Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T20:14:20.605Z Has data issue: false hasContentIssue false

Part III - Regional Focus

Published online by Cambridge University Press:  08 November 2023

Louis Tay
Affiliation:
Purdue University, Indiana
Sang Eun Woo
Affiliation:
Purdue University, Indiana
Tara Behrend
Affiliation:
Purdue University, Indiana
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abbas, R., & Mesch, G. S. (2015). Cultural values and Facebook use among Palestinian youth in Israel. Computers in Human Behavior, 48, 644653. https://doi.org/10.1016/j.chb.2015.02.031CrossRefGoogle Scholar
Abbasi, M. S., Tarhini, A., Hassouna, M., & Shah, F. (2015). Social, organizational, demography and individuals’ technology acceptance behaviour: A conceptual model. European Scientific Journal, 11(9), 4876. https://eujournal.org/index.php/esj/article/view/5279Google Scholar
Akhtar, R., Winsborough, D., Ort, U., Johnson, A., & Chamorro-Premuzic, T. (2018). Detecting the dark side of personality using social media status updates. Personality and Individual Differences, 132, 9097. https://doi.org/10.1016/j.paid.2018.05.026CrossRefGoogle Scholar
Alshamsi, A., Pianesi, F., Lepri, B., Pentland, A., & Rahwan, I. (2015). Beyond contagion: Reality mining reveals complex patterns of social influence. PLoS ONE, 10(8), e0135740. https://doi.org/10.1371/journal.pone.0135740CrossRefGoogle ScholarPubMed
Apollo Technical. (2021). LinkedIn users by country and statistics (2021). https://www.apollotechnical.com/linkedin-users-by-country/Google Scholar
Ayers, J. W., Althouse, B. M., Allem, J. P., Rosenquist, J. N., & Ford, D. E. (2013). Seasonality in seeking mental health information on Google. American Journal of Preventive Medicine, 44(5), 520525. https://doi.org/10.1371/journal.pone.0061373CrossRefGoogle ScholarPubMed
Azmi, I. M. (2004). Content regulation in Malaysia: Unleashing missiles on dangerous web sites. In The 18th BILETA Conference: Controlling Information in the Online Environment, https://www.bileta.org.uk/wp-content/uploads/Content-Regulation-in-Malaysia-Unleashing-Missiles-on-Dangerous-Websites.pdfGoogle Scholar
Basak, E., Gumussoy, C. A., & Calisir, F. (2015). Examining the factors affecting PDA acceptance among physicians: An extended technology acceptance model. Journal of Healthcare Engineering, 6(3), 399418. https://doi.org/10.1260/2040-2295.6.3.399CrossRefGoogle ScholarPubMed
Belova, L. (2020). Experience of artificial intelligence implementation in Japan. In E3S Web of Conferences (Vol. 159, p. 04035). EDP Sciences. https://doi.org/10.1051/e3sconf/202015904035Google Scholar
Biel, J. I., Tsiminaki, V., Dines, J., & Gatica-Perez, D. (2013, December). Hi YouTube! Personality impressions and verbal content in social video. In Proceedings of the 15th ACM on International Conference on Multimodal Interaction (pp. 119–126).CrossRefGoogle Scholar
Boyd, D. M., & Ellison, N. B. (2007). Social network sites: Definition, history, and scholarship. Journal of Computer‐Mediated Communication, 13(1), 210230. https://doi.org/10.1111/j.1083-6101.2007.00393.xCrossRefGoogle Scholar
Can, Y. S., Chalabianloo, N., Ekiz, D., & Ersoy, C. (2019). Continuous stress detection using wearable sensors in real life: Algorithmic programming contest case study. Sensors, 19(8), 1849. https://doi.org/10.3390/s19081849CrossRefGoogle ScholarPubMed
Chang, H. H. (2015). Psychometrics behind computerized adaptive testing. Psychometrika, 80(1), 120. https://doi.org/10.1007/s11336-014-9401-5CrossRefGoogle ScholarPubMed
Chang, H. H., Wang, C., & Zhang, S. (2021). Statistical applications in educational measurement. Annual Review of Statistics and Its Application, 8, 439461. https://doi.org/10.1146/annurev-statistics-042720-104044CrossRefGoogle Scholar
Chen, B., Marvin, S., & While, A. (2020). Containing COVID-19 in China: AI and the robotic restructuring of future cities. Dialogues in Human Geography, 10(2), 238241. https://doi.org/10.1177/2043820620934267CrossRefGoogle Scholar
Cho, H., Chi, C., & Chiu, W. (2020). Understanding sustained usage of health and fitness apps: Incorporating the technology acceptance model with the investment model. Technology in Society, 63, 101429. https://doi.org/10.1016/j.techsoc.2020.101429CrossRefGoogle Scholar
Cocca, P., Marciano, F., & Alberti, M. (2016). Video surveillance systems to enhance occupational safety: A case study. Safety Science, 84, 140148. https://doi.org/10.1016/j.ssci.2015.12.005CrossRefGoogle Scholar
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319340. https://doi.org/10.2307/249008CrossRefGoogle Scholar
Dumdumaya, C. E., Banawan, M. P., & Rodrigo, Ma. M. T. (2018). Identifying students’ persistence profiles in problem solving task. In Adjunct publication of the 26th Conference on User Modeling, Adaptation and Personalization (pp. 281–286). https://doi.org/10.1145/3213586.3225237CrossRefGoogle Scholar
Dumdumaya, C., & Rodrigo, M. M. (2018). Predicting task persistence within a learning-by-teaching environment. In Proceedings of the 26th International Conference on Computers in Education (pp. 1–10).Google Scholar
Faqih, K. M. S. (2016). An empirical analysis of factors predicting the behavioral intention to adopt internet shopping technology among non-shoppers in a developing country context: Does gender matter? Journal of Retailing and Consumer Services, 30, 140164. https://doi.org/10.1016/j.jretconser.2016.01.016CrossRefGoogle Scholar
Fournet, J., & Barrat, A. (2014). Contact patterns among high school students. PLoS ONE, 9(9), e107878. https://doi.org/10.1371/journal.pone.0107878CrossRefGoogle ScholarPubMed
Gilbert, E., & Karahalios, K. (2009, April). Predicting tie strength with social media. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 211–220). https://doi.org/10.1145/1518701.1518736CrossRefGoogle Scholar
Gravina, R., Alinia, P., Ghasemzadeh, H., & Fortino, G. (2017). Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Information Fusion, 35, 6880. https://doi.org/10.1016/j.inffus.2016.09.005CrossRefGoogle Scholar
Greenleaf, G., & Suriyawongkul, A. (2019). Thailand – Asia’s strong new data protection law. Privacy Laws & Business, 161. https://doi.org/10.2139/ssrn.3502671Google Scholar
Hamzah, M. A., Ahmad, A. R., Hussin, N., & Ibrahim, Z. (2019). Personal data privacy protection: A review on Malaysia’s cyber security policies. International Journal of Academic Research in Business and Social Sciences, 8(12). https://doi.org/10.6007/ijarbss/v8-i12/5251CrossRefGoogle Scholar
Harari, G. M., Lane, N. D., Wang, R., Crosier, B. S., Campbell, A. T., & Gosling, S. D. (2016). Using smartphones to collect behavioral data in psychological science: Opportunities, practical considerations, and challenges. Perspectives on Psychological Science, 11(6), 838854. https://doi.org/10.1177/1745691616650285CrossRefGoogle Scholar
Hernandez, J., Hoque, M., Drevo, W., & Picard, R. W. (2012, September). Mood meter: Counting smiles in the wild. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (pp. 301–310).CrossRefGoogle Scholar
Hickman, L., Bosch, N., Ng, V., Saef, R., Tay, L., & Woo, S. E. (2022). Automated video interview personality assessments: Reliability, validity, and generalizability investigations. Journal of Applied Psychology, 107(8), 13231351. https://doi.org/10.1037/apl0000695CrossRefGoogle ScholarPubMed
Hofstede, G. (2001). Culture’s consequences: Comparing values, behaviors, institutions and organizations across nations. Sage.Google Scholar
Hofstede, G. (2011). Dimensionalizing cultures: The Hofstede model in context. Online Readings in Psychology and Culture, 2(1), 126. https://doi.org/10.9707/2307-0919.1014CrossRefGoogle Scholar
Hou, H.-T. (2015). Integrating cluster and sequential analysis to explore learners’ flow and behavioral patterns in a simulation game with situated-learning context for science courses: A video-based process exploration. Computers in Human Behavior, 48, 424435. https://doi.org/10.1016/j.chb.2015.02.010CrossRefGoogle Scholar
Huang, F., Teo, T., Sánchez-Prieto, J. C., García-Peñalvo, F. J., & Olmos-Migueláñez, S. (2019). Cultural values and technology adoption: A model comparison with university teachers from China and Spain. Computers & Education, 133, 6981. https://doi.org/10.1016/j.compedu.2019.01.012CrossRefGoogle Scholar
Hung, C.-Y., Sun, J. C.-Y., & Liu, J.-Y. (2019). Effects of flipped classrooms integrated with MOOCs and game-based learning on the learning motivation and outcomes of students from different backgrounds. Interactive Learning Environments, 27(8), 10281046. https://doi.org/10.1080/10494820.2018.1481103CrossRefGoogle Scholar
Hung, S., Li, M. S., Chen, Y. L., Chiang, J. H., Chen, Y. Y., & Hung, G. C. L. (2016). Smartphone-based ecological momentary assessment for Chinese patients with depression: An exploratory study in Taiwan. Asian Journal of Psychiatry, 23, 131136. https://doi.org/10.1016/j.ajp.2016.08.003CrossRefGoogle ScholarPubMed
Ishio, J., & Abe, N. (2017). Measuring affective well-being by the combination of the day reconstruction method and a wearable device: Case study of an aging and depopulating community in Japan. Augmented Human Research, 2(1), 119. https://doi.org/10.1007/s41133–017-0006-2CrossRefGoogle Scholar
Johnson, J. (2021). Number of online users worldwide 2020, by region. Statistica, https://www.statista.com/statistics/249562/number-of-worldwide-internet-users-by-region/Google Scholar
Khlaisang, J., Teo, T., & Huang, F. (2019). Acceptance of a flipped smart application for learning: A study among Thai university students. Interactive Learning Environments, 29(5), 772789. https://doi.org/10.1080/10494820.2019.1612447CrossRefGoogle Scholar
Kido, S., Hashizume, A., Baba, T., & Matsui, T. (2016). Development and evaluation of a smartphone application for self-estimation of daily mental stress level. International Journal of Affective Engineering, 15(2), 183187. https://doi.org/10.5057/ijae.IJAE-D-15-00029CrossRefGoogle Scholar
Kim, H., Kim, S. Y., & Joly, Y. (2018). South Korea: In the midst of a privacy reform centered on data sharing. Human Genetics, 137(8), 627635. https://doi.org/10.1007/s00439-018-1920-1CrossRefGoogle ScholarPubMed
Kobayashi, T., Boase, J., Suzuki, T., & Suzuki, T. (2015). Emerging from the cocoon? Revisiting the tele-cocooning hypothesis in the smartphone era. Journal of Computer-Mediated Communication, 20(3), 330345. https://doi.org/10.1111/jcc4.12116CrossRefGoogle Scholar
Kozlowski, S. W. J., Chao, G. T., Chang, C.-H. (D.), & Fernandez, R. (2016). Using big data to advance the science of team effectiveness. In Tonidandel, S., King, E. B., & Cortina, J. M. (Eds.), Big data at work: The data science revolution and organizational psychology (pp. 272309). Routledge/Taylor & Francis Group.Google Scholar
Laungaramsri, P. (2016). Mass surveillance and the militarization of cyberspace in post-coup Thailand. Austrian Journal of South-East Asian Studies, 9(2), 195214. https://doi.org/10.14764/10.ASEAS-2016.2-2Google Scholar
Lee, C., Wang, M., Wang, C., Teytaud, O., Liu, J., Lin, S., & Hung, P. (2018). PSO-based fuzzy markup language for student learning performance evaluation and educational application. IEEE Transactions on Fuzzy Systems, 26(5), 26182633. https://doi.org/10.1109/TFUZZ.2018.2810814CrossRefGoogle Scholar
Lee, H., Chung, N., & Jung, T. (2015). Examining the cultural differences in acceptance of mobile augmented reality: Comparison of South Korea and Ireland. In Tussyadiah, I. & Inversini, A. (Eds.), Information and communication technologies in tourism 2015 (pp. 477491). Springer International Publishing.CrossRefGoogle Scholar
Li, H., Zhang, T., Chi, H., Chen, Y., Li, Y., & Wang, J. (2014). Mobile health in China: Current status and future development. Asian Journal of Psychiatry, 10, 101104. https://doi.org/10.1016/j.ajp.2014.06.003CrossRefGoogle Scholar
Li, S., Wang, Y., Xue, J., Zhao, N., & Zhu, T. (2020). The impact of COVID-19 epidemic declaration on psychological consequences: A study on active Weibo users. International Journal of Environmental Research and Public Health, 17(6), 2032. https://doi.org/10.3390/ijerph17062032CrossRefGoogle Scholar
Lin, Y. R., Bagrow, J. P., & Lazer, D. (2011, July). More voices than ever? Quantifying media bias in networks. In Fifth International AAAI Conference on Weblogs and Social Media.Google Scholar
Manago, A. M., Taylor, T., & Greenfield, P. M. (2012). Me and my 400 friends: The anatomy of college students’ Facebook networks, their communication patterns, and well-being. Developmental Psychology, 48(2), 369380. https://doi.org/10.1037/a0026338CrossRefGoogle ScholarPubMed
Matusik, J. G., Heidl, R., Hollenbeck, J. R., Yu, A., Lee, H. W., & Howe, M. (2019). Wearable bluetooth sensors for capturing relational variables and temporal variability in relationships: A construct validation study. Journal of Applied Psychology, 104(3), 357387. https://doi.org/10.1037/apl0000334CrossRefGoogle ScholarPubMed
Mei, B. (2019). Preparing preservice EFL teachers for CALL normalisation: A technology acceptance perspective. System, 83, 1324. https://doi.org/10.1016/j.system.2019.02.011CrossRefGoogle Scholar
Mei, B., Brown, G. T., & Teo, T. (2018). Toward an understanding of preservice English as a foreign language teachers’ acceptance of computer-assisted language learning 2.0 in the People’s Republic of China. Journal of Educational Computing Research, 56(1), 74104. https://journals.sagepub.com/doi/10.1177/0735633117700144CrossRefGoogle Scholar
Metallinou, A., Katsamanis, A., Wang, Y., & Narayanan, S. (2011, May). Tracking changes in continuous emotion states using body language and prosodic cues. In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 22882291). IEEE. https://doi.org/10.1109/ICASSP.2011.5946939CrossRefGoogle Scholar
Miller, G. (2012). The smartphone psychology manifesto. Perspectives on Psychological Science, 7(3), 221237. https://doi.org/10.1177/1745691612441215CrossRefGoogle ScholarPubMed
Ministry of Law and Justice. (2019). The Aadhaar and other laws (Amendment) Act, 2019. https://uidai.gov.in/images/news/Amendment_Act_2019.pdfGoogle Scholar
Mohammad-Salehi, B., Vaez-Dalili, M., & Heidari Tabrizi, H. (2021). Investigating factors that influence EFL teachers’ adoption of Web 2.0 technologies: Evidence from applying the UTAUT and TPACK. TESL-EJ, 25(1), n1.Google Scholar
National Privacy Commission. (2016, July 19). Republic Act 10173 – Data Privacy Act of 2012. https://www.privacy.gov.ph/data-privacy-act/Google Scholar
Oswald, F. L., Behrend, T. S., Putka, D. J., & Sinar, E. (2020). Big data in industrial-organizational psychology and human resource management: Forward progress for organizational research and practice. Annual Review of Organizational Psychology and Organizational Behavior, 7, 505533. https://doi.org/10.1146/annurev-orgpsych-032117-104553CrossRefGoogle Scholar
Palaoag, T. D., Rodrigo, M. M. T., & Andres, J. M. L. (2015). An exploratory study of student persistence and its relationship with achievement while using a game-based learning environment. In Proceedings of the 23rd International Conference on Computers in Education. Asia-Pacific Society for Computers in Education.Google Scholar
Personal Data Projection Commission. (2021). Personal Data Protection Commission overview. https://www.pdpc.gov.sg/Overview-of-PDPA/The-Legislation/Personal-Data-Protection-ActGoogle Scholar
Personal Information Protection Commission. (2021). Act on the Protection of Personal Information. https://www.japaneselawtranslation.go.jp/en/laws/view/4241/enGoogle Scholar
Prensky, M. (2001). Fun, play and games: What makes games engaging. Digital Game-Based Learning, 5(1), 531. https://doi.org/10.1145/950566.950567Google Scholar
Qi, G., Li, Q., & Abernethy, D. (2021). China releases personal information protection law. https://www.natlawreview.com/article/china-releases-draft-personal-information-protection-lawGoogle Scholar
Qi, J., Fu, X., & Zhu, G. (2015). Subjective well-being measurement based on Chinese grassroots blog text sentiment analysis. Information & Management, 52(7), 859869. https://doi.org/10.1016/j.im.2015.06.002CrossRefGoogle Scholar
Risnani, L. Y., & Adita, A. (2018). Development of digital education game as an alternative assessment instruments in science learning for junior high school. In Proceedings of the 5th Asia Pacific Education Conference (AECON 2018) (pp. 77–83). https://doi.org/10.2991/aecon-18.2018.17CrossRefGoogle Scholar
Rudner, L. M. (2010). Implementing the graduate management admission test computerized adaptive test. In van der Linden, W. J. & Glas, C. W. (Eds.), Elements of adaptive testing (pp. 151165). Springer.Google Scholar
Sandström, J., Swanepoel, D. W., Carel Myburgh, H., & Laurent, C. (2016). Smartphone threshold audiometry in underserved primary health-care contexts. International Journal of Audiology, 55(4), 232238. https://doi.org/10.3109/14992027.2015.1124294CrossRefGoogle ScholarPubMed
Sangeeta, , & Tandon, U. (2020). Factors influencing adoption of online teaching by school teachers: A study during COVID‐19 pandemic. Journal of Public Affairs, 21(4), e2503. https://doi.org/10.1002/pa.2503CrossRefGoogle ScholarPubMed
Schepers, J., & Wetzels, M. (2007). A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects. Information & Management, 44(1), 90103. https://doi.org/10.1016/j.im.2006.10.007CrossRefGoogle Scholar
Schmid Mast, M., Gatica-Perez, D., Frauendorfer, D., Nguyen, L., & Choudhury, T. (2015). Social sensing for psychology: Automated interpersonal behavior assessment. Current Directions in Psychological Science, 24(2), 154160. https://doi.org/10.1177/0963721414560811CrossRefGoogle Scholar
Shih, S.-C., Kuo, B.-C., & Lee, S.-J. (2019). An online game-based computational estimation assessment combining cognitive diagnostic model and strategy analysis. Educational Psychology, 39(10), 12551277. https://doi.org/10.1080/01443410.2018.1501468CrossRefGoogle Scholar
Singh, P. (2019). Aadhaar and data privacy: Biometric identification and anxieties of recognition in India. Information, Communication & Society, 24(3), 116. https://doi.org/10.1080/1369118X.2019.1668459Google Scholar
Singh, R. G., & Ruj, S. (2020). A technical look at the Indian Personal Data Protection Bill. arXiv preprint arXiv:2005.13812.Google Scholar
Sinha, A. K., Amir Khusru Akhtar, M., & Kumar, A. (2021). Resume screening using natural language processing and machine learning: A systematic review. Machine Learning and Information Processing: Proceedings of ICMLIP 2020, 207–214.CrossRefGoogle Scholar
Sinha, S., Mishra, S. K., & Bilgaiyan, S. (2020). Emotion analysis to provide counseling to students fighting from depression and anxiety by using CCTV surveillance. In Swain, D., Pattnaik, P., & Gupta, P. (Eds.), Machine learning and information processing (pp. 8194). Springer. https://doi.org/10.1007/978-981-15-1884-3_8CrossRefGoogle Scholar
Skoric, M. M., Zhu, Q., Goh, D., & Pang, N. (2016). Social media and citizen engagement: A meta-analytic review. New Media & Society, 18(9), 18171839. https://doi.org/10.1177/1461444815616221CrossRefGoogle Scholar
Song, Q. C., Liu, M. Q., Tang, C., & Long, L. (2020). Applying principles of big data to the workplace and talent analytics. In Woo, S. E., Tay, L., & Proctor, R. W. (Eds.), Big data in psychological research (pp. 319344). APA Books.CrossRefGoogle Scholar
Sonn, J. W., & Lee, J. K. (2020). The smart city as time-space cartographer in COVID-19 control: The South Korean strategy and democratic control of surveillance technology. Eurasian Geography and Economics, 61(4–5), 482492. https://doi.org/10.1080/15387216.2020.1768423CrossRefGoogle Scholar
Speer, A. B. (2021). Scoring dimension-level job performance from narrative comments: Validity and generalizability when using natural language processing. Organizational Research Methods, 24(3), 572594. https://doi.org/10.1177/1094428120930815CrossRefGoogle Scholar
Tankovska, H. (2021). Distribution of worldwide social media users in 2020, by region. Statista. https://www.statista.com/statistics/454772/number-social-media-user-worldwide-region/Google Scholar
Tarhini, A., Teo, T., & Tarhini, T. (2016). A cross-cultural validity of the E-learning Acceptance Measure (ElAM) in Lebanon and England: A confirmatory factor analysis. Education and Information Technologies, 21(5), 12691282. https://doi.org/10.1007/s10639–015-9381-9CrossRefGoogle Scholar
Teo, T. (2011). Factors influencing teachers’ intention to use technology: Model development and test. Computers & Education, 57(4), 24322440. https://doi.org/10.1016/j.compedu.2011.06.008CrossRefGoogle Scholar
Teo, T. (2016). Modelling Facebook usage among university students in Thailand: The role of emotional attachment in an extended technology acceptance model. Interactive Learning Environments, 24(4), 745757. https://doi.org/10.1080/10494820.2014.917110CrossRefGoogle Scholar
Teo, T., Fan, X., & Du, J. (2015). Technology acceptance among pre-service teachers: Does gender matter? Australasian Journal of Educational Technology, 31(3), Article 3. https://doi.org/10.14742/ajet.1672CrossRefGoogle Scholar
Teo, T., Faruk Ursavaş, Ö., & Bahçekapili, E. (2011). Efficiency of the technology acceptance model to explain pre‐service teachers’ intention to use technology: A Turkish study. Campus-Wide Information Systems, 28(2), 93101. https://doi.org/10.1108/10650741111117798CrossRefGoogle Scholar
Teo, T., & Huang, F. (2019). Investigating the influence of individually espoused cultural values on teachers’ intentions to use educational technologies in Chinese universities. Interactive Learning Environments, 27(5–6), 813829. https://doi.org/10.1080/10494820.2018.1489856CrossRefGoogle Scholar
Teo, T., Lee, C. B., & Chai, C. S. (2007). Understanding pre-service teachers’ computer attitudes: Applying and extending the technology acceptance model. Journal of Computer Assisted Learning, 24(2), 128143. https://doi.org/10.1111/j.1365-2729.2007.00247.xCrossRefGoogle Scholar
Teo, T., & Noyes, J. (2014). Explaining the intention to use technology among pre-service teachers: A multi-group analysis of the Unified Theory of Acceptance and Use of Technology. Interactive Learning Environments, 22(1), 5166. https://doi.org/10.1080/10494820.2011.641674CrossRefGoogle Scholar
Teo, T., Zhou, M., Fan, A. C. W., & Huang, F. (2019). Factors that influence university students’ intention to use Moodle: A study in Macau. Educational Technology Research and Development, 67(3), 749766. https://doi.org/10.1007/s11423-019-09650-xCrossRefGoogle Scholar
Teo, T., Zhou, M., & Noyes, J. (2016). Teachers and technology: Development of an extended theory of planned behavior. Educational Technology Research and Development, 64(6), 10331052. https://doi.org/10.1007/s11423–016-9446-5CrossRefGoogle Scholar
Tseng, W.-T. (2016). Measuring English vocabulary size via computerized adaptive testing. Computers & Education, 97, 6985. https://doi.org/10.1016/j.compedu.2016.02.018CrossRefGoogle Scholar
Vaterlaus, J. M., Barnett, K., Roche, C., & Young, J. A. (2016). “Snapchat is more personal”: An exploratory study on Snapchat behaviors and young adult interpersonal relationships. Computers in Human Behavior, 62, 594601. https://doi.org/10.1016/j.chb.2016.04.029CrossRefGoogle Scholar
Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451481.CrossRefGoogle Scholar
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186204. https://doi.org/10.1287/mnsc.46.2.186.11926CrossRefGoogle Scholar
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. Management Information Systems Quarterly, 27(3), 425478. https://doi.org/10.2307/30036540CrossRefGoogle Scholar
Weber, I., & Jia, L. (2007). Internet and self-regulation in China: The cultural logic of controlled commodification. Media, Culture & Society, 29(5). https://doi.org/10.1177/0163443707080536CrossRefGoogle Scholar
Weiss, M. L. (2014). New media, new activism: Trends and trajectories in Malaysia, Singapore and Indonesia. International Development Planning Review, 36(1), 91109. https://doi.org/10.3828/idpr.2014.6CrossRefGoogle Scholar
Wioleta, S. (2013, June). Using physiological signals for emotion recognition. In 2013 6th International Conference on Human System Interactions (HSI) (pp. 556561). IEEE. https://doi.org/10.1109/HSI.2013.6577880CrossRefGoogle Scholar
Wu, Y., Lau, T., Atkin, D. J., & Lin, C. A. (2011). A comparative study of online privacy regulations in the US and China. Telecommunications Policy, 35(7), 603616. https://doi.org/10.1016/j.telpol.2011.05.002CrossRefGoogle Scholar
Yang, J.-S., Shin, J., Choi, S., & Jung, H.-I. (2017). Smartphone diagnostics unit (SDU) for the assessment of human stress and inflammation level assisted by biomarker ink, fountain pen, and origami holder for strip biosensor. Sensors and Actuators B: Chemical, 241, 8084. https://doi.org/10.1016/j.snb.2016.10.052CrossRefGoogle Scholar
Yarahmadzehi, N., & Goodarzi, M. (2020). Investigating the role of formative mobile based assessment in vocabulary learning of pre-intermediate EFL learners in comparison with paper based assessment. Turkish Online Journal of Distance Education, 21(1), 181196. https://doi.org/10.17718/tojde.690390CrossRefGoogle Scholar
Zhang, J., Tang, H., Chen, D., & Zhang, Q. (2012). deStress: Mobile and remote stress monitoring, alleviation, and management platform. In 2012 IEEE Global Communications Conference (GLOBECOM) (pp. 2036–2041). https://doi.org/10.1109/GLOCOM.2012.6503415CrossRefGoogle Scholar
Zhang, Y., Olenick, J., Chang, C. H., Kozlowski, S. W., & Hung, H. (2018). TeamSense: Assessing personal affect and group cohesion in small teams through dyadic interaction and behavior analysis with wearable sensors. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(3), 122.Google Scholar

References

Benner, M. J., & Waldfogel, J. (2023). Changing the channel: Digitization and the rise of “middle tail” strategies. Strategic Management Journal, 44(1), 264287. https://doi.org/10.1002/smj.3130CrossRefGoogle Scholar
Chan, D. (1998a). The conceptualization and analysis of change over time: An integrative approach incorporating longitudinal means and covariance structures analysis (LMACS) and multiple indicator latent growth modeling (MLGM). Organizational Research Methods, 1(4), 421483. https://doi.org/10.1177/109442819814004CrossRefGoogle Scholar
Chan, D. (1998b). Functional relations among constructs in the same content domain at different levels of analysis: A typology of composition models. Journal of Applied Psychology, 83(2), 234246. https://doi.org/10.1037/0021-9010.83.2.234CrossRefGoogle Scholar
Chan, D. (2000a). Conceptual and empirical gaps in research on individual adaptation at work. In Cooper, C. L. & Robertson, I. (Eds.), International review of industrial and organizational psychology (Vol. 15, pp. 143164). Wiley.Google Scholar
Chan, D. (2000b). Understanding adaptation to changes in the work environment: Integrating individual difference and learning perspectives. In Ferris, G. R. (Ed.), Research in personnel and human resources management (Vol. 18, pp. 142). JAI Press.Google Scholar
Chan, D. (2005). Current directions in personnel selection. Current Directions in Psychological Science, 14(4), 220223. https://doi.org/10.1111/j.0963-7214.2005.00368.xCrossRefGoogle Scholar
Chan, D. (2009). So why ask me? – Are self-report data really that bad? In Lance, C. E. & Vandenberg, R. J. (Eds.), Statistical and methodological myths and urban legends: Received doctrine, verity, and fable in the organizational and social sciences (pp. 311338). Routledge.Google Scholar
Chan, D. (2010). Advances in analytical strategies. In Zedeck, S. (Ed.), APA handbook of industrial and organizational psychology (Vol. 1, pp. 85113). American Psychological Association.Google Scholar
Chan, D. (2013). Advances in modeling dimensionality and dynamics of job performance. In Ford, K. J., Hollenbeck, J., & Ryan, A. M. (Eds.), The psychology of work (pp. 211228). American Psychological Association.Google Scholar
Chan, D. (2014a). Individual adaptability to changes at work: New directions in research. Routledge.CrossRefGoogle Scholar
Chan, D. (2014b). Time and methodological choices. In Shipp, A. J. & Fried, Y. (Eds.), Time and work (Vol. 2): How time impacts groups, organizations, and methodological choices (pp. 146176). Psychology Press.Google Scholar
Chan, D. (2015a). People matter. World Scientific Publishing.CrossRefGoogle Scholar
Chan, D. (2015b). Approaches to emergent group differences. In Mathew, M., Gee, C., & Chiang, W. F. (Eds.), Singapore perspectives 2014 (pp. 4150). World Scientific Publishing.CrossRefGoogle Scholar
Chan, D. (2015c). Understanding and assessing social issues in Singapore. In Chan, D. (Ed.), 50 years of social issues in Singapore (pp. 293322). World Scientific Publishing.CrossRefGoogle Scholar
Chan, D. (2017). Psychological capital. World Scientific Publishing.Google Scholar
Chan, D. (2020). Combating a crisis: The psychology of Singapore’s response to COVID-19. World Scientific Publishing.CrossRefGoogle Scholar
Chan, D. (2021). The psychology of trust amid COVID-19 challenges. SID Directors Bulletin, 2021(2), 613. https://ink.library.smu.edu.sg/soss_research/3390Google Scholar
Coleman, J. S. (1988). Social capital in the creation of human capital. The American Journal of Sociology, 94, 95120.CrossRefGoogle Scholar
Fletcher, D., & Sarkar, M. (2013). A review of psychological resilience. European Psychologist, 18(1), 1223. https://doi.org/10.1027/1016-9040/a000124CrossRefGoogle Scholar
Golder, S. A., & Macy, M. W. (2011). Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science, 333(6051), 18781881. https://doi.org/10.1126/science.1202775CrossRefGoogle ScholarPubMed
Hanelt, A., Bohnsack, R., Marz, A., & Marante, C. (2020). A systematic review of the literature on digital transformation: Insights and implications for strategy and organizational change. Journal of Management Studies, 58(5), 11591197. https://doi.org/10.1111/joms.12639CrossRefGoogle Scholar
Janis, I. L. (1982). Groupthink (2nd ed.). Houghton Mifflin.Google Scholar
Kozlowski, S. W. J., & Klein, K. J. (2000). A multilevel approach to theory and research in organizations: Contextual, temporal, and emergent processes. In Klein, K. J & Kozlowski, S. W. J. (Eds.), Multilevel theory, research, and methods in organizations (pp. 390). Jossey-Bass.Google Scholar
Liu, P., Chan, D., Tov, W., & Tong, V. (2018). Effects of cultural tightness-looseness and social network density on expression of positive and negative emotions: A large-scale study of impression management by Facebook users. Personality and Social Psychology Bulletin, 44(11), 15671581. https://doi.org/10.1177/0146167218770999CrossRefGoogle ScholarPubMed
Mayer, R. C., David, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709734. https://doi.org/10.2307/258792CrossRefGoogle Scholar
Park, G., Schwartz, H. A., Sap, M., Kern, M. L., Weingarten, E., Eichstaedt, J. C., … Seligman, M. E. P. (2017). Living in the past, present, and future: Measuring temporal orientation with language. Journal of Personality, 85(2), 270280. https://doi.org/10.1111/jopy.12239CrossRefGoogle ScholarPubMed
Putnam, R. D. (1995). Tuning in, tuning out: The strange disappearance of social capital in America. Political Science and Politics, 28(4), 664683. http://www.jstor.org/stable/420517CrossRefGoogle Scholar
Qiu, L., Chan, S. H.-m., & Chan, D. (2018). Big data in social and psychological science: Theoretical and methodological issues. Journal of Computational Social Science, 1(1), 5966. https://doi.org/10.1007/s42001-017-0013-6CrossRefGoogle Scholar
Rifkin, J. (2011). The third industrial revolution: How lateral power is transforming energy, the economy, and the world. Palgrave Macmillan.Google Scholar
Rousseau, D. M. (1985). Issues of level in organizational research: Multi-level and cro-level perspectives. In Staw, B. M. & Cummings, L. (Eds.), Research in organizational behavior (pp. 17). JAI Press.Google Scholar
Schwab, K. (2015, December 12). The fourth industrial revolution: What it means and how to respond. Foreign Affairs. https://www.foreignaffairs.com/world/fourth-industrial-revolutionGoogle Scholar
Schwab, K. (2016). The fourth industrial revolution. World Economic Forum.Google Scholar
Stone, W. (2003). Bonding, bridging and linking with social capital. Stronger Families Learning Exchange Bulletin, 4(1), 1316.Google Scholar
Tonidandel, S., King, E. B., & Cortina, J. M. (2016). Big data at work: The data science revolution and organizational psychology. Routledge.Google Scholar
Wang, M., & Chan, D. (2011). Mixture latent Markov modeling: Identifying and predicting unobserved heterogeneity in longitudinal qualitative status change. Organizational Research Methods, 14(3), 411431. https://doi.org/10.1177/1094428109357107CrossRefGoogle Scholar
Wojcik, S. P., Hovasapian, A., Graham, J., Motyl, M., & Ditto, P. (2015). Conservatives report, but liberals display, greater happiness. Science, 347(6227), 12431246. https://doi.org/10.1126/science.1260817CrossRefGoogle ScholarPubMed

References

Anderson, N., Salgado, J. F., & Hülsheger, U. R. (2010). Applicant reactions in selection: Comprehensive meta-analysis into reaction generalization versus situational specificity. International Journal of Selection and Assessment, 18(3), 291304. https://doi.org/10.1111/j.1468-2389.2010.00512.xCrossRefGoogle Scholar
Arthur, W., Day, E. A., McNelly, T. L., & Edens, P. S. (2003). A meta-analysis of the criterion-related validity of assessment center dimensions. Personnel Psychology, 56(1), 125153. https://doi.org/10.1111/j.1744-6570.2003.tb00146.xCrossRefGoogle Scholar
Arvey, R. D., & Campion, J. E. (1982). The employment interview: A summary and review of recent research. Personnel Psychology, 35(2), 281322. https://doi.org/10.1111/j.1744-6570.1982.tb02197.xCrossRefGoogle Scholar
Becton, J. B., Walker, J. H., Gilstrap, J. B., & Schwager, P. H. (2019, June 13). Social media snooping on job applicants: The effects of unprofessional social media information on recruiter perceptions. Personnel Review, 48(5), 12611280. https://doi.org/10.1108/PR-09-2017-0278CrossRefGoogle Scholar
Berry, C. M., Sackett, P. R., & Landers, R. N. (2007). Revisiting interview–cognitive ability relationships: Attending to specific range restriction mechanisms in meta-analysis. Personnel Psychology, 60(4), 837874. https://doi.org/10.1111/j.1744-6570.2007.00093.xCrossRefGoogle Scholar
Catano, V. M., Brochu, A., & Lamerson, C. D. (2012). Assessing the reliability of situational judgment tests used in high-stakes situations. International Journal of Selection and Assessment, 20(3), 333346. https://doi.org/10.1111/j.1468-2389.2012.00604.xCrossRefGoogle Scholar
Chamorro-Premuzic, T., & Furnham, A. (2010). The psychology of personnel selection. Cambridge University Press. https://doi.org/10.1017/CBO9780511819308CrossRefGoogle Scholar
Chan, D., & Schmitt, N. (1997). Video-based versus paper-and-pencil method of assessment in situational judgment tests: Subgroup differences in test performance and face validity perceptions. Journal of Applied Psychology, 82(1), 143159. https://doi.org/10.1037/0021-9010.82.1.143CrossRefGoogle ScholarPubMed
Collins, M. W., & Morris, S. B. (2008). Testing for adverse impact when sample size is small. The Journal of Applied Psychology, 93(2), 463471. https://doi.org/10.1037/0021-9010.93.2.463CrossRefGoogle ScholarPubMed
Dipboye, R. L. (1994). Structured and unstructured selection interviews: Beyond the job-fit model. Research in Personnel and Human Resources Management, 12, 79123. https://www.academia.edu/download/44957092/STRUCTURED_AND_UNSTRUCTURED_SELECTION_IN20160421-2666-opzc8p.pdfGoogle Scholar
Drasgow, F. (2015). Technology and testing: Improving educational and psychological measurement. Routledge.CrossRefGoogle Scholar
Fetzer, M., McNamara, J., & Geimer, J. L. (2017). Gamification, serious games and personnel selection. In Goldstein, H. W., Pulakos, E. D., Semedo, C., & Passmore, J. (Eds.), The Wiley Blackwell handbook of the psychology of recruitment, selection and employee retention (pp. 293309). Wiley.CrossRefGoogle Scholar
Georgiou, K., Gouras, A., & Nikolaou, I. (2019). Gamification in employee selection: The development of a gamified assessment. International Journal of Selection and Assessment, 27(2), 91103. https://doi.org/10.1111/ijsa.12240CrossRefGoogle Scholar
Guenole, N., Chernyshenko, O. S., Stark, S., Cockerill, T., & Drasgow, F. (2013). More than a mirage: A large-scale assessment centre with more dimension variance than exercise variance. Journal of Occupational and Organizational Psychology, 86(1), 521. https://doi.org/10.1111/j.2044-8325.2012.02063.xCrossRefGoogle Scholar
Guenole, N., Chernyshenko, O., Stark, S., & Drasgow, F. (2015). Are predictions based on situational judgement tests precise enough for feedback in leadership development? European Journal of Work and Organizational Psychology, 24(3), 433443. https://doi.org/10.1080/1359432X.2014.926890CrossRefGoogle Scholar
Guenole, N., Chernyshenko, O. S., & Weekly, J. (2017). On designing construct driven situational judgment tests: Some preliminary recommendations. International Journal of Testing, 17(3), 234252. https://doi.org/10.1080/15305058.2017.1297817CrossRefGoogle Scholar
Harris, M. M. (1989). Reconsidering the employment interview: A review of recent literature and suggestions for future research. Personnel Psychology, 42(4), 691726. https://doi.org/10.1111/j.1744-6570.1989.tb00673.xCrossRefGoogle Scholar
Hausknecht, J. P., Day, D. V., & Thomas, S. C. (2004). Applicant reactions to selection procedures: An updated model and meta‐analysis. Personnel Psychology, 57(3), 639683. https://doi.org/10.1111/j.1744-6570.2004.00003.xCrossRefGoogle Scholar
Hickman, L., Bosch, N., Ng, V., Saef, R., Tay, L., & Woo, S. E. (2021). Automated video interview personality assessments: Reliability, validity, and generalizability investigations. Journal of Applied Psychology, 107(8), 13231351. https://doi.org/10.1037/apl0000695CrossRefGoogle ScholarPubMed
Hickman, L., Saef, R., Ng, V., Woo, S. E., Tay, L., & Bosch, N. (2021). Developing and evaluating language‐based machine learning algorithms for inferring applicant personality in video interviews. Human Resource Management Journal. https://doi.org/10.1111/1748-8583.12356CrossRefGoogle Scholar
Howland, A. C., Rembisz, R., Wang-Jones, T. S., Heise, S. R., & Brown, S. (2015). Developing a virtual assessment center. Consulting Psychology Journal: Practice and Research, 67(2), 110126. https://doi.org/10.1037/cpb0000034CrossRefGoogle Scholar
Huffcutt, A. I., Culbertson, S. S., & Weyhrauch, W. S. (2013). Employment interview reliability: New meta-analytic estimates by structure and format. International Journal of Selection and Assessment, 21(3), 264276. https://doi.org/10.1111/ijsa.12036CrossRefGoogle Scholar
International Taskforce on Assessment Center Guidelines. (2015). Guidelines and ethical considerations for assessment center operations. Journal of Management, 41(4), 12441273. https://doi.org/10.1177/0149206314567780Google Scholar
International Test Commission. (2005). ITC guidelines on computer-based and internet delivered testing, version 1.0. https://www.intestcom.org/files/guideline_computer_based_testing.pdfGoogle Scholar
Judge, T. A., Cable, D. M., & Higgins, C. A. (2000). The employment interview: A review of recent research and recommendations for future research. Human Resource Management Review, 10(4), 383406. https://doi.org/10.1016/S1053-4822(00)00033-4CrossRefGoogle Scholar
Kasten, N., & Freund, P. A. (2016). A meta-analytical multilevel reliability generalization of situational judgment tests (SJTs). European Journal of Psychological Assessment: Official Organ of the European Association of Psychological Assessment, 32(3), 230240. https://doi.org/10.1027/1015-5759/a000250CrossRefGoogle Scholar
Lance, C. E. (2008). Why assessment centers do not work the way they are supposed to. Industrial and Organizational Psychology, 1(1), 8497. https://doi.org/10.1111/j.1754-9434.2007.00017.xCrossRefGoogle Scholar
Landers, R. N., Armstrong, M. B., Collmus, A. B., Mujcic, S., & Blaik, J. (2022). Theory-driven game-based assessment of general cognitive ability: Design theory, measurement, prediction of performance, and test fairness. Journal of Applied Psychology, 107(10), 16551677. https://doi.org/10.1037/apl0000954CrossRefGoogle ScholarPubMed
Landers, R. N., Auer, E. M., & Abraham, J. (2020). Gamifying a situational judgment test with immersion and control game elements: Effects on applicant reactions and construct validity. Journal of Managerial Psychology, 35(4), 225239. https://doi.org/10.1108/JMP-10-2018-0446CrossRefGoogle Scholar
Law, S. J., Bourdage, J., & O’Neill, T. A. (2016). To fake or not to fake: Antecedents to interview faking, warning instructions, and its impact on applicant reactions. Frontiers in Psychology, 7, Article 1771. https://doi.org/10.3389/fpsyg.2016.01771CrossRefGoogle ScholarPubMed
Levashina, J., & Campion, M. A. (2007). Measuring faking in the employment interview: Development and validation of an interview faking behavior scale. Journal of Applied Psychology, 92(6), 16381656. https://doi.org/10.1037/0021-9010.92.6.1638CrossRefGoogle ScholarPubMed
Levashina, J., Hartwell, C. J., Morgeson, F. P., & Campion, M. A. (2014). The structured employment interview: Narrative and quantitative review of the research literature. Personnel Psychology, 67(1), 241293. https://doi.org/10.1111/peps.12052CrossRefGoogle Scholar
Levinson, M. (2010). Social networking ever more critical to job search success. CIO. https://www.cio.com/article/280120/careers-staffing-social-networking-ever-more-critical-to-job-search-success.htmlGoogle Scholar
Lievens, F. (2006). The ITC guidelines on computer-based and internet-delivered testing: Where do we go from here? International Journal of Testing, 6(2), 189194. https://doi.org/10.1207/s15327574ijt0602_7CrossRefGoogle Scholar
Lievens, F. (2009). Assessment centres: A tale about dimensions, exercises, and dancing bears. European Journal of Work and Organizational Psychology, 18(1), 102121. https://doi.org/10.1080/13594320802058997CrossRefGoogle Scholar
Lievens, F. (2017). Construct-driven SJTs: Toward an agenda for future research. International Journal of Testing, 17(3), 269276. https://doi.org/10.1080/15305058.2017.1309857CrossRefGoogle Scholar
Lievens, F., Buyse, T., & Sackett, P. R. (2005). The operational validity of a video-based situational judgment test for medical college admissions: Illustrating the importance of matching predictor and criterion construct domains. Journal of Applied Psychology, 90(3), 442452. https://doi.org/10.1037/0021-9010.90.3.442CrossRefGoogle ScholarPubMed
Lievens, F., & Sackett, P. R. (2007). Situational judgment tests in high-stakes settings: Issues and strategies with generating alternate forms. Journal of Applied Psychology, 92(4), 10431055. https://doi.org/10.1037/0021-9010.92.4.1043CrossRefGoogle ScholarPubMed
Lukacik, E.-R., Bourdage, J. S., & Roulin, N. (2020). Into the void: A conceptual model and research agenda for the design and use of asynchronous video interviews. Human Resource Management Review, 32(1), Article 100789. https://doi.org/10.1016/j.hrmr.2020.100789Google Scholar
Macan, T. (2009). The employment interview: A review of current studies and directions for future research. Human Resource Management Review, 19(3), 203218. https://doi.org/10.1016/j.hrmr.2009.03.006CrossRefGoogle Scholar
Macan, T. H., Avedon, M. J., Paese, M., & Smith, D. E. (1994). The effects of applicants’ reactions to cognitive ability tests and an assessment center. Personnel Psychology, 47(4), 715738. https://doi.org/10.1111/j.1744-6570.1994.tb01573.xCrossRefGoogle Scholar
McDaniel, M. A., Morgeson, F. P., Finnegan, E. B., Campion, M. A., & Braverman, E. P. (2001). Use of situational judgment tests to predict job performance: A clarification of the literature. Journal of Applied Psychology, 86(4), 730740. https://doi.org/10.1037/0021-9010.86.4.730CrossRefGoogle ScholarPubMed
McDaniel, M. A., Whetzel, D. L., Schmidt, F. L., & Maurer, S. D. (1994). The validity of employment interviews: A comprehensive review and meta-analysis. Journal of Applied Psychology, 79(4), 599616. https://doi.org/10.1037/0021-9010.79.4.599CrossRefGoogle Scholar
McDaniel Cabrera, M. A., & Nguyen, N. T. (2001). Situational judgment tests: A review of practice and constructs assessed. International Journal of Selection and Assessment, 9(1–2), 103113. https://doi.org/10.1111/1468-2389.00167CrossRefGoogle Scholar
Mead, A. D., & Drasgow, F. (1993). Equivalence of computerized and paper-and-pencil cognitive ability tests: A meta-analysis. Psychological Bulletin, 114(3), 449458. https://doi.org/10.1037/0033-2909.114.3.449CrossRefGoogle Scholar
Melchers, K. G., & Basch, J. M. (2021). Fair play? Sex‐, age‐, and job‐related correlates of performance in a computer‐based simulation game. International Journal of Selection and Assessment, 30(1), 4861. https://doi.org/10.1111/ijsa.12337CrossRefGoogle Scholar
Melchers, K. G., Roulin, N., & Buehl, A.-K. (2020). A review of applicant faking in selection interviews. International Journal of Selection and Assessment, 28(2), 123142. https://doi.org/10.1111/ijsa.12280CrossRefGoogle Scholar
Meriac, J. P., Hoffman, B. J., Woehr, D. J., & Fleisher, M. S. (2008). Further evidence for the validity of assessment center dimensions: A meta-analysis of the incremental criterion-related validity of dimension ratings. Journal of Applied Psychology, 93(5), 10421052. https://doi.org/10.1037/0021-9010.93.5.1042CrossRefGoogle ScholarPubMed
Morelli, N., Potosky, D., Arthur, W., Jr, & Tippins, N. (2017). A call for conceptual models of technology in I-O psychology: An example from technology-based talent assessment. Industrial and Organizational Psychology, 10(4), 634653. https://doi.org/10.1017/iop.2017.70CrossRefGoogle Scholar
Moscoso, S. (2000). Selection interview: A review of validity evidence, adverse impact and applicant reactions. International Journal of Selection and Assessment, 8(4), 237247. https://doi.org/10.1111/1468-2389.00153CrossRefGoogle Scholar
Motowidlo, S. J., Dunnette, M. D., & Carter, G. W. (1990). An alternative selection procedure: The low-fidelity simulation. Journal of Applied Psychology, 75(6), 640647. https://doi.org/10.1037/0021-9010.75.6.640CrossRefGoogle Scholar
Naim, I., Tanveer, M. I., Gildea, D., & Hoque, M. (2015). Automated analysis and prediction of job interview performance. http://arxiv.org/abs/1504.03425Google Scholar
Nawaz, N., & Gomes, A. M. (2020). Artificial intelligence chatbots are new recruiters. International Journal of Advanced Computer Science and Applications, 10(9). https://doi.org/10.2139/ssrn.3521915Google Scholar
Nye, C. D., Do, B.-R., Drasgow, F., & Fine, S. (2008). Two-step testing in employee selection: Is score inflation a problem? International Journal of Selection and Assessment, 16(2), 112120. https://doi.org/10.1111/j.1468-2389.2008.00416.xCrossRefGoogle Scholar
Posthuma, R. A., Morgeson, F. P., & Campion, M. A. (2002). Beyond employment interview validity: A comprehensive narrative review of recent research and trends over time. Personnel Psychology, 55(1), 181. https://doi.org/10.1111/j.1744-6570.2002.tb00103.xCrossRefGoogle Scholar
Reddock, C. M., Auer, E. M., & Landers, R. N. (2020). A theory of branched situational judgment tests and their applicant reactions. Journal of Managerial Psychology, 35(4), 255270. https://doi.org/10.1108/JMP-10-2018-0434CrossRefGoogle Scholar
Robertson, I. T., & Smith, M. (2001). Personnel selection. Journal of Occupational and Organizational Psychology, 74(4), 441472. https://doi.org/10.1348/096317901167479CrossRefGoogle Scholar
Roth, P. L., Bobko, P., Van Iddekinge, C. H., & Thatcher, J. B. (2016). Social media in employee-selection-related decisions: A research agenda for uncharted territory. Journal of Management, 42(1), 269298. https://doi.org/10.1177/0149206313503018CrossRefGoogle Scholar
Roth, P. L., & Huffcutt, A. I. (2013). A meta-analysis of interviews and cognitive ability. Journal of Personnel Psychology, 12(4), 157169. https://doi.org/10.1027/1866-5888/a000091CrossRefGoogle Scholar
Ryan, A. M., & Ployhart, R. E. (2014). A century of selection. Annual Review of Psychology, 65, 693717. https://doi.org/10.1146/annurev-psych-010213-115134CrossRefGoogle ScholarPubMed
Sackett, P. R., & Lievens, F. (2008). Personnel selection. Annual Review of Psychology, 59, 419450. https://doi.org/10.1146/annurev.psych.59.103006.093716CrossRefGoogle ScholarPubMed
Salgado, J. F., & Moscoso, S. (2002). Comprehensive meta-analysis of the construct validity of the employment interview. European Journal of Work and Organizational Psychology, 11(3), 299324. https://doi.org/10.1080/13594320244000184CrossRefGoogle Scholar
Scott, J. C., Bartram, D., & Reynolds, D. H. (2017). Next generation technology-enhanced assessment: Global perspectives on occupational and workplace testing. Cambridge University Press.CrossRefGoogle Scholar
Suen, H.-Y., Chen, M. Y.-C., & Lu, S.-H. (2019). Does the use of synchrony and artificial intelligence in video interviews affect interview ratings and applicant attitudes? Computers in Human Behavior, 98, 93101. https://doi.org/10.1016/j.chb.2019.04.012CrossRefGoogle Scholar
Thornton, G. C., & Gibbons, A. M. (2009). Validity of assessment centers for personnel selection. Human Resource Management Review, 19(3), 169187. https://doi.org/10.1016/j.hrmr.2009.02.002CrossRefGoogle Scholar
Thornton, G. C., III, & Rupp, D. E. (2006). Assessment centers in human resource management: Strategies for prediction, diagnosis, and development. Lawrence Erlbaum Associates.CrossRefGoogle Scholar
Tippins, N. T., & Adler, S. (2011). Technology-enhanced assessment of talent. Jossey-Bass.CrossRefGoogle Scholar
Van Iddekinge, C. H., Lanivich, S. E., Roth, P. L., & Junco, E. (2016). Social media for selection? Validity and adverse impact potential of a Facebook-based assessment. Journal of Management, 42(7), 18111835. https://doi.org/10.1177/0149206313515524CrossRefGoogle Scholar
Wade, J. T., Roth, P. L., Thatcher, J. B., & Dinger, M. (2020). Social media and selection: Political issue similarity, liking, and the moderating effect of social media platform. The Mississippi Quarterly, 44(3), 13011357. https://doi.org/10.25300/misq/2020/14119CrossRefGoogle Scholar
Weekley, J. A., Hawkes, B., Guenole, N., & Ployhart, R. E. (2015). Low-fidelity simulations. Annual Review of Organizational Psychology and Organizational Behavior, 2(1), 295322. https://doi.org/10.1146/annurev-orgpsych-032414-111304CrossRefGoogle Scholar
Weekley, J. A., & Jones, C. (1999). Further studies of situational tests. Personnel Psychology, 52(3), 679700. https://doi.org/10.1111/j.1744-6570.1999.tb00176.xCrossRefGoogle Scholar
Whetzel, D. L., McDaniel, M. A., & Nguyen, N. T. (2008). Subgroup differences in situational judgment test performance: A meta-analysis. Human Performance, 21(3), 291309. https://doi.org/10.1080/08959280802137820CrossRefGoogle Scholar
Woods, S. A., Ahmed, S., Nikolaou, I., Costa, A. C., & Anderson, N. R. (2020). Personnel selection in the digital age: A review of validity and applicant reactions, and future research challenges. European Journal of Work and Organizational Psychology, 29(1), 6477. https://doi.org/10.1080/1359432X.2019.1681401CrossRefGoogle Scholar

References

Alleyne, R. (2011). Welcome to the Information Age – 174 newspapers a day. Daily Telegraph. https://www.telegraph.co.uk/news/science/science-news/8316534/Welcome-to-the-information-age-174-newspapers-a-day.htmlGoogle Scholar
Anderson, C. (2017). Cloud skills and organizational influence: How cloud skills are accelerating the careers of IT professionals. http://download.microsoft.com/download/C/3/0/C3068200–2F9B-4D8D-BF5D-32E1F7ED669A/IDC_Microsoft_How_Cloud_Skills_Are_Accelerating_IT_Pro_Careers_May_2017.pdfGoogle Scholar
Association for Test Publishers (ATP). (2019). Privacy in Practice Bulletin: Customer guidance on privacy compliance. Bulletin 1. Privacy in Practice Bulletin Series (memberclicks.net).Google Scholar
Association for Test Publishers (ATP). (2021, December). Nevada broadens its privacy law… what are the implications? Test Publishers News and Information from ATP, 21.Google Scholar
Bock, R. D. (1997). A brief history of item response theory. Educational Measurement: Issues and Practice, 16(4), 2133. https://doi.org/10.1111/j.1745-3992.1997.tb00605.xCrossRefGoogle Scholar
Brown, M. F. (2021). Key challenges to remote proctoring: Communications and technology, security, and privacy. https://www.credentialinginsights.org/Article/key-challenges-to-remote-proctoring-communications-and-technology-security-and-privacy-1Google Scholar
Buchanan, R., & Finch, S. (2005). History of psychometrics. In Everitt, B. & Howell, D. (Eds.), Encyclopedia of statistics in behavioral science. John Wiley & Sons.Google Scholar
Cahn, A. F., & Deng, G. (2020). Remote test-taking software is an inaccurate, privacy-invading mess. https://www.fastcompany.com/90586386/remote-test-taking-software-is-an-inaccurate-privacy-invading-messGoogle Scholar
Californians for Consumer Privacy. (2021). Introducing the California Privacy Rights Act (CPRA) Resource Center. https://www.caprivacy.org/introducing-the-california-privacy-rights-act-cpra-resource-center/Google Scholar
CCPA. (2018). California Consumer Privacy Act (CCPA). https://www.oag.ca.gov/privacy/ccpaGoogle Scholar
Crumpler, W. (2020). The problem of bias in facial recognition. https://www.csis.org/blogs/technology-policy-blog/problem-bias-facial-recognitionGoogle Scholar
Diebert, R. J. (2020). Opinion: We’ve become dependent on a technological ecosystem that is highly invasive and prone to serial abuse. Mail. https://www.theglobeandmail.com/opinion/article-the-pandemic-has-made-us-even-more-dependent-on-a-highly-invasive/Google Scholar
DLA Piper. (2021). Law in Mexico – DLA Piper global data protection laws of the world. https://www.dlapiperdataprotection.com/index.html?t=law&c=MXGoogle Scholar
Faggella, D. (2020). Everyday examples of artificial intelligence and machine learning. https://emerj.com/ai-sector-overviews/everyday-examples-of-ai/Google Scholar
Fletcher, D. (2009). A brief history of standardized testing. http://content.time.com/time/nation/article/0,8599,1947019,00.htmlGoogle Scholar
Foster, D. (2020). SmartItem™: Stop test fraud, improve fairness, and upgrade the way you test. https://info.caveon.com/the-smartitem-ebook-promoGoogle Scholar
GDPR EU. (2021). GDPR – user-friendly guide to General Data Protection Regulation. https://www.gdpreu.org/Google Scholar
Gierl, M. J., & Haladyna, T. (2013). Automatic item generation. Routledge.Google Scholar
Gierl, M. J., Lai, H., & Tanygin, V. (2021). Advanced methods in automatic item generation. Routledge.CrossRefGoogle Scholar
Global Disability Rights Now!. (n.d.). Mexico. https://www.globaldisabilityrightsnow.org/mexicoGoogle Scholar
Government of Canada. (1977). Rights of people with disabilities. https://www.canada.ca/en/canadian-heritage/services/rights-people-disabilities.htmlGoogle Scholar
Harwell, D. (2020, November 12). Students rebel over remote test monitoring during the pandemic. The Washington Post. https://www.washingtonpost.com/technology/2020/11/12/test-monitoring-student-revolt/Google Scholar
International Data Corporation. (2020). Cloud adoption and opportunities will continue to expand leading to a $1 trillion market in 2024, according to IDC. https://www.idc.com/getdoc.jsp?containerId=prUS46934120Google Scholar
Journal Editorial Board. (2020). Online proctoring unfairly punishes cheaters & non-cheaters alike. https://www.queensjournal.ca/story/2020-11-19/editorials/online-proctoring-unfairly-punishes-cheaters-and-non-cheaters-alike/Google Scholar
Kelly, J., & Oliver, L. (2020). Senators express privacy concerns over proctoring apps. https://www.eff.org/deeplinks/2020/12/senators-express-privacy-concerns-over-proctoring-appsGoogle Scholar
Manea, A. I. (2020). Selecting subject matter experts in job and work analysis surveys: Advantages and disadvantages. Academic Journal of Economic Studies, 6(2), 5261. https://link.gale.com/apps/doc/A631140986/AONE?u=anon~aa6ed072&sid=googleScholar&xid=b0778136Google Scholar
MIT Technology Review. (2020). Ten breakthrough technologies in 2020. https://www.technologyreview.com/10-breakthrough-technologies/2020/Google Scholar
MIT Technology Review. (2021). Ten breakthrough technologies in 2021. https://www.technologyreview.com/2021/02/24/1014369/10-breakthrough-technologies-2021/Google Scholar
Morse, J. (2020). Online testing is a biased mess, and senators are demanding answers. https://mashable.com/article/senate-open-letter-remote-proctoring-examsoft-bias-student-privacy/Google Scholar
Office of the Privacy Commissioner of Canada. (2019). The Privacy Act. https://priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-privacy-act/Google Scholar
Patil, A., & Bromwich, J. E. (2020, September 29). How it feels when software watches you take tests. The New York Times. https://www.nytimes.com/2020/09/29/style/testing-schools-proctorio.htmlGoogle Scholar
Polyak, S. T., von Davier, A. A., & Peterschmidt, K. (2017). Computational psychometrics for the measurement of collaborative problem-solving skills. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.02029CrossRefGoogle ScholarPubMed
Recio, D. (2017). Mexico’s new public-sector data protection law. https://iapp.org/news/a/mexicos-new-public-sector-data-protection-law/Google Scholar
Saeed, F. (2020). 9 powerful examples of artificial intelligence in use today. https://www.iqvis.com/blog/9-powerful-examples-of-artificial-intelligence-in-use-today/Google Scholar
Shaw, F. X. (2021). Microsoft Cloud at Ignite 2021: Metaverse, AI, and hyperconnectivity in a hybrid world. https://blogs.microsoft.com/blog/2021/11/02/microsoft-cloud-at-ignite-2021-metaverse-ai-and-hyperconnectivity-in-a-hybrid-world/Google Scholar
Traub, R. E. (1997). Classical test theory in historical perspective. Educational Measurement: Issues and Practice, 16(4), 814. https://doi.org/10.1111/j.1745-3992.1997.tb00603.xCrossRefGoogle Scholar
US Equal Employment Opportunity Commission. (1990). Americans with Disabilities Act of 1990. https://www.eeoc.gov/americans-disabilities-act-1990-original-textGoogle Scholar
Valentino-DeVries, J. (2020, January 12). How the police use facial recognition, and where it falls short. The New York Times. https://www.nytimes.com/2020/01/12/technology/facial-recognition-police.htmlGoogle Scholar
von Davier, A. A. (2017). Computational psychometrics in support of collaborative educational assessments. Journal of Educational Measurement, 54(1), 311. https://doi.org/10.3389/fpsyg.2017.02029CrossRefGoogle Scholar
von Davier, A. A., Munson, L., & Lottridge, S. (2021, July). In Hembry, T. (Moderator), Increased automation in our industry: How not to get it wrong. Panel discussion presented at ATP’s New World of Testing (NWT) Digital Series.Google Scholar
Weiner, J., Munson, L. J., & Foster, D. (2020, September). Test security in the digital age: Advances in design and analytics. Breakout session accepted at ATP’s Global Annual Innovations in Testing Virtual Conference.Google Scholar
Woodley, C. D. (2015, April). Careful selection of subject matter experts is the key to a successful JTA meeting. The Item Bank: The Professional Testing Blog. http://www.proftesting.com/blog/2015/04/29/2015429careful-selection-of-subject-matter-experts-is-the-key-to-a-successful-jta-meeting/Google Scholar
xAPI.com. (2021). What is xAPI aka the Experience API or Tin Can API? https://xapi.com/overview/Google Scholar

References

Abrahams, L., Pancorbo Valdivia, G., Primi, R., Santos, D., Kyllonen, P., John, O., & De Fruyt, F. (2019). Social-emotional skill assessment in children and adolescents: Advances and challenges in personality, clinical and educational contexts. Psychological Assessment, 31(4), 460473. https://doi.org/10.1037/pas0000591CrossRefGoogle ScholarPubMed
Abrahams, L., Rauthmann, J. F., & De Fruyt, F. (2021). Person-situation dynamics in educational contexts: A self- and other-rated experience sampling study of teachers’ states, traits, and situations. European Journal of Personality, 35(4), 598622. https://doi.org/10.1177/08902070211005621CrossRefGoogle Scholar
Alexander, L., Mulfinger, E., & Oswald, F. L. (2020). Using big data and machine learning in personality measurement: Opportunities and challenges. European Journal of Personality, 34(5), 632648. https://doi.org/10.1002/per.2305CrossRefGoogle Scholar
Anastasi, A., & Urbina, S. (2000). Testagem psicológica [Psychological testing]. Artes Médicas.Google Scholar
Barak, A., & English, N. (2002). Prospects and limitations of psychological testing on the internet. Journal of Technology in Human Services, 19(2–3), 6589. https://doi.org/10.1300/J017v19n02_06CrossRefGoogle Scholar
Bersin, J. (2020). Employee Experience 4.0: Shortening the distance from signal to action. https://joshbersin.com/2020/11/employee-experience-4-0-closing-the-loop-from-signal-to-action/Google Scholar
Bersin, J. (2021a). Secrets to employee experience: The definitive guide launches today. https://joshbersin.com/2021/07/secrets-to-employee-experience-the-definitive-guide-launches-today/Google Scholar
Bersin, J. (2021b). Why service workers are now more important than software engineers. https://joshbersin.com/2021/08/why-service-workers-are-now-more-important-than-software-engineers/Google Scholar
Bolzan, L. M., & Löbler, M. L. (2016). Socialização e afetividade no processo de inclusão digital: Um estudo etnográfico [Socialization and affection in digital inclusion process: An ethnographic study]. Organizações & Sociedade, 23(76), 130149. https://doi.org/10.1590/1984-9230767CrossRefGoogle Scholar
Brandão, T. B., Oliveira, K. S., Zuanazzi, A. C., Marino, R. L. F., Primi, R., Lessa, J. P. A., & Stelko, A. C. (2021). Avaliação das competências socio-emocionais: laboratório cognitivo na construção de instrumento para crianças de 6 a 11 anos [Assessment of socio-emotional skills: Cognitive laboratory in the construction of an instrument for children aged 6 to 11 years]. In Anais do X Congresso Brasileiro de Avaliação Psicológica. IBAP.Google Scholar
Brasil. (2018). Base nacional comum curricular. Ministério da Educação, Brasília. http://basenacionalcomum.mec.gov.br/images/BNCC_EI_EF_110518_versaofinal_site.pdfGoogle Scholar
Cardenas, A. (2019). 2019 employment legislation changes in Mexico. https://velocityglobal.com/blog/2019-employment-legislation-changes-in-mexico/Google Scholar
CEPAL. (2019). Employment situation in Latin America and the Caribbean: The future of work in Latin America and the Caribbean – old and new forms of employment and challenges for labour regulation. https://repositorio.cepal.org/bitstream/handle/11362/44605/1/S1900308_en.pdfGoogle Scholar
De Fruyt, F. (2021). Understanding and testing socio-emotional skills. In OECD, AI and the future of skills: Capabilities and assessments (Vol. 1, pp. 97116). OECD Publishing.Google Scholar
De Fruyt, F., Wille, B., & John, O. P. (2015). Employability in the 21st century: Complex (interactive) problem solving and other essential skills. Industrial and Organizational Psychology – Perspectives on Science and Practice, 8(2), 276281. https://doi.org/10.1017/iop.2015.33Google Scholar
de Klerk, S., Veldkamp, B. P., & Eggen, T. J. H. M. (2018). A framework for designing and developing multimedia-based performance assessment in vocational education. Educational Technology Research and Development, 66(1), 147171. https://doi.org/10.1007/s11423–017-9559-5CrossRefGoogle Scholar
Debusscher, J., Hofmans, J., & De Fruyt, F. (2016). From state neuroticism to momentary task performance: A person × situation approach. European Journal of Work and Organizational Psychology, 25(1), 89104. https://doi.org/10.1080/1359432X.2014.983085CrossRefGoogle Scholar
Duckworth, A. L., & Yeager, D. S. (2015). Measurement matters: Assessing personal qualities other than cognitive ability for educational purposes. Educational Researcher, 44(4), 237251. https://doi.org/10.3102/0013189X15584327CrossRefGoogle ScholarPubMed
INEP. (2020). Índice de Desenvolvimento da Educação Básica. http://ideb.inep.gov.br/Google Scholar
Khomh, F., Adams, B., Dhaliwal, T., & Zou, Y. (2015). Understanding the impact of rapid releases on software quality: The case of Firefox. Empirical Software Engineering, 20(2), 336373. https://doi.org/10.1007/s10664–014-9308-xCrossRefGoogle Scholar
Kniffin, K. M., Narayanan, J., Anseel, F., Antonakis, J., Ashford, S. P., Bakker, A. B., et al. (2021). COVID-19 and the workplace: Implications, issues, and insights for future research and action. American Psychologist, 76(1), 6377. https://doi.org/10.1037/amp0000716CrossRefGoogle ScholarPubMed
L&E Global. (2019, August). Colombia: Summary of recent labour and workplace related issues. https://knowledge.leglobal.org/colombia-summary-of-recent-labour-and-workplace-related-issues/Google Scholar
Lang, J. W. B., Runge, J. M., & De Fruyt, F. (2021). What are agile, flexible, or adaptable employees and students? A typology of dynamic individual differences in applied settings. European Journal of Personality, 35(4), 510533. https://doi.org/10.1177/08902070211012932CrossRefGoogle Scholar
Leong, K., Sung, A., Au, D., & Blanchard, C. (2020). A review of the trend of microlearning. Journal of Work-Applied Management, 13(1). https://doi.org/10.1108/JWAM-10-2020-0044Google Scholar
Levine, L. (2021). The HR tech industry is on fire: Why, and what it means for startups in Latin America. https://www.linkedin.com/pulse/hr-tech-industry-fire-why-what-means-startups-latin-america-levine/?trk=articles_directoryGoogle Scholar
Lievens, F., Lang, J. W. B., De Fruyt, F., Corstjens, J., Van de Vijver, M., & Bledow, R. (2018). The predictive power of people’s intraindividual variability across situations: Implementing whole trait theory in assessment. Journal of Applied Psychology, 103(7), 753771. https://doi.org/10.1037/apl0000280CrossRefGoogle ScholarPubMed
Measelle, J. R., John, O. P., Ablow, J. C., Cowan, P. A., & Cowan, C. P. (2005). Can children provide coherent, stable, and valid self-reports on the big five dimensions? A longitudinal study from ages 5 to 7. Journal of Personality and Social Psychology, 89(1), 90106. https://doi.org/10.1037/0022-3514.89.1.90CrossRefGoogle ScholarPubMed
Miguel, F. K. (2017). Instrumentos informatizados e testagem adaptativa computadorizada [Computerized instruments and computerized adaptive testing]. In Damásio, B. F. & Borsa, J. C. (Eds.), Manual de desenvolvimento de instrumentos psicológicos [Psychological instrument development manual] (pp. 195214). Vetor.Google Scholar
Miguel, F. K., & Zuanazzi, A. C. (2020). Estudos de validade e precisão do teste de organização de histórias emocionais [Validity and reliability studies of the emotional stories organization test]. Revista Iberoamericana de Diagnostico y Evaluacion-e Avaliacao Psicologica, 57, 2740. https://doi.org/10.21865/RIDEP57.4.02CrossRefGoogle Scholar
Morgan, J. (2017). The employee experience advantage: How to win the war for talent by giving employees the workspaces they want, the tools they need, and a culture they can celebrate. John Wiley & Sons.Google Scholar
OECD. (2019). PISA 2018 results (Vol. I): What students know and can do. OECD Publishing.Google Scholar
Primi, R. (2010). Avaliação psicológica no Brasil: Fundamentos, situação atual e direções para o future [Psychological assessment in Brazil: Foundations, current situation and future directions]. Psicologia: Teoria e Pesquisa, 26(especial), 2535. https://doi.org/10.1590/S0102–37722010000500003Google Scholar
Primi, R., Santos, D., John, O. P., & De Fruyt, F. (2021). SENNA inventory for the assessment of social and emotional skills in public school students in Brazil: Measuring both identity and self-efficacy. Frontiers in Psychology, 12, 716639. https://doi.org/10.3389/fpsyg.2021.716639CrossRefGoogle ScholarPubMed
Seidl, J., De Andrade, A. L., & De Fruyt, F. (2020). The impacts of COVID-19 on workers’ careers. In de Moraes, M. M. (Ed.), Work and containment measures for Covid-19: The impacts of pandemic on workers and their work relationship (pp. 6977). SBPOT Publications.Google Scholar
Seidl, J., & Hanashiro, D. M. M. (2021). Ageism and age diversity management: Concepts and scales. In Antunes, M. H., Boehs, S. M. T., & Costa, A. B. (Eds.), Trabalho, maturidade e aposentadoria: Estudos e intervenções [Work, maturity and retirement: Studies and interventions] (pp. 4966). Vetor Editora.Google Scholar
Shiner, R., Soto, C. J., & De Fruyt, F. (2022). Personality assessment of children and adolescents. Annual Review of Developmental Psychology, 3, 113137. https://doi.org/annurev-devpsych-050620-114343CrossRefGoogle Scholar
Sosnowska, J., Kuppens, P., De Fruyt, F., & Hofmans, J. (2020). New directions in the conceptualization and assessment of personality: A dynamic systems approach. European Journal of Personality, 34(6), 988998. https://doi.org/10.1002/per.2233CrossRefGoogle Scholar
Thompson, N. A., & Weiss, D. J. (2011). A framework for the development of computerized adaptive tests. Practical Assessment Research & Evaluation, 16(1), 19. https://doi.org/10.7275/wqzt-9427Google Scholar
Urbina, S. (2007). Fundamentos da testagem psicológica [Fundamentals of psychological testing]. Artmed.Google Scholar
Wise, S. L., & Kingsbury, G. G. (2000). Practical issues in developing and maintaining a computerized adaptive testing program. Psicológica, 21, 135155.Google Scholar
Zuanazzi, A. C., Stelko-Pereira, A. C., Lessa, J. P. A., Oliveira, K. S., Primi, R., Hamburg, S., Brandão, T. B., & Padilha, Y. S. (2021). Teste de criatividade emocional em crianças: Proposta de correção e resultados preliminaries [Test of emotional creativity in children: Correction proposal and preliminary results]. In Anais do X Congresso Brasileiro de Avaliação Psicológica (p. 172). IBAP.Google Scholar

References

American Educational Research Association, American Psychological Association, & National Council on Measurement in Education, & Joint Committee on Standards for Educational and Psychological Testing. (2014). Standards for educational and psychological testing. AERA.Google Scholar
Hamilton, R. H., & Davidson, H. K. (2022). Legal and ethical challenges for HR in machine learning. Employee Responsibilities and Rights Journal, 34, 1939. https://doi.org/10.1007/s10672–021-09377-zCrossRefGoogle Scholar
Landers, R. N., & Behrend, T. S. (2023). Auditing the AI auditors: A framework for evaluating fairness and bias in high stakes AI predictive models. American Psychologist, 78(1), 3649. https://doi.org/10.1037/amp0000972CrossRefGoogle ScholarPubMed
Meredith, W. (1964). Notes on factorial invariance. Psychometrika, 29, 177185. https://doi.org/10.1007/BF02289699CrossRefGoogle Scholar
Miller, A., Crede, M., & Sotola, L. K. (2021). Should research experience be used for selection into graduate school: A discussion and meta-analytic synthesis of the available evidence. International Journal of Selection and Assessment, 29, 1928. https://doi.org/10.1111/ijsa.12312CrossRefGoogle Scholar
Millsap, R. E. (1997). Invariance in measurement and prediction: Their relationship in the single-factor case. Psychological Methods, 2(3), 248260. https://doi.org/10.1037/1082-989X.2.3.248CrossRefGoogle Scholar
National Conference of State Legislatures. (2021, September 15). Legislation related to artificial intelligence. https://www.ncsl.org/research/telecommunications-and-information-technology/2020-legislation-related-to-artificial-intelligence.aspxGoogle Scholar
Office of Science and Technology Policy. (2022). Blueprint for an AI bill of rights: Making automated systems work for the American people (“AI Blueprint”). Executive Office of the President. https://www.whitehouse.gov/wpcontent/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdfGoogle Scholar
Rocher, L., Hendrickx, J. M., & de Montjoye, Y. A. (2019). Estimating the success of re-identifications in incomplete datasets using generative models). Nature Communications, 10, Article 3069. https://doi.org/10.1038/s41467-019-10933-3CrossRefGoogle ScholarPubMed
Roth, P. L., & Bobko, P. (2000). College grade point average as a personnel selection device: Ethnic group differences and potential adverse impact. Journal of Applied Psychology, 85(3), 399406. https://doi.org/10.1037/0021-9010.85.3.399CrossRefGoogle ScholarPubMed
Society for Industrial and Organizational Psychology. (2018). Principles for the validation and use of personnel selection procedures (5th ed.). https://www.apa.org/ed/accreditation/about/policies/personnel-selection-procedures.pdfGoogle Scholar
Somaraju, A. V., Nye, C. D., & Olenick, J. (2022). A review of measurement equivalence in organizational research: What’s old, what’s new, what’s next? Organizational Research Methods, 25(4), 741785. https://doi.org/10.1177/10944281211056524CrossRefGoogle Scholar
Woo, S. E., LeBreton, J. M., Keith, M. G., & Tay, L. (2023). Bias, fairness, and validity in graduate-school admissions: A psychometric perspective. Perspectives on Psychological Science, 18(1), 331. https://doi.org/10.1177/17456916211055374CrossRefGoogle ScholarPubMed
Wu, F. Y., Mulfinger, E., AlexanderIII, L., Sinclair, A. L., McCloy, R. A., & Oswald, F. L. (2022). Individual differences at play: An investigation into measuring Big Five personality facets with game-based assessments. International Journal of Selection and Assessment, 30(1), 6281. https://doi.org/10.1111/ijsa.12360CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Regional Focus
  • Edited by Louis Tay, Purdue University, Indiana, Sang Eun Woo, Purdue University, Indiana, Tara Behrend, Purdue University, Indiana
  • Book: Technology and Measurement around the Globe
  • Online publication: 08 November 2023
  • Chapter DOI: https://doi.org/10.1017/9781009099813.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Regional Focus
  • Edited by Louis Tay, Purdue University, Indiana, Sang Eun Woo, Purdue University, Indiana, Tara Behrend, Purdue University, Indiana
  • Book: Technology and Measurement around the Globe
  • Online publication: 08 November 2023
  • Chapter DOI: https://doi.org/10.1017/9781009099813.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Regional Focus
  • Edited by Louis Tay, Purdue University, Indiana, Sang Eun Woo, Purdue University, Indiana, Tara Behrend, Purdue University, Indiana
  • Book: Technology and Measurement around the Globe
  • Online publication: 08 November 2023
  • Chapter DOI: https://doi.org/10.1017/9781009099813.010
Available formats
×