Book contents
- Frontmatter
- Contents
- Preface
- Contributors
- Contributors
- Neural repair and rehabilitation: an introduction
- Section A Technology of neurorehabilitation
- Section A1 Outcomes measurement and diagnostic technology
- 1 Outcomes measurement: basic principles and applications in stroke rehabilitation
- 2 Human voluntary motor control and dysfunction
- 3 Assessments, interventions, and outcome measures for walking
- 4 Electromyography in neurorehabilitation
- 5 Functional neuroimaging
- Section A2 Therapeutic technology
- Section B Symptom-specific neurorehabilitation
- Section B1 Sensory and motor dysfunctions
- Section B2 Vegetative and autonomic dysfunctions
- Section B3 Cognitive neurorehabilitation
- Section C Disease-specific neurorehabilitation systems
- Index
- Plate section
5 - Functional neuroimaging
from Section A1 - Outcomes measurement and diagnostic technology
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Preface
- Contributors
- Contributors
- Neural repair and rehabilitation: an introduction
- Section A Technology of neurorehabilitation
- Section A1 Outcomes measurement and diagnostic technology
- 1 Outcomes measurement: basic principles and applications in stroke rehabilitation
- 2 Human voluntary motor control and dysfunction
- 3 Assessments, interventions, and outcome measures for walking
- 4 Electromyography in neurorehabilitation
- 5 Functional neuroimaging
- Section A2 Therapeutic technology
- Section B Symptom-specific neurorehabilitation
- Section B1 Sensory and motor dysfunctions
- Section B2 Vegetative and autonomic dysfunctions
- Section B3 Cognitive neurorehabilitation
- Section C Disease-specific neurorehabilitation systems
- Index
- Plate section
Summary
Introduction
Patients who survive focal brain injury for example stroke, undergo complete or more commonly partial recovery of function (Twitchell, 1951). The management of patients with incomplete recovery draws on specific rehabilitation interventions aimed at assisting adaptation to impairment. However there is a growing interest in designing therapeutic strategies to promote cerebral reorganisation as a way of reducing rather than compensating for impairment. This interest stems largely from experiments in animal models, which have unequivocally demonstrated post-lesional changes in cerebral organisation related to recovery. In addition, it is clear that focal cortical damage in adult brains renders widespread surviving cortical regions more able to change structure and function in response to afferent signals in a way normally only seen in the developing brain (Schallert et al., 2000; Bury and Jones, 2002) (see Chapter 14 of Volume I, pp. 21–28 for a more extensive discussion of these changes). Activity-driven changes in these regions may be enhanced by experiential (Nudo et al., 1996) or pharmacological (Feeney, 1997) context, and correlate with functional recovery. These findings are clearly very exciting for clinicians. It has been suggested that similar injury-induced changes occur in the human brain, and that their manipulation will provide a means of promoting functional recovery in patients with focal brain damage. One crucial aspect of developing such strategies involves building an empirical understanding of how the brain responds to injury and how such changes may be manipulated in a way that promotes functional recovery.
Keywords
- Type
- Chapter
- Information
- Textbook of Neural Repair and Rehabilitation , pp. 56 - 68Publisher: Cambridge University PressPrint publication year: 2006
- 1
- Cited by