Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-03T00:26:45.633Z Has data issue: false hasContentIssue false

3 - Photosynthetic regulation

Published online by Cambridge University Press:  05 March 2013

Jaume Flexas
Affiliation:
Universitat de les Illes Balears, Palma de Mallorca
Francesco Loreto
Affiliation:
Consiglio Nazionale delle Ricerche (CNR), Firenze
Hipólito Medrano
Affiliation:
Universitat de les Illes Balears, Palma de Mallorca
Get access

Summary

Introduction

The evolution of oxygenic photosynthesis played an important role in the oxygenation of the atmosphere of the Earth. This rise in O2 also had an impact on the subsequent evolution of the photosynthetic organisms themselves, enabling them to develop more efficient bioenergetic systems. Thus, the reduction/oxidation (redox) reactions of the PET chain of green algae and higher plants and their regulation have become adapted to the O2-rich atmosphere of the Earth. Oxygen is, however, not only a product of photosynthesis but it is also a regulator of PET-chain activity and photosynthetic metabolism. Molecular O2 (3O2), is highly reactive and thus inherently toxic, but aerobic cells have evolved the ability to harness the energy potential of aerobic metabolism while minimising potentially harmful effects. Partly this is achieved by using the ROS, such as superoxide (O2), hydrogen peroxide (H2O2) and singlet oxygen (1O2), formed as by-products of photosynthesis as important metabolic signals. The complex interactions of molecular O2 with the cellular electron-transport and metabolic systems of the cell have become an intrinsic feature of plant redox regulation and homeostasis.

Coordination between energy producing and energy utilising processes is at the heart of the processes that regulate photosynthesis and ensure efficient functioning over a wide range of environmental conditions. Respiration works alongside photosynthesis to secure efficient biological energy production in plant cells. However, unlike the regulation of respiration, which is driven by metabolic substrates that are protected from depletion by effective control mechanisms, the driving force for photosynthesis is the free energy of light, a substrate that cannot be conserved except through light harvesting, efficient charge separation and electron transport. The efficiency of the conversion of the free energy of light into chemical free energy by photosynthesis has been optimised during evolution. A complex network of defence systems protects photosynthesis against the potentially harmful effects of excess light, i.e., light capture that is in excess of the amount that can be used to drive photosynthesis. Efficient dissipation mechanisms are available to protect the photosynthetic membranes and their protein and pigment components by releasing the energy absorbed from light, largely as heat. Photosynthesis is thus able to operate in a highly flexible manner, harvesting energy efficiently at low irradiances and dissipating excess energy at high irradiance.

Type
Chapter
Information
Terrestrial Photosynthesis in a Changing Environment
A Molecular, Physiological, and Ecological Approach
, pp. 20 - 40
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×