Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T04:38:20.555Z Has data issue: false hasContentIssue false

13 - Kirchberg’s conjecture

Published online by Cambridge University Press:  10 February 2020

Gilles Pisier
Affiliation:
Texas A & M University
Get access

Summary

Here we formulate the Connes embedding problem, whether any tracial probability space embeds in an ultraproduct of matricial ones. We also briefly describe the so-called hyperfinite factor R, with which one can reformulate the question as asking for an embedding in an ultrapower of R. Since the Connes problem is open even for the tracial probability spaces associated to discrete groups, this leads us to describe several related interesting classes of infinite groupssuch as residually finite, hyperlinear and sofic groups. We also discuss the so-called matrix models in terms of which the Connes problem can be naturally reformulated. Lastly, we give a quite transparent characterization of nuclear von Neumann algebras, which shows that there are very few of them.

Type
Chapter
Information
Tensor Products of C*-Algebras and Operator Spaces
The Connes–Kirchberg Problem
, pp. 280 - 290
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Kirchberg’s conjecture
  • Gilles Pisier, Texas A & M University
  • Book: Tensor Products of <I>C</I>*-Algebras and Operator Spaces
  • Online publication: 10 February 2020
  • Chapter DOI: https://doi.org/10.1017/9781108782081.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Kirchberg’s conjecture
  • Gilles Pisier, Texas A & M University
  • Book: Tensor Products of <I>C</I>*-Algebras and Operator Spaces
  • Online publication: 10 February 2020
  • Chapter DOI: https://doi.org/10.1017/9781108782081.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Kirchberg’s conjecture
  • Gilles Pisier, Texas A & M University
  • Book: Tensor Products of <I>C</I>*-Algebras and Operator Spaces
  • Online publication: 10 February 2020
  • Chapter DOI: https://doi.org/10.1017/9781108782081.014
Available formats
×