Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T05:06:18.086Z Has data issue: false hasContentIssue false

11 - Wheelchair design and seating technology

from Section A2 - Therapeutic technology

Published online by Cambridge University Press:  04 August 2010

Michael Selzer
Affiliation:
University of Pennsylvania
Stephanie Clarke
Affiliation:
Université de Lausanne, Switzerland
Leonardo Cohen
Affiliation:
National Institute of Mental Health, Bethesda, Maryland
Pamela Duncan
Affiliation:
University of Florida
Fred Gage
Affiliation:
Salk Institute for Biological Studies, San Diego
Get access

Summary

Introduction

In the USA an estimated 2.2 million people currently use wheelchairs for their daily mobility (Americans with Disabilities, 1994; Shalala et al., 1996). It is likely that more than twice that number use wheelchairs at any given time to augment their mobility. Worldwide, an estimated 100–130 million people with disabilities need wheelchairs, though less than 10% own or have access to one (New Freedom Initiative Act, 2001). While these numbers are staggering, experts predict that the number of people who need wheelchairs will increase by 22% over the next 10 years (Department of Veterans Affairs, 2002). The leading cause of disabilities in the world can be attributed to landmines, particularly in developing nations, leading to 26,000 people injured or killed by landmines each year (Department of Veterans Affairs, 2002).

Prevention of secondary conditions

Wheelchair and seating biomechanics research includes studies to prevent secondary conditions due to wheelchair and seating use (e.g., pressure ulcers, adverse changes in posture, repetitive strain injuries), and to reduce the incidence of accidental injuries (e.g., injuries from wheelchair tips and falls, injuries from motor vehicle accidents).

Upper extremity repetitive strain injuries

Studies have shown that manual wheelchair propulsion efficiency is between 5% and 18% depending upon the style of the wheelchair and the fit to the user (Bayley et al., 1987; Curtis et al., 1995; Nichols et al., 1979).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×