Published online by Cambridge University Press: 05 July 2015
Systems genetics is an emerging field based on old approaches going back to the genetic studies performed by Gregor Mendel (Mendel 1866). Mendel's experiments primarily focused on explaining inheritance of single traits and their phenotypes – for example how specific genetic alleles influence colour or size of peas – but recently developed technologies can comprehensively dissect the genetic architecture of complex traits and quantify how genes interact to shape phenotypes by using natural variation or experimental perturbations as a basis to understand links from genotypes to phenotypes. This exciting new area has recently been termed ‘systems genetics’ (Civelek & Lusis 2014).
While the basic, underlying questions are not new, systems genetics builds upon major methodological advances that facilitate the measurement of genotypes and pheno-types in a previously unforeseen and comprehensive manner. With this arsenal at hand, one of the major aims of systems genetics is to understand “how genetic information is integrated, coordinated and ultimately transmitted through molecular, cellular and physiological networks to enable the higher-order functions and emergent properties of biological systems” (Nadeau & Dudley 2011).
Definition of systems genetics
Systems genetics is born out of a synthesis of multiple fields: it integrates approaches of genetics, genomics, systems biology and ‘phenomics’, that is, our increased ability to obtain quantitative and detailed measurements on a broad spectrum of phenotypes. One of the first papers using the term ‘systems genetics’ defines it as “the integration and anchoring of multi-dimensional data-types to underlying genetic variation” (Threadgill 2006). Since then, many studies have aimed at integrating genome-wide data across many different levels, and possibly different environments, in approaches that are closely related to quantitative genetics.
In our view, a systems genetic approach should bring together three dimensions: it should combine (i) a genome-wide analysis with (ii) many quantitative phenotypes, both at the molecular and organismal level, (iii) in many different conditions or environments (Fig. 1.1).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.