J.L., Martin, W.J., Bernacchia, A., Anticevic, A., and Murray, J.D. (2018). Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nature Neuroscience 21, 12511259.Google Scholar
Carandini, M., and Ferster, D. (2000). Membrane potential and firing rate in cat primary visual cortex. Journal of Neuroscience 20, 470484.Google Scholar
Castro-Alamancos, M.A. (1997). Short-term plasticity in thalamocortical pathways: Cellular mechanisms and functional roles. Reviews in the Neurosciences 8.Google Scholar
Clemente-Perez, A., Makinson, S.R., Higashikubo, B., Brovarney, S., Cho, F.S., Urry, A., Holden, S.S., Wimer, M., Dávid, C., Fenno, L.E., Acsády, L., Deisseroth, K., and Paz, J.T. (2017). Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms. Cell Reports 19, 21302142.Google Scholar
Contreras, D., Destexhe, A., Sejnowski, T.J., and Steriade, M. (1996). Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274, 771774.Google Scholar
Contreras, D., and Steriade, M. (1995). Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. Journal of Neuroscience 15, 604622.Google Scholar
Cotillon-Williams, N., Huetz, C., Hennevin, E., and Edeline, J.M. (2008). Tonotopic control of auditory thalamus frequency tuning by reticular thalamic neurons. Journal of Neurophysiology 99, 11371151.Google Scholar
Coulon, P., and Landisman, C.E. (2017). The potential role of gap junctional plasticity in the regulation of state. Neuron 93, 12751295.Google Scholar
Crandall, S.R., Cruikshank, S.J., and Connors, B.W. (2015). A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron 86, 768782.Google Scholar
Crick, F. (1984). Function of the thalamic reticular complex: the searchlight hypothesis. Proceedings of the National Academy of Sciences of the United States of America 81, 45864590.Google Scholar
Cueni, L., Canepari, M., Luján, R., Emmenegger, Y., Watanabe, M., Bond, C.T., Franken, P., Adelman, J.P., and Lüthi, A. (2008). T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nature Neuroscience 11, 683692.Google Scholar
Destexhe, A., Babloyantz, A., and Sejnowski, T.J. (1993). Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophysical Journal 65, 1538–52.Google Scholar
Destexhe, A., Bal, T., McCormick, D.A., and Sejnowski, T.J. (1996). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. Journal of Neurophysiology 76, 2049–70.Google Scholar
Destexhe, A., Contreras, D., Sejnowski, T.J., and Steriade, M. (1994a). A model of spindle rhythmicity in the isolated thalamic reticular nucleus. Journal of Neurophysiology 72, 803–18.Google Scholar
Destexhe, A., Contreras, D., Sejnowski, T.J., and Steriade, M. (1994b). Modeling the control of reticular thalamic oscillations by neuromodulators. NeuroReport 5, 22172220.Google Scholar
Destexhe, A., Contreras, D., and Steriade, M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of Neurophysiology 79, 9991016.CrossRefGoogle ScholarPubMed
Destexhe, A., Contreras, D., Steriade, M., Sejnowski, T.J., and Huguenard, J.R. (1996). In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. Journal of Neuroscience 16, 169185.Google Scholar
Destexhe, A., McCormick, D.A., and Sejnowski, T.J. (1993). A model for 8–10 Hz spindling in interconnected thalamic relay and reticularis neurons. Biophysical Journal 65, 24732477.Google Scholar
Diaz-Quesada, M., Martini, F.J., Ferrati, G., Bureau, I., and Maravall, M. (2014). Diverse thalamocortical short-term plasticity elicited by ongoing stimulation. Journal of Neuroscience 34, 515526.CrossRefGoogle ScholarPubMed
Dittman, J.S., Kreitzer, A.C., and Regehr, W.G. (2000). Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. Journal of Neuroscience 20, 13741385.CrossRefGoogle ScholarPubMed
Dong, P., Wang, H., Shen, X.F., Jiang, P., Zhu, X.T., Li, Y., Gao, J.H., Lin, S., Huang, Y., He, X.B., Xu, F.Q., Duan, S., Lian, H., Wang, H., Chen, J., and Li, X.M. (2019). A novel cortico-intrathalamic circuit for flight behavior. Nature Neuroscience 22, 941949.Google Scholar
Fagerberg, L., Hallström, B.M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., Asplund, A., Sjöstedt, E., Lundberg, E., Szigyarto, C.A.K., Skogs, M., Takanen, J.O., Berling, H., Tegel, H., Mulder, J., Nilsson, P., Schwenk, J.M., Lindskog, C., Danielsson, F., Mardinoglu, A., Sivertsson, A., von Feilitzen, K., Forsberg, M., Zwahlen, M., Olsson, I., Navani, S., Huss, M., Nielsen, J., Ponten, F., and Uhlén, M. (2014). Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular & Cellular Proteomics 13, 397406.Google Scholar
Fitzgibbon, T., Tevah, L.V., and Sefton, A.J. (1995). Connections between the reticular nucleus of the thalamus and pulvinar-lateralis posterior complex: A WGA-HRP study. Journal of Comparative Neurology 363, 489504.CrossRefGoogle ScholarPubMed
Fortune, E.S., and Rose, G.J. (2001). Short-term synaptic plasticity as a temporal filter. Trends in Neurosciences 24, 381385.CrossRefGoogle ScholarPubMed
Fuentealba, P., Crochet, S., Timofeev, I., Bazhenov, M., Sejnowski, T.J., and Steriade, M. (2004). Experimental evidence and modeling studies support a synchronizing role for electrical coupling in the cat thalamic reticular neurons in vivo. European Journal of Neuroscience 20, 111119.Google Scholar
Fuhrmann, G., Segev, I., Markram, H., and Tsodyks, M. (2002). Coding of temporal information by activity-dependent synapses. Journal of Neurophysiology 87, 140148.Google Scholar
Gabernet, L., Jadhav, S.P., Feldman, D.E., Carandini, M., and Scanziani, M. (2005). Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48, 315327.Google Scholar
Galvan, A., Hu, X., Smith, Y., and Wichmann, T. (2016). Effects of optogenetic activation of corticothalamic terminals in the motor thalamus of awake monkeys. Journal of Neuroscience 36, 35193530.Google Scholar
Gentet, L.J., and Ulrich, D. (2003). Strong, reliable and precise synaptic connections between thalamic relay cells and neurones of the nucleus reticularis in juvenile rats. Journal of Physiology 546, 801811.Google Scholar
Goldman, M.S., Maldonado, P., and Abbott, L.F. (2002). Redundancy reduction and sustained firing with stochastic depressing synapses. Journal of Neuroscience 22, 584591.Google Scholar
Golomb, D., Wang, X.J., and Rinzel, J. (1996). Propagation of spindle waves in a thalamic slice model. Journal of Neurophysiology 75, 750769.Google Scholar
Gonzalo-Ruiz, A., and Lieberman, A. (1995). Topographic organization of projections from the thalamic reticular nucleus to the anterior thalamic nuclei in the rat. Brain Research Bulletin 37, 1735.Google Scholar
Granseth, B., Ahlstrand, E., and Lindström, S. (2002). Paired pulse facilitation of corticogeniculate EPSCs in the dorsal lateral geniculate nucleus of the rat investigated in vitro. Journal of Physiology 544, 477486.Google Scholar
Gu, Q.L., Lam, N.H., Halassa, M.M., and Murray, J.D. (2021). Computational circuit mechanisms underlying thalamic control of attention. bioRxiv 10.1101/2020.09.16.300749.Google Scholar
Halassa, M.M., and Acsády, L. (2016). Thalamic inhibition: diverse sources, diverse scales. Trends in Neurosciences 39, 680693.CrossRefGoogle ScholarPubMed
Halassa, M.M., Chen, Z., Wimmer, R.D., Brunetti, P.M., Zhao, S., Zikopoulos, B., Wang, F., Brown, E.N., and Wilson, M.A. (2014). State-dependent architecture of thalamic reticular subnetworks. Cell 158, 808821.Google Scholar
Halassa, M.M., and Kastner, S. (2017). Thalamic functions in distributed cognitive control. Nature Neuroscience 20, 16691679.Google Scholar
Halassa, M.M., and Sherman, S.M. (2019). Thalamocortical circuit motifs: a general framework. Neuron 103, 762770.Google Scholar
Halassa, M.M., Siegle, J.H., Ritt, J.T., Ting, J.T., Feng, G., and Moore, C.I. (2011). Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nature Neuroscience 14, 11181120.Google Scholar
Hale, P., Sefton, A., Baur, L., and Cottee, L. (1982). Interrelations of the rat’s thalamic reticular and dorsal lateral geniculate nuclei. Experimental Brain Research 45–45.Google Scholar
Hennig, M.H. (2013). Theoretical models of synaptic short term plasticity. Frontiers in Computational Neuroscience 7.Google Scholar
Hirai, D., Nakamura, K.C., ichi Shibata, K., Tanaka, T., Hioki, H., Kaneko, T., and Furuta, T. (2017). Shaping somatosensory responses in awake rats: cortical modulation of thalamic neurons. Brain Structure and Function 223, 851872.Google Scholar
Hirsch, J.A., Wang, X., Sommer, F.T., and Martinez, L.M. (2015). How inhibitory circuits in the thalamus serve vision. Annual Review of Neuroscience 38, 309329.Google Scholar
Hou, G., Smith, A.G., and Zhang, Z.W. (2016). Lack of intrinsic GABAergic connections in the thalamic reticular nucleus of the mouse. Journal of Neuroscience 36, 7246–52.Google Scholar
Huguenard, J., and Prince, D. (1992). A novel t-type current underlies prolonged Ca2+- dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. Journal of Neuroscience 12, 38043817.CrossRefGoogle ScholarPubMed
Huguenard, J.R., and McCormick, D.A. (2007). Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends in Neurosciences 30, 350356.Google Scholar
Huntenburg, J.M., Bazin, P.L., and Margulies, D.S. (2018). Large-scale gradients in human cortical organization. Trends in Cognitive Sciences 22, 2131.Google Scholar
Isaacson, J.S., and Scanziani, M. (2011). How inhibition shapes cortical activity. Neuron 72, 231243.CrossRefGoogle ScholarPubMed
Jackman, S.L., and Regehr, W.G. (2017). The mechanisms and functions of synaptic facilitation. Neuron 94, 447464.Google Scholar
Jahnsen, H., and Llinás, R. (1984). Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. Journal of Physiology 349, 205226.Google Scholar
Jaramillo, J., Mejias, J.F., and Wang, X.J. (2019). Engagement of pulvino-cortical feedforward and feedback pathways in cognitive computations. Neuron 101, 321–336.e9.Google Scholar
Jones, E.G. (1975). Some aspects of the organization of the thalamic reticular complex. Journal of Comparative Neurology 162, 285308.CrossRefGoogle ScholarPubMed
Jones, E.G. (2012). The thalamus (Springer Science & Business Media).Google Scholar
Katzner, S., Busse, L., and Carandini, M. (2011). GABAA inhibition controls response gain in visual cortex. Journal of Neuroscience 31, 59315941.Google Scholar
Kim, U., Bal, T., and McCormick, D.A. (1995). Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. Journal of Neurophysiology 74, 13011323.Google Scholar
Kimura, A. (2014). Diverse subthreshold cross-modal sensory interactions in the thalamic reticular nucleus: implications for new pathways of cross-modal attentional gating function. European Journal of Neuroscience 39, 14051418.Google Scholar
Kimura, A., Imbe, H., Donishi, T., and Tamai, Y. (2007). Axonal projections of single auditory neurons in the thalamic reticular nucleus: implications for tonotopy-related gating function and cross-modal modulation. European Journal of Neuroscience 26, 35243535.Google Scholar
Knudsen, E.I. (2018). Neural circuits that mediate selective attention: a comparative perspective. Trends in Neurosciences 41, 789805.CrossRefGoogle ScholarPubMed
Krishnan, G.P., Chauvette, S., Shamie, I., Soltani, S., Timofeev, I., Cash, S.S., Halgren, E., and Bazhenov, M. (2016). Cellular and neurochemical basis of sleep stages in the thalamocortical network. eLife 5.Google Scholar
Krol, A., Wimmer, R.D., Halassa, M.M., and Feng, G. (2018). Thalamic reticular dysfunction as a circuit endophenotype in neurodevelopmental disorders. Neuron 98, 282295.CrossRefGoogle ScholarPubMed
Lam, Y.W., and Sherman, S.M. (2015). Functional topographic organization of the motor reticulothalamic pathway. Journal of Neurophysiology 113, 30903097.Google Scholar
Landisman, C.E. (2005). Long-term modulation of electrical synapses in the mammalian thalamus. Science 310, 18091813.Google Scholar
Landisman, C.E., and Connors, B.W. (2007). VPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback. Cerebral Cortex 17, 28532865.Google Scholar
Landisman, C.E., Long, M.A., Beierlein, M., Deans, M.R., Paul, D.L., and Connors, B.W. (2002). Electrical synapses in the thalamic reticular nucleus. Journal of Neuroscience 22, 10021009.Google Scholar
Lee, J.H., Latchoumane, C.F.V., Park, J., Kim, J., Jeong, J., Lee, K.H., and Shin, H.S. (2019). The rostroventral part of the thalamic reticular nucleus modulates fear extinction. Nature Communications 10.Google Scholar
Lee, S.C., Cruikshank, S.J., and Connors, B.W. (2010). Electrical and chemical synapses between relay neurons in developing thalamus. Journal of Physiology 588, 24032415.Google Scholar
Lee, S.C., Patrick, S.L., Richardson, K.A., and Connors, B.W. (2014). Two functionally distinct networks of gap junction-coupled inhibitory neurons in the thalamic reticular nucleus. Journal of Neuroscience 34, 1317013182.Google Scholar
Lee, S.H., Govindaiah, G., and Cox, C.L. (2007). Heterogeneity of firing properties among rat thalamic reticular nucleus neurons. Journal of Physiology 582, 195208.Google Scholar
Lesica, N.A. (2004). Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. Journal of Neuroscience 24, 1073110740.Google Scholar
Li, Y., Lopez-Huerta, V.G., Adiconis, X., Levandowski, K., Choi, S., Simmons, S.K., Arias-Garcia, M.A., Guo, B., Yao, A.Y., Blosser, T.R., Wimmer, R.D., Aida, T., Atamian, A., Naik, T., Sun, X., Bi, D., Malhotra, D., Hession, C.C., Shema, R., Gomes, M., Li, T., Hwang, E., Krol, A., Kowalczyk, M., Peça, J., Pan, G., Halassa, M.M., Levin, J.Z., Fu, Z., and Feng, G. (2020). Distinct subnetworks of the thalamic reticular nucleus. Nature 583, 819824.Google Scholar
Litwin-Kumar, A., Rosenbaum, R., and Doiron, B. (2016). Inhibitory stabilization and visual coding in cortical circuits with multiple interneuron subtypes. Journal of Neurophysiology 115, 13991409.CrossRefGoogle ScholarPubMed
Liu, B.H., Li, Y.T., Ma, W.P., Pan, C.J., Zhang, L.I., and Tao, H.W. (2011). Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells. Neuron 71, 542554.Google Scholar
Lo, F.S., and Sherman, S.M. (1994). Feedback inhibition in the cat’s lateral geniculate nucleus. Experimental Brain Research 100.Google Scholar
Long, M.A. (2004). Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus. Journal of Neuroscience 24, 341349.Google Scholar
Lytton, W., Destexhe, A., and Sejnowski, T. (1996). Control of slow oscillations in the thalamocortical neuron: a computer model. Neuroscience 70, 673684.Google Scholar
Marsat, G., and Maler, L. (2010). Neural heterogeneity and efficient population codes for communication signals. Journal of Neurophysiology 104, 25432555.Google Scholar
Martinez-Garcia, R.I., Voelcker, B., Zaltsman, J.B., Patrick, S.L., Stevens, T.R., Connors, B.W., and Cruikshank, S.J. (2020). Two dynamically distinct circuits drive inhibition in the sensory thalamus. Nature 583, 813818.Google Scholar
Masson, G.L., Masson, S.R.L., Debay, D., and Bal, T. (2002). Feedback inhibition controls spike transfer in hybrid thalamic circuits. Nature 417, 854858.Google Scholar
Matveev, V., and Wang, X.J. (2000). Differential short-term synaptic plasticity and transmission of complex spike trains: to depress or to facilitate?Cerebral Cortex 10, 11431153.Google Scholar
McAlonan, K., Cavanaugh, J., and Wurtz, R.H. (2008). Guarding the gateway to cortex with attention in visual thalamus. Nature 456, 391394.CrossRefGoogle ScholarPubMed
McCormick, D.A., and Bal, T. (1997). Sleep and arousal: thalamocortical mechanisms. Annual Review of Neuroscience 20, 185215.Google Scholar
McCormick, D.A., and Huguenard, J.R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology 68, 13841400.Google Scholar
McCormick, D.A., and Pape, H.C. (1990). Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. Journal of Physiology 431, 291318.Google Scholar
Mease, R.A., Kuner, T., Fairhall, A.L., and Groh, A. (2017). Multiplexed spike coding and adaptation in the thalamus. Cell Reports 19, 11301140.Google Scholar
Mejías, J.F., and Torres, J.J. (2007). The role of synaptic facilitation in spike coincidence detection. Journal of Computational Neuroscience 24, 222234.Google Scholar
Murray, J.D., and Anticevic, A. (2017). Toward understanding thalamocortical dysfunction in schizophrenia through computational models of neural circuit dynamics. Schizophrenia Research 180, 7077.Google Scholar
Murray, J.D., Jaramillo, J., and Wang, X.J. (2017). Working memory and decision-making in a frontoparietal circuit model. Journal of Neuroscience 37, 1216712186.Google Scholar
Nakajima, M., and Halassa, M.M. (2017). Thalamic control of functional cortical connectivity. Current Opinion in Neurobiology 44, 127131.Google Scholar
Nakajima, M., Schmitt, L.I., and Halassa, M.M. (2019). Prefrontal cortex regulates sensory filtering through a basal ganglia-to-thalamus pathway. Neuron 103, 445–458.e10.Google Scholar
O’Connor, D.H., Fukui, M.M., Pinsk, M.A., and Kastner, S. (2002). Attention modulates responses in the human lateral geniculate nucleus. Nature Neuroscience 5, 12031209.Google Scholar
Ozeki, H., Finn, I.M., Schaffer, E.S., Miller, K.D., and Ferster, D. (2009). Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron 62, 578592.CrossRefGoogle ScholarPubMed
Panzeri, S., Macke, J.H., Gross, J., and Kayser, C. (2015). Neural population coding: combining insights from microscopic and mass signals. Trends in Cognitive Sciences 19, 162172.CrossRefGoogle ScholarPubMed
Pape, H.C. (1996). Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annual Review of Physiology 58, 299327.Google Scholar
Pham, T., and Haas, J.S. (2018). Electrical synapses between inhibitory neurons shape the responses of principal neurons to transient inputs in the thalamus: a modeling study. Scientific Reports 8.Google Scholar
Phillips, J.W., Schulmann, A., Hara, E., Winnubst, J., Liu, C., Valakh, V., Wang, L., Shields, B.C., Korff, W., Chandrashekar, J., Lemire, A.L., Mensh, B., Dudman, J.T., Nelson, S.B., and Hantman, A.W. (2019). A repeated molecular architecture across thalamic pathways. Nature Neuroscience 22, 1925–1935.Google Scholar
Pinault, D. (2004). The thalamic reticular nucleus: structure, function and concept. Brain Research Reviews 46, 131.Google Scholar
Pinault, D., and Deschênes, M. (1998a). Anatomical evidence for a mechanism of lateral inhibition in the rat thalamus. European Journal of Neuroscience 10, 34623469.Google Scholar
Pinault, D., and Deschênes, M. (1998b). Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: a three-dimensional, graphic, and morphometric analysis. Journal of Comparative Neurology 391, 180203.3.0.CO;2-Z>CrossRefGoogle Scholar
Porter, J.T., Johnson, C.K., and Agmon, A. (2001). Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. Journal of Neuroscience 21, 26992710.Google Scholar
Priebe, N.J., and Ferster, D. (2008). Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57, 482497.Google Scholar
Ramcharan, E.J., Gnadt, J.W., and Sherman, S.M. (2005). Higher-order thalamic relays burst more than first-order relays. Proceedings of the National Academy of Sciences of the United States of America 102, 1223612241.Google Scholar
Reinagel, P., Godwin, D., Sherman, S.M., and Koch, C. (1999). Encoding of visual information by LGN bursts. Journal of Neurophysiology 81, 25582569.Google Scholar
Reinhold, K., Lien, A.D., and Scanziani, M. (2015). Distinct recurrent versus afferent dynamics in cortical visual processing. Nature Neuroscience 18, 17891797.Google Scholar
Rikhye, R.V., Wimmer, R.D., and Halassa, M.M. (2018). Toward an integrative theory of thalamic function. Annual Review of Neuroscience 41, 163183.Google Scholar
Ritter-Makinson, S., Clemente-Perez, A., Higashikubo, B., Cho, F.S., Holden, S.S., Bennett, E., Chkhaidze, A., Rooda, O.H.E., Cornet, M.C., Hoebeek, F.E., Yamakawa, K., Cilio, M.R., Delord, B., and Paz, J.T. (2019). Augmented reticular thalamic bursting and seizures in Scn1a-Dravet syndrome. Cell Reports 26, 54–64.e6.Google Scholar
Roberts, J.A., and Robinson, P.A. (2012). Corticothalamic dynamics: structure of parameter space, spectra, instabilities, and reduced model. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 85, 011910.Google Scholar
Rodenkirch, C., Liu, Y., Schriver, B.J., and Wang, Q. (2019). Locus coeruleus activation enhances thalamic feature selectivity via norepinephrine regulation of intrathalamic circuit dynamics. Nature Neuroscience 22, 120133.Google Scholar
Rosenbaum, R., Rubin, J., and Doiron, B. (2012). Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer. PLoS Computational Biology 8, e1002557.Google Scholar
Rosenbaum, R., Rubin, J.E., and Doiron, B. (2013). Short-term synaptic depression and stochastic vesicle dynamics reduce and shape neuronal correlations. Journal of Neurophysiology 109, 475484.Google Scholar
Rovó, Z., Ulbert, I., and Acsády, L. (2012). Drivers of the primate thalamus. Journal of Neuroscience 32, 1789417908.Google Scholar
Saalmann, Y.B., and Kastner, S. (2011). Cognitive and perceptual functions of the visual thalamus. Neuron 71, 209223.Google Scholar
Saleem, A.B., Lien, A.D., Krumin, M., Haider, B., Rosón, M.R., Ayaz, A., Reinhold, K., Busse, L., Carandini, M., and Harris, K.D. (2017). Subcortical source and modulation of the narrowband gamma oscillation in mouse visual cortex. Neuron 93, 315322.CrossRefGoogle ScholarPubMed
Sanzeni, A., Akitake, B., Goldbach, H.C., Leedy, C.E., Brunel, N., and Histed, M.H. (2020). Inhibition stabilization is a widespread property of cortical networks. eLife 9.Google Scholar
Scheibel, A.B. (1997). The thalamus and neuropsychiatric illness. Journal of Neuropsychiatry and Clinical Neurosciences 9, 342353.Google Scholar
Schmitt, L.I., Wimmer, R.D., Nakajima, M., Happ, M., Mofakham, S., and Halassa, M.M. (2017). Thalamic amplification of cortical connectivity sustains attentional control. Nature 545, 219223.Google Scholar
Sherman, S. (2001). Tonic and burst firing: dual modes of thalamocortical relay. Trends in Neurosciences 24, 122126.Google Scholar
Sherman, S.M. (2012). Thalamocortical interactions. Current Opinion in Neurobiology 22, 575579.CrossRefGoogle ScholarPubMed
Sherman, S.M. (2016). Thalamus plays a central role in ongoing cortical functioning. Nature Neuroscience 19, 533541.Google Scholar
Sherman, S.M., and Guillery, R.W. (1996). Functional organization of thalamocortical relays. Journal of Neurophysiology 76, 13671395.Google Scholar
Shosaku, A. (1986). Cross-correlation analysis of a recurrent inhibitory circuit in the rat thalamus. Journal of Neurophysiology 55, 10301043.CrossRefGoogle ScholarPubMed
Shosaku, A., Kayama, Y., Sumitomo, I., Sugitani, M., and Iwama, K. (1989). Analysis of recurrent inhibitory circuit in rat thalamus: neurophysiology of the thalamic reticular nucleus. Progress in Neurobiology 32, 77102.Google Scholar
Sohal, V.S., and Huguenard, J.R. (1998). Long-range connections synchronize rather than spread intrathalamic oscillations: computational modeling and in vitro electrophysiology. Journal of Neurophysiology 80, 17361751.CrossRefGoogle ScholarPubMed
Soto-Sánchez, C., Wang, X., Vaingankar, V., Sommer, F.T., and Hirsch, J.A. (2017). Spatial scale of receptive fields in the visual sector of the cat thalamic reticular nucleus. Nature Communications 8, 800.Google Scholar
Steriade, M., Domich, L., Oakson, G., and Deschênes, M. (1987). The deafferented reticular thalamic nucleus generates spindle rhythmicity. Journal of Neurophysiology 57, 260273.Google Scholar
Steriade, M., McCormick, D., and Sejnowski, T. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679685.Google Scholar
Steriade, M., Nunez, A., and Amzica, F. (1993). Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Journal of Neuroscience 13, 32663283.Google Scholar
Swadlow, H.A., and Gusev, A.G. (2001). The impact of “bursting” thalamic impulses at a neocortical synapse. Nature Neuroscience 4, 402408.Google Scholar
Tarasenko, A.N., Kostyuk, P.G., Eremin, A.V., and Isaev, D.S. (1997). Two types of low-voltage-activated Ca2+ channels in neurones of rat laterodorsal thalamic nucleus. Journal of Physiology 499, 7786.Google Scholar
Temereanca, S., Brown, E.N., and Simons, D.J. (2008). Rapid changes in thalamic firing synchrony during repetitive whisker stimulation. Journal of Neuroscience 28, 1115311164.Google Scholar
Tian, Y., Margulies, D.S., Breakspear, M., and Zalesky, A. (2020). Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nature Neuroscience 23, 14211432.Google Scholar
Timofeev, I., Bazhenov, M., Seigneur, J., and Sejnowski, T. (2012). Neuronal synchronization and thalamocortical rhythms in sleep, wake and epilepsy. In Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W., and Delgado-Escueta, A.V., eds.,Jasper’s basic mechanisms of the epilepsies [Internet], 4th ed. (National Center for Biotechnology Information).Google Scholar
Timofeev, I., Bonjean, M.E., and Bazhenov, M. (2020).Cellular mechanisms of thalamocortical oscillations in the sleeping brain (Springer).Google Scholar
Timofeev, I., and Steriade, M. (1996). Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. Journal of Neurophysiology 76, 41524168.Google Scholar
Tottene, A., Favero, M., and Pietrobon, D. (2019). Enhanced thalamocortical synaptic transmission and dysregulation of the excitatory–inhibitory balance at the thalamocortical feedforward inhibitory microcircuit in a genetic mouse model of migraine. Journal of Neuroscience 39, 98419851.CrossRefGoogle Scholar
Traub, R.D., Contreras, D., Cunningham, M.O., Murray, H., LeBeau, F.E.N., Roopun, A., Bibbig, A., Wilent, W.B., Higley, M.J., and Whittington, M.A. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of Neurophysiology 93, 21942232.Google Scholar
Tsodyks, M., Pawelzik, K., and Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation 10, 821835.Google Scholar
Tsodyks, M., and Wu, S. (2013). Short-term synaptic plasticity. Scholarpedia 8, 3153. Revision #182521.CrossRefGoogle Scholar
Urbain, N., Salin, P.A., Libourel, P.A., Comte, J.C., Gentet, L.J., and Petersen, C.C. (2015). Whisking-related changes in neuronal firing and membrane potential dynamics in the somatosensory thalamus of awake mice. Cell Reports 13, 647656.Google Scholar
Usrey, W.M., and Sherman, S.M. (2018). Corticofugal circuits: communication lines from the cortex to the rest of the brain. Journal of Comparative Neurology 527, 640650.Google Scholar
Vantomme, G., Rovó, Z., Cardis, R., Béard, E., Katsioudi, G., Guadagno, A., Perrenoud, V., Fernandez, L.M.J., and Lüthi, A. (2020). A thalamic reticular circuit for head direction cell tuning and spatial navigation. Cell Reports 31, 107747.Google Scholar
Viaene, A.N., Petrof, I., and Sherman, S.M. (2011). Synaptic properties of thalamic input to layers 2/3 and 4 of primary somatosensory and auditory cortices. Journal of Neurophysiology 105, 279292.Google Scholar
Wang, X., Wei, Y., Vaingankar, V., Wang, Q., Koepsell, K., Sommer, F.T., and Hirsch, J.A. (2007). Feedforward excitation and inhibition evoke dual modes of firing in the cat’s visual thalamus during naturalistic viewing. Neuron 55, 465478.Google Scholar
Wang, X.J. (2020).Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nature Reviews Neuroscience 21, 169178.Google Scholar
Wang, X.J., Golomb, D., and Rinzel, J. (1995). Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. Proceedings of the National Academy of Sciences of the United States of America 92, 55775581.Google Scholar
Wei, H., Bonjean, M., Petry, H.M., Sejnowski, T.J., and Bickford, M.E. (2011). Thalamic burst firing propensity: a comparison of the dorsal lateral geniculate and pulvinar nuclei in the tree shrew. Journal of Neuroscience 31, 1728717299.Google Scholar
Wells, M.F., Wimmer, R.D., Schmitt, L.I., Feng, G., and Halassa, M.M. (2016). Thalamic reticular impairment underlies attention deficit in Ptchd1Y/− mice. Nature 532, 5863.Google Scholar
Wester, J.C., and Contreras, D. (2013). Differential modulation of spontaneous and evoked thalamocortical network activity by acetylcholine level in vitro. Journal of Neuroscience 33, 1795117966.Google Scholar
Whitmire, C.J., Waiblinger, C., Schwarz, C., and Stanley, G.B. (2016). Information coding through adaptive gating of synchronized thalamic bursting. Cell Reports 14, 795807.CrossRefGoogle ScholarPubMed
Willis, A.M., Slater, B.J., Gribkova, E.D., and Llano, D.A. (2015). Open-loop organization of thalamic reticular nucleus and dorsal thalamus: a computational model. Journal of Neurophysiology 114, 23532367.Google Scholar
Wimmer, R.D., Schmitt, L.I., Davidson, T.J., Nakajima, M., Deisseroth, K., and Halassa, M.M. (2015). Thalamic control of sensory selection in divided attention. Nature 526, 705709.Google Scholar
Wolfart, J., Debay, D., Masson, G.L., Destexhe, A., and Bal, T. (2005). Synaptic background activity controls spike transfer from thalamus to cortex. Nature Neuroscience 8, 17601767.Google Scholar
Yang, S., Meng, Y., Li, J., Li, B., Fan, Y.S., Chen, H., and Liao, W. (2020). The thalamic functional gradient and its relationship to structural basis and cognitive relevance. NeuroImage 218, 116960.Google Scholar
Zeldenrust, F., Wadman, W.J., and Englitz, B. (2018). Neural coding with bursts—current state and future perspectives. Frontiers in Computational Neuroscience 12.Google Scholar
Zikopoulos, B., and Barbas, H. (2006). Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. Journal of Neuroscience 26, 73487361.Google Scholar
Zikopoulos, B., and Barbas, H. (2012). Pathways for emotions and attention converge on the thalamic reticular nucleus in primates. Journal of Neuroscience 32, 53385350.Google Scholar

References

Arnsten, A. F. T., Wang, M. J., & Paspalas, C. D. (2012, October). Neuromodulation of thought: Flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron, 76(1), 223239. doi: 10.1016/j.neuron.2012.08.038Google Scholar
Baars, B. J. (1988). A Cognitive Theory of Consciousness. New York: Cambridge University Press.Google Scholar
Badre, D., & Frank, M. J. (2012, March). Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 2: Evidence from fMRI. Cerebral Cortex, 22(3), 527536. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21693491Google Scholar
Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012, November). Canonical microcircuits for predictive coding. Neuron, 76(4), 695711. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23177956Google Scholar
Bender, D. B., & Youakim, M. (2001, January). Effect of attentive fixation in macaque thalamus and cortex. Journal of Neurophysiology, 85, 219234. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11152722Google Scholar
Bisley, J. W., & Goldberg, M. E. (2010). Attention, intention, and priority in the parietal lobe. Annual Review of Neuroscience, 33, 121. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20192813Google Scholar
Bortone, D. S., Olsen, S. R., & Scanziani, M. (2014, April). Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron, 82(2), 474485. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24656931Google Scholar
Braver, T. S., & Cohen, J. D. (2000, December). On the control of control: The role of dopamine in regulating prefrontal function and working memory. In Monsell, S. & Driver, J. (Eds.), Control of Cognitive Processes: Attention and Performance XVIII (pp. 713737). Cambridge, MA: MIT Press.Google Scholar
Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009, May). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 73517356.CrossRefGoogle ScholarPubMed
Brown, R. G., & Marsden, C. D. (1990, February). Cognitive function in Parkinson’s disease: From description to theory. Trends in Neurosciences, 13, 2129. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1688671Google Scholar
Buffalo, E. A., Fries, P., Landman, R., Buschman, T. J., & Desimone, R. (2011, July). Laminar differences in gamma and alpha coherence in the ventral stream. Proceedings of the National Academy of Sciences of the United States of America, 108(27), 1126211267. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21690410Google Scholar
Buschman, T. J., & Kastner, S. (2015, October). From behavior to neural dynamics: An integrated theory of attention. Neuron, 88(1), 127144. doi: 10.1016/j.neuron.2015.09.017Google Scholar
Cavanagh, P., Hunt, A. R., Afraz, A., & Rolfs, M. (2010, April). Visual stability based on remapping of attention pointers. Trends in Cognitive Sciences, 14(4), 147153. doi: 10.1016/j.tics.2010.01.007Google Scholar
Chatham, C. H., Frank, M., & Badre, D. (2014, January). Corticostriatal output gating during selection from working memory. Neuron, 81(4), 930942.Google Scholar
Chatham, C. H., Herd, S. A., Brant, A. M., Hazy, T. E., Miyake, A., O’Reilly, R. C., & Friedman, N. P. (2011, November). From an executive network to executive control: A computational model of the n-back task. Journal of Cognitive Neuroscience, 23, 35983619. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21563882Google Scholar
Chen, H., Hua, S. E., Smith, M. A., Lenz, F. A., & Shadmehr, R. (2006, October). Effects of human cerebellar thalamus disruption on adaptive control of reaching. Cerebral Cortex, 16(10), 14621473. doi: 10.1093/cercor/bhj087Google Scholar
Clark, A. (2013, June). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181204. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23663408Google Scholar
Clascá, F., Rubio-Garrido, P., & Jabaudon, D. (2012). Unveiling the diversity of thalamocortical neuron subtypes. European Journal of Neuroscience, 35(10), 15241532. doi: 10.1111/j.1460-9568.2012.08033.xGoogle Scholar
Clayton, M. S., Yeung, N., & Kadosh, R. C. (2018). The many characters of visual alpha oscillations. European Journal of Neuroscience, 48(7), 24982508. doi: 10.1111/ejn.13747Google Scholar
Connors, B. W., Gutnick, M. J., & Prince, D. A. (1982, December). Electrophysiological properties of neocortical neurons in vitro. Journal of Neurophysiology, 48(6), 13021320. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6296328Google Scholar
Crick, F. (1984, July). Function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 81, 45864590. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6589612Google Scholar
Crick, F. (1989, February). The recent excitement about neural networks. Nature, 337, 129132. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2911347Google Scholar
Dahlin, E., Neely, A. S., Larsson, A., Backman, L., & Nyberg, L. (2008, June). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 15101512. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18556560Google Scholar
Dayan, P., Hinton, G. E., Neal, R. N., & Zemel, R. S. (1995, January). The Helmholtz machine. Neural Computation, 7(5), 889904.Google Scholar
Dehaene, S., & Naccache, L. (2001, February). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79(1–2), 137. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11164022Google Scholar
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193222. doi: 10.1146/annurev.ne.18.030195.001205Google Scholar
Dougherty, K., Cox, M. A., Ninomiya, T., Leopold, D. A., & Maier, A. (2017, February). Ongoing alpha activity in v1 regulates visually driven spiking responses. Cerebral Cortex, 27(2), 11131124. doi: 10.1093/cercor/bhv304Google Scholar
Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992, April). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255(5040), 9092. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1553535Google Scholar
Edelman, G. M., & Tononi, G. (2001). A Universe of Consciousness: How Matter Becomes Imagination. New York, NY: Basic Books.Google Scholar
Elman, J., Bates, E., Karmiloff-Smith, A., Johnson, M., Parisi, D., & Plunkett, K. (1996). Rethinking Innateness: A Connectionist Perspective on Development. Cambridge, MA: MIT Press.Google Scholar
Elman, J. L. (1990, January). Finding structure in time. Cognitive Science, 14(2), 179211.Google Scholar
Elston, G. N. (2003). Cortex, cognition and the cell: New insights into the pyramidal neuron and prefrontal function. Cerebral Cortex, 13(11), 11241138. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14576205Google Scholar
Farah, M. J. (1990). Visual Agnosia. Cambridge, MA: MIT Press.Google Scholar
Fiebelkorn, I. C., & Kastner, S. (2019, February). A rhythmic theory of attention. Trends in Cognitive Sciences, 23(2), 87101. doi: 10.1016/j.tics.2018.11.009Google Scholar
Fiebelkorn, I. C., Pinsk, M. A., & Kastner, S. (2018, August). A dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron, 99(4), 842–853.e8. doi: 10.1016/j.neuron.2018.07.038Google Scholar
Franceschetti, S., Guatteo, E., Panzica, F., Sancini, G., Wanke, E., & Avanzini, G. (1995, October). Ionic mechanisms underlying burst firing in pyramidal neurons: Intracellular study in rat sensorimotor cortex. Brain Research, 696(1–2), 127139. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8574660Google Scholar
Frandolig, J. E., Matney, C. J., Lee, K., Kim, J., Chevée, M., Kim, S.-J., … Brown, S. P. (2019, September). The synaptic organization of layer 6 circuits reveals inhibition as a major output of a neocortical sublamina. Cell Reports, 28(12), 3131–3143.e5. doi: 10.1016/j.celrep.2019.08.048Google Scholar
Frank, M. J. (2005, January). When and when not to use your subthalamic nucleus: Lessons from a computational model of the basal ganglia. In Seth, A. K., Prescott, T. J., & Bryson, J. J. (Eds.), Modelling Natural Action Selection: Proceedings of an International Workshop (pp. 5360). Sussex: AISB.Google Scholar
Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001, January). Interactions between the frontal cortex and basal ganglia in working memory: A computational model. Cognitive, Affective, and Behavioral Neuroscience, 1, 137160. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12467110Google Scholar
Friston, K. (2005, April). A theory of cortical responses. Philosophical Transactions of the Royal Society B, 360(1456), 815836. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15937014Google Scholar
Friston, K. (2010, February). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127138. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20068583Google Scholar
Gerfen, C. R., & Surmeier, D. J. (2011). Modulation of striatal projection systems by dopamine. Annual Review of Neuroscience, 34, 441466. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21469956CrossRefGoogle ScholarPubMed
Gers, F. A., Schmidhuber, J., & Cummins, F. (2000, November). Learning to forget: Continual prediction with LSTM. Neural Computation, 12, 24512471. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11032042Google Scholar
Giguere, M., & Goldman-Rakic, P. S. (1988). Mediodorsal nucleus: Areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. Journal of Comparative Neurology, 277(2), 195213. doi: 10.1002/cne.902770204Google Scholar
Graybiel, A. M. (1995). Building action repertoires: Memory and learning functions of the basal ganglia. Current Opinion in Neurobiology, 5(6), 733741. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8805417Google Scholar
Grossberg, S. (1999). How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. Spatial Vision, 12. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10221426Google Scholar
Guo, K., Yamawaki, N., Svoboda, K., & Shepherd, G. M. G. (2018, October). Anterolateral motor cortex connects with a medial subdivision of ventromedial thalamus through cell type-specific circuits, forming an excitatory thalamo-cortico-thalamic loop via layer 1 apical tuft dendrites of layer 5b pyramidal tract type neurons. Journal of Neuroscience, 38(41), 87878797. doi: 10.1523/JNEUROSCI.1333-18.2018Google Scholar
Guo, Z. V., Inagaki, H. K., Daie, K., Druckmann, S., Gerfen, C. R., & Svoboda, K. (2017, May). Maintenance of persistent activity in a frontal thalamocortical loop. Nature, 545(7653), 181186. doi: 10.1038/nature22324Google Scholar
Halassa, M. M., & Kastner, S. (2017, December). Thalamic functions in distributed cognitive control. Nature Neuroscience, 20(12), 1669. doi: 10.1038/s41593-017-0020-1Google Scholar
Halassa, M. M., Siegle, J. H., Ritt, J. T., Ting, J. T., Feng, G., & Moore, C. I. (2011, September). Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nature Neuroscience, 14(9), 11181120. doi: 10.1038/nn.2880Google Scholar
Harris, K. D., & Shepherd, G. M. G. (2015, February). The neocortical circuit: Themes and variations. Nature Neuroscience, 18(2), 170181. doi: 10.1038/nn.3917Google Scholar
Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2006, April). Banishing the homunculus: Making working memory work. Neuroscience, 139, 105118. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16343792Google Scholar
Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2007, August). Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1485), 16011613. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17428778Google Scholar
He, B. J., Snyder, A. Z., Vincent, J. L., Epstein, A., Shulman, G. L., & Corbetta, M. (2007, March). Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron, 53(6), 905918. doi: 10.1016/j.neuron.2007.02.013Google Scholar
Herd, S. A., Krueger, K., Nair, A., Mollick, J., & O’Reilly, R. (2019). Neural mechanisms of human decision-making. Cognitive Affective and Behavioral Neuroscience. Retrieved from https://arxiv.org/abs/1912.07660Google Scholar
Herd, S. A., O’Reilly, R. C., Hazy, T. E., Chatham, C. H., Brant, A. M., & Friedman, N. P. (2014, April). A neural network model of individual differences in task switching abilities. Neuropsychologia, 62, 375389. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24791709Google Scholar
Hochreiter, S., & Schmidhuber, J. (1997, January). Long short-term memory. Neural Computation, 9, 17351780.Google Scholar
Houk, J. C. (2005, June). Agents of the mind. Biological Cybernetics, 92(6), 427437. Retrieved from http://dx.doi.org/10.1007/s00422-005–0569-8Google Scholar
Ilinsky, I. A., Jouandet, M. L., & Goldman-Rakic, P. S. (1985). Organization of the nigrothalamocortical system in the rhesus monkey. Journal of Comparative Neurology, 236(3), 315330. doi: 10.1002/cne.902360304Google Scholar
Jensen, O., Bonnefond, M., & VanRullen, R. (2012, April). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16(4), 200206. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22436764Google Scholar
Jones, E. G. (1998a). A new view of specific and nonspecific thalamocortical connections. Advances in Neurology, 77, 4971. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9709817Google Scholar
Jones, E. G. (1998b, April). Viewpoint: The core and matrix of thalamic organization. Neuroscience, 85(2), 331345. doi: 10.1016/S0306-4522(97)00581-2Google Scholar
Jones, E. G. (2007). The Thalamus (2nd ed., Vol. 2). Cambridge: Cambridge University Press.Google Scholar
Karnath, H. O., Himmelbach, M., & Rorden, C. (2002, February). The subcortical anatomy of human spatial neglect: Putamen, caudate nucleus and pulvinar. Brain: A Journal of Neurology, 125, 350360. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11844735Google Scholar
Kawato, M., Hayakawa, H., & Inui, T. (1993, January). A forward-inverse optics model of reciprocal connections between visual cortical areas. Network: Computation in Neural Systems, 4(4), 415422. doi: 10.1088/0954-898X 4 4 001Google Scholar
Klimesch, W. (2011, August). Evoked alpha and early access to the knowledge system: The P1 inhibition timing hypothesis. Brain Research, 1408, 5271. doi: 10.1016/j.brainres.2011.06.003Google Scholar
Kobatake, E., & Tanaka, K. (1994, January). Neuronal selectivities to complex object features in the ventral visual pathway. Journal of Neurophysiology, 71(3), 856867.Google Scholar
Kohonen, T. (1989). Self-organization and associative memory.New York: Springer-Verlag.Google Scholar
Kok, P., & de Lange, F. P. (2015). Predictive coding in sensory cortex. In Forstmann, B. U. & Wagenmakers, E-J (Eds.),An Introduction to Model-Based Cognitive Neuroscience (pp. 221244). New York: Springer. doi: 10.1007/978-1-4939-2236-9 11Google Scholar
Kok, P., Jehee, J. F. M., & de Lange, F. P. (2012, July). Less is more: Expectation sharpens representations in the primary visual cortex. Neuron, 75(2), 265270. doi: 10.1016/j.neuron.2012.04.034Google Scholar
Kritzer, M. F., & Goldman-Rakic, P. S. (1995, August). Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 359(1), 131143. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8557842Google Scholar
Kuramoto, E., Furuta, T., Nakamura, K. C., Unzai, T., Hioki, H., & Kaneko, T. (2009, September). Two types of thalamocortical projections from the motor thalamic nuclei of the rat: A single neuron-tracing study using viral vectors. Cerebral cortex, 19(9), 20652077. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19174446Google Scholar
Kuramoto, E., Ohno, S., Furuta, T., Unzai, T., Tanaka, Y. R., Hioki, H., & Kaneko, T. (2015, January). Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior–ventral lateral nuclear complex in the rat. Cerebral Cortex, 25(1), 221235. doi: 10.1093/cercor/bht216Google Scholar
LaBerge, D., & Buchsbaum, M. S. (1990, March). Positron emission tomographic measurements of pulvinar activity during an attention task. Journal of Neuroscience, 10, 613619. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2303863Google Scholar
Lamme, V. A. F. (2006, January). Towards a true neural stance on consciousness. Trends in Cognitive Sciences, 10(11), 494501. doi: 10.1016/j.tics.2006.09.001Google Scholar
Larkum, M. E., Petro, L. S., Sachdev, R. N. S., & Muckli, L. (2018). A perspective on cortical layering and layer-spanning neuronal elements. Frontiers in Neuroanatomy, 12. doi: 10.3389/fnana.2018.00056Google Scholar
Larkum, M. E., Zhu, J. J., & Sakmann, B. (1999, March). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398(6725), 338341. doi: 10.1038/18686Google Scholar
LeCun, Y., Bengio, Y., & Hinton, G. (2015, May). Deep learning. Nature, 521(7553), 436444. doi: 10.1038/nature14539Google Scholar
Lee, T. S., & Mumford, D. (2003, July). Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America, 20(7), 14341448. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12868647/Google Scholar
Lewis, L. D., Voigts, J., Flores, F. J., Schmitt, L. I., Wilson, M. A., Halassa, M. M., & Brown, E. N. (2015, October). Thalamic reticular nucleus induces fast and local modulation of arousal state. eLife, 4, e08760. doi: 10.7554/eLife.08760Google Scholar
Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., & Hinton, G. (2020, June). Backpropagation and the brain. Nature Reviews Neuroscience, 21(6), 335346. doi: 10.1038/s41583-020-0277-3Google Scholar
Lisman, J. E., Fellous, J. M., & Wang, X. J. (1999, April). A role for NMDA-receptor channels in working memory. Nature Neuroscience, 1, 273275. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10195158Google Scholar
Lotter, W., Kreiman, G., & Cox, D. (2016, May). Deep predictive coding networks for video prediction and unsupervised learning. arXiv:1605.08104 [cs, q-bio]. Retrieved from http://arxiv.org/abs/1605.08104Google Scholar
Luczak, A., Bartho, P., & Harris, K. D. (2009, May). Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron, 62(3), 413425. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19447096Google Scholar
Luczak, A., Bartho, P., & Harris, K. D. (2013, January). Gating of sensory input by spontaneous cortical activity. Journal of Neuroscience, 33(4), 16841695. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23345241Google Scholar
Luo, Y., Boix, X., Roig, G., Poggio, T., & Zhao, Q. (2015, November). Foveation-based mechanisms alleviate adversarial examples. arXiv:1511.06292 [cs]. Retrieved from http://arxiv.org/abs/1511.06292Google Scholar
Makeig, S., Westerfield, M., Jung, T. P., Enghoff, S., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2002, January). Dynamic brain sources of visual evoked responses. Science, 295, 690693.Google Scholar
Manto, M. (2009, April). Mechanisms of human cerebellar dysmetria: Experimental evidence and current conceptual bases. Journal of NeuroEngineering and Rehabilitation, 6(1), 10. doi: 10.1186/1743-0003-6–10Google Scholar
Markov, N. T., Vezoli, J., Chameau, P., Falchier, A., Quilodran, R., Huissoud, C., … Kennedy, H. (2014, January). Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex: Cortical counterstreams. Journal of Comparative Neurology, 522(1), 225259. doi: 10.1002/cne.23458Google Scholar
Mathewson, K., Gratton, G., Fabiani, M., Beck, D., & Ro, T. (2009). To see or not to see: Prestimulus alpha phase predicts visual awareness. Journal of Neuroscience, 29(9), 27252732.Google Scholar
Mathewson, K. E., Prudhomme, C., Fabiani, M., Beck, D. M., Lleras, A., & Gratton, G. (2012, August). Making waves in the stream of consciousness: Entraining oscillations in EEG alpha and fluctuations in visual awareness with rhythmic visual stimulation. Journal of Cognitive Neuroscience, 24(12), 23212333. doi: 10.1162/jocn a 00288Google Scholar
Middleton, F. A., & Strick, P. L. (2000, May). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research, 31(2–3), 236250. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10719151Google Scholar
Mink, J. W. (1996, March). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50(4), 381425. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9004351Google Scholar
Mumford, D. (1991, June). On the computational architecture of the neocortex. Biological Cybernetics, 65(2), 135145. doi: 10.1007/BF00202389Google Scholar
Mumford, D. (1992). On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biological Cybernetics, 66(3), 241251. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1540675Google Scholar
Münkle, M. C., Waldvogel, H. J., & Faull, R. L. M. (2000, July). The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus. Journal of Chemical Neuroanatomy, 19(3), 155173. doi: 10.1016/S0891-0618(00)00060-0Google Scholar
Nambu, A. (2008, December). Seven problems on the basal ganglia. Current Opinion in Neurobiology, 18(6), 595604. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19081243Google Scholar
Olsen, S., Bortone, D., Adesnik, H., & Scanziani, M. (2012, February). Gain control by layer six in cortical circuits of vision. Nature, 483(7387), 4752.Google Scholar
O’Reilly, R. C. (1996, January). Biologically plausible error-driven learning using local activation differences: The generalized recirculation algorithm. Neural Computation, 8(5), 895938. doi: 10.1162/neco.1996.8.5.895Google Scholar
O’Reilly, R. C. (2006, October). Biologically based computational models of high-level cognition. Science, 314(5796), 9194. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17023651Google Scholar
O’Reilly, R. C. (2020, April). Unraveling the mysteries of motivation. Trends in Cognitive Sciences, 24(6), 425434. doi: 10.1016/j.tics.2020.03.001Google Scholar
O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283328. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16378516Google Scholar
O’Reilly, R. C., Hazy, T. E., & Herd, S. A. (2016). The Leabra cognitive architecture: How to play 20 principles with nature and win! In Chipman, S. (Ed.), Oxford Handbook of Cognitive Science. Oxford: Oxford University Press. Retrieved from http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199842193.001.0001/oxfordhb-9780199842193-e-8Google Scholar
O’Reilly, R. C., & Munakata, Y. (2000). Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. Cambridge, MA: MIT Press.Google Scholar
O’Reilly, R. C., Munakata, Y., Frank, M. J., Hazy, T. E., & Contributors. (2012). Computational Cognitive Neuroscience. Wiki Book, 1st Ed. Retrieved from http://ccnbook.colorado.eduGoogle Scholar
O’Reilly, R. C., Nair, A., Russin, J. L., & Herd, S. A. (2020, March). How Sequential interactive processing within frontostriatal loops supports a continuum of habitual to controlled processing. Frontiers in Psychology, 11, 380. doi: 10.3389/fpsyg.2020.00380Google Scholar
O’Reilly, R. C., Noelle, D. C., Braver, T. S., & Cohen, J. D. (2002, February). Prefrontal cortex and dynamic categorization tasks: Representational organization and neuromodulatory control. Cerebral Cortex, 12, 246257. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11839599Google Scholar
O’Reilly, R. C., Russin, J. L., Zolfaghar, M., & Rohrlich, J. (2021). Deep predictive learning in neocortex and pulvinar. Journal of Cognitive Neuroscience, 33(6), 11581196.Google Scholar
O’Reilly, R. C., Wyatte, D., Herd, S. A., Mingus, B., & Jilk, D. J. (2013). Recurrent processing during object recognition. Frontiers in Psychology, 4(124). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23554596Google Scholar
O’Reilly, R. C., Wyatte, D., & Rohrlich, J. (2014, July). Learning through time in the thalamocortical loops. arXiv:1407.3432 [q-bio]. Retrieved from http://arxiv.org/abs/1407.3432Google Scholar
O’Reilly, R. C., Wyatte, D. R., & Rohrlich, J. (2017, September). Deep predictive learning: A comprehensive model of three visual streams. arXiv:1709.04654 [q-bio]. Retrieved from http://arxiv.org/abs/1709.04654Google Scholar
Ouden, H. E. M., Kok, P., & Lange, F. P. (2012). How prediction errors shape perception, attention, and motivation. Frontiers in Psychology, 3(548). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23248610Google Scholar
Pasupathy, A., & Miller, E. K. (2005, January). Different time courses for learning-related activity in the prefrontal cortex and striatum. Nature, 433, 873876. Retrieved from http://www.nature.com/nature/journal/v433/n7028/full/nature03287.htmlGoogle Scholar
Petersen, S. E., Robinson, D. L., & Morris, J. D. (1987, January). Contributions of the pulvinar to visual spatial attention. Neuropsychologia, 25(1), 97105. doi: 10.1016/0028-3932(87)90046-7Google Scholar
Phillips, J. W., Schulmann, A., Hara, E., Winnubst, J., Liu, C., Valakh, V., … Hantman, A. W. (2019, November). A repeated molecular architecture across thalamic pathways. Nature Neuroscience, 22(11), 19251935. doi: 10.1038/s41593-019-0483-3Google Scholar
Rac-Lubashevsky, R., & Frank, M. J. (2020, December). Analogous computations in working memory input, output and motor gating: Electrophysiological and computational modeling evidence. bioRxiv, 2020.12.21.423791. doi: 10.1101/2020.12.21.423791Google Scholar
Raizada, R. D. S., & Grossberg, S. (2003, January). Towards a theory of the laminar architecture of cerebral cortex: Computational clues from the visual system. Cerebral Cortex, 13(1), 100113. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12466221Google Scholar
Ramaswamy, S., & Markram, H. (2015). Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron. Frontiers in Cellular Neuroscience, 9. doi: 10.3389/fncel.2015.00233Google Scholar
Rao, R. P., & Ballard, D. H. (1999, January). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 7987. doi: 10.1038/4580Google Scholar
Redinbaugh, M. J., Phillips, J. M., Kambi, N. A., Mohanta, S., Andryk, S., Dooley, G. L., … Saalmann, Y. B. (2020, April). Thalamus modulates consciousness via layer-specific control of cortex. Neuron, 106(1), 66–75.e12. doi: 10.1016/j.neuron.2020.01.005Google Scholar
Reynolds, J. H., & Desimone, R. (2003, March). Interacting roles of attention and visual salience in V4. Neuron, 37, 853863. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12628175Google Scholar
Reynolds, J. H., & Heeger, D. J. (2009, January). The normalization model of attention. Neuron, 61(2), 168185. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19186161/Google Scholar
Richter, D., & de Lange, F. P. (2019, August). Statistical learning attenuates visual activity only for attended stimuli. eLife, 8, e47869. doi: 10.7554/eLife.47869Google Scholar
Rikhye, R. V., Gilra, A., & Halassa, M. M. (2018, December). Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nature Neuroscience, 21(12), 17531763. doi: 10.1038/s41593-018-0269-zGoogle Scholar
Ringach, DL. Sparse thalamo cortical convergence. Current Biology. 2021 May 24;31(10):2199–202.Google Scholar
Robinson, D. L., & Petersen, S. E. (1992, June). The pulvinar and visual salience. Trends in Neurosciences, 15, 127132. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1374970Google Scholar
Rougier, N. P., & O’Reilly, R. C. (2002, January). Learning representations in a gated prefrontal cortex model of dynamic task switching. Cognitive Science, 26, 503520. Retrieved from http://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog26044Google Scholar
Rovó, Z., Ulbert, I., & Acsády, L. (2012, December). Drivers of the primate thalamus. Journal of Neuroscience, 32(49), 1789417908. doi: 10.1523/JNEUROSCI.2815-12.2012Google Scholar
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986, January). Learning representations by back-propagating errors. Nature, 323(9), 533536.Google Scholar
Rumelhart, D. E., & Zipser, D. (1985, January). Feature discovery by competitive learning. Cognitive Science, 9(1), 75112. doi: 10.1207/s15516709cog0901 5Google Scholar
Saalmann, Y. B., & Kastner, S. (2011, July). Cognitive and perceptual functions of the visual thalamus. Neuron, 71(2), 209223. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21791281Google Scholar
Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X., & Kastner, S. (2012, August). The pulvinar regulates information transmission between cortical areas based on attention demands. Science, 337(6095), 753756. doi: 10.1126/science.1223082Google Scholar
Sakata, S., & Harris, K. D. (2009, November). Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron, 64(3), 404418. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19914188Google Scholar
Sakata, S., & Harris, K. D. (2012). Laminar-dependent effects of cortical state on auditory cortical spontaneous activity. Frontiers in Neural Circuits, 6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23267317Google Scholar
Sanders, H., Berends, M., Major, G., Goldman, M. S., & Lisman, J. E. (2013, January). NMDA and GABAB (KIR) conductances: The “perfect couple” for bistability. Journal of Neuroscience, 33(2), 424429. doi: 10.1523/JNEUROSCI.1854-12.2013Google Scholar
Schiff, N. D. (2008). Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Annals of the New York Academy of Sciences, 1129(1), 105118. doi: 10.1196/annals.1417.029Google Scholar
Shen, W., Flajolet, M., Greengard, P., & Surmeier, D. J. (2008, August). Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 321(5890), 848851. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18687967Google Scholar
Sherman, S. M., & Guillery, R. W. (2006). Exploring the Thalamus and Its Role in Cortical Function. Cambridge, MA: MIT Press. Retrieved from http://www.scholarpedia.org/article/ThalamusGoogle Scholar
Shipp, S. (2003, October). The functional logic of cortico-pulvinar connections. Philosophical Transactions of the Royal Society of London B, 358(1438), 16051624. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14561322CrossRefGoogle ScholarPubMed
Silva, L. R., Amitai, Y., & Connors, B. W. (1991, January). Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science, 251(4992), 432435. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1824881Google Scholar
Sinz, F. H., Pitkow, X., Reimer, J., Bethge, M., & Tolias, A. S. (2019, September). Engineering a less artificial intelligence. Neuron, 103(6), 967979. doi: 10.1016/j.neuron.2019.08.034Google Scholar
Snow, J. C., Allen, H. A., Rafal, R. D., & Humphreys, G. W. (2009, March). Impaired attentional selection following lesions to human pulvinar: Evidence for homology between human and monkey. Proceedings of the National Academy of Sciences, 106(10), 40544059. doi: 10.1073/pnas.0810086106Google Scholar
Spaak, E., de Lange, F. P., & Jensen, O. (2014, March). Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. Journal of Neuroscience, 34(10), 35363544. doi: 10.1523/JNEUROSCI.4385-13.2014Google Scholar
Summerfield, C., & Egner, T. (2009, September). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403409. doi: 10.1016/j.tics.2009.06.003Google Scholar
Tanibuchi, I., Kitano, H., & Jinnai, K. (2009a, November). Substantia nigra output to prefrontal cortex via thalamus in monkeys. I. Electrophysiological identification of thalamic relay neurons. Journal of Neurophysiology, 102(5), 29332945. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19692504Google Scholar
Tanibuchi, I., Kitano, H., & Jinnai, K. (2009b, November). Substantia nigra output to prefrontal cortex via thalamus in monkeys. II. Activity of thalamic relay neurons in delayed conditional go/no-go discrimination task. Journal of Neurophysiology, 102(5116), 29462954. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19692503Google Scholar
Thomson, A. M. (2010). Neocortical layer 6, a review. Frontiers in Neuroanatomy, 4(13). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20556241Google Scholar
Tononi, G. (2004, November). An information integration theory of consciousness. BMC Neuroscience, 5, 42. doi: 10.1186/1471-2202-5-42Google Scholar
Treisman, A. (1993, January). The perception of features and objects. In Baddeley, A. & Weiskrantz, L. (Eds.), Attention: Selection, Awareness, and Control: A Tribute to Donald Broadbent (pp. 535). Oxford: Oxford University Press.Google Scholar
Tsumoto, T, Creutzfeldt OD, Legendy CR (1978) Functional organization of the cortifugal system from visual cortex to lateral geniculate nucleus in the cat. Exp Brain Res 32:345–364.Google Scholar
Usrey, W. M., & Sherman, S. M. (2018). Corticofugal circuits: Communication lines from the cortex to the rest of the brain. Journal of Comparative Neurology, 527(3), 640650. doi: 10.1002/cne.24423Google Scholar
van Kerkoerle, T., Self, M. W., Dagnino, B., Gariel-Mathis, M.-A., Poort, J., van der Togt, C., & Roelfsema, P. R. (2014, October). Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 111(40), 1433214341. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25205811Google Scholar
VanRullen, R., & Koch, C. (2003, May). Is perception discrete or continuous? Trends in Cognitive Sciences, 7(5), 207213. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12757822Google Scholar
von Helmholtz, H. (1867). Treatise on Physiological Optics, Vol III. Courier Corporation.Google Scholar
von Stein, A., Chiang, C., & König, P. (2000, December). Top-down processing mediated by interareal synchronization. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 1474814753. doi: 10.1073/pnas.97.26.14748Google Scholar
Voytek, B., & Knight, R. T. (2010, October). Prefrontal cortex and basal ganglia contributions to visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 1816718172. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20921401Google Scholar
Walsh, K. S., McGovern, D. P., Clark, A., & O’Connell, R. G. (2020, March). Evaluating the neurophysiological evidence for predictive processing as a model of perception. Annals of the New York Academy of Sciences, 1464(1), 242268. doi: 10.1111/nyas.14321Google Scholar
Wang, M., Yang, Y., Wang, C.-J., Gamo, N. J., Jin, L. E., Mazer, J. A., … Arnsten, A. F. T. (2013, February). NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron, 77(4), 736749. doi: 10.1016/j.neuron.2012.12.032Google Scholar
Ward, L. M. (2011, June). The thalamic dynamic core theory of conscious experience. Consciousness and Cognition, 20(2), 464486. doi: 10.1016/j.concog.2011.01.007Google Scholar
Watanabe, Y., & Funahashi, S. (2012, January). Thalamic mediodorsal nucleus and working memory. Neuroscience & Biobehavioral Reviews, 36(1), 134142. doi: 10.1016/j.neubiorev.2011.05.003Google Scholar
Watanabe, Y., Takeda, K., & Funahashi, S. (2009, June). Population vector analysis of primate mediodorsal thalamic activity during oculomotor delayed-response performance. Cerebral Cortex, 19, 13131321. Retrieved from http://cercor.oxfordjournals.org/cgi/content/abstract/19/6/1313Google Scholar
Whittington, J. C. R., & Bogacz, R. (2019, March). Theories of error back-propagation in the brain. Trends in Cognitive Sciences, 23(3), 235250. doi: 10.1016/j.tics.2018.12.005Google Scholar
Wig, G. S. (2017). Segregated systems of human brain networks. Trends in Cognitive Sciences, 21(12), 981–996.Google Scholar
Wimmer, R. D., Schmitt, L. I., Davidson, T. J., Nakajima, M., Deisseroth, K., & Halassa, M. M. (2015, October). Thalamic control of sensory selection in divided attention. Nature, 526(7575), 705709. doi: 10.1038/nature15398Google Scholar
Wurtz, R. H. (2008, September). Neuronal mechanisms of visual stability. Vision Research, 48(20), 20702089. doi: 10.1016/j.visres.2008.03.021Google Scholar
Wyatte, D., Curran, T., & O’Reilly, R. C. (2012). The limits of feedforward vision: Recurrent processing promotes robust object recognition when objects are degraded. Journal of Cognitive Neuroscience, 24(11), 22482261. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22905822Google Scholar
Wyder, M. T., Massoglia, D. P., & Stanford, T. R. (2004, June). Contextual modulation of central thalamic delay-period activity: Representation of visual and saccadic goals. Journal of Neurophysiology, 91(6), 26282648. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14762161Google Scholar
Zhou, H., Schafer, R. J., & Desimone, R. (2016). Pulvinar-cortex interactions in vision and attention. Neuron, 89, 209220.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×