Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-06T02:19:15.893Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  24 September 2021

D. Phil Woodruff
Affiliation:
University of Warwick
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Synchrotron Radiation
Sources and Applications to the Structural and Electronic Properties of Materials
, pp. 272 - 278
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alagia, M., Candoni, P., Falcinelli, S. et al. (2012). Chem. Phys., 398, 134.Google Scholar
Allegretti, F., Polcik, M. & Woodruff, D. P. (2007). Surf. Sci., 601, 3611.Google Scholar
Amann, J., Berg, W., Blank, V. et al. (2012). Nat. Phot., 6, 693.Google Scholar
Ament, L. J. P., van Veenendaal, M., Devereaux, T. P., Hill, J. P. & van den Brink, J. (2011). Rev. Mod. Phys., 83, 705.Google Scholar
Andersson, A., Johnson, M. S. & Nelander, B. (1999). Proc SPIE, 3775, 77.Google Scholar
Andruszkow, J., Aune, B., Ayvazyan, V. et al. (2000). Phys. Rev. Lett., 85, 3825.Google Scholar
Aquila, A., Hunter, M. S., Doak, R. B. et al. (2012). Optics Express, 20, 2706.Google Scholar
Attwood, D. (1999). Soft X-Rays and Extreme Ultraviolet Radiation: Principle and Applications, Cambridge, UK: Cambridge University Press.Google Scholar
Bahena, D., Bhattarai, N., Santiago, U. et al. (2013). J. Phys. Chem. Lett., 4, 975.Google Scholar
Bartolini, R., Cinque, G., Martin, I. P. S. et al. (2011). Proc IPAC2011, THPC068, 3050.Google Scholar
Barton, J. J. (1988). Phys. Rev. Lett., 61, 1356.Google Scholar
Barton, J. J. (1991). Phys. Rev. Lett., 67, 3106.Google Scholar
Batterman, B. W. (1964). Phys. Rev., 133, A759.Google Scholar
Becker, U., Gessner, O & Rüdel, A. (2000). J. Electron Spectrosc. Rel. Phenom., 108, 189.Google Scholar
Beguiristain, H. R., Cremer, J. T., Piestrup, M. A., Gary, C. K. & Pantell, R. H. (2002). Optics Lett., 27, 778.Google Scholar
Bergamaschi, A., Cervellino, A., Dinapoli, R. et al. (2010). J. Synch. Rad., 17, 653.Google Scholar
Bergmann, U. & Glatzel, P. (2009). Photosynth. Res., 102, 255.Google Scholar
Bernardini, C., Corazza, G. F., Di Giugno, G. et al. (1963). Phys. Rev. Lett., 10, 407.Google Scholar
Biesinger, M. C., Lau, L. W. M., Gerson, A. R & Samart, R. St. C. (2010). Appl. Surf. Sci., 257, 887.Google Scholar
Bilderback, D. H., Brock, J. D., Dale, D. S. et al. (2010). New J. Phys., 12, 035011.Google Scholar
Billardon, M., Ellaume, P., Ortéga, J. M., Bazin, C., Bergher, M., Velghe, M., Petroff, Y., Deacon, D. A. G., Robinson, K. E. & Madey, J. M. J. (1983). Phys. Rev. Lett., 51, 1652.Google Scholar
Blanc, F. (2018). ACS Cent. Sci., 4, 1081.Google Scholar
Blewett, J. P. (1946). Phys. Rev., 69, 87.Google Scholar
Blewett, J. P. (1998). J. Synchrotron. Rad., 5, 135.Google Scholar
Blyth, R. R., Delaunay, R., Zitnik, M. et al. (1999) J. Electron Spectrosc. Relat. Phenom., 101–103, 959.Google Scholar
Boll, R., Rouzée, A., Adolph, M. et al. (2014) Faraday Disc., 171, 57.Google Scholar
Bolotova, I. B., Ulenikov, O. N., Bekhtereva, E. S. et al. (2018). J. Mol. Spec., 348, 87.Google Scholar
Bonifacio, R., Pellegrini, C. & Narducci, L. M. (1984). Opt. Commun., 50, 373.Google Scholar
Bourgeois, D., Schotte, F., Brunori, M. & Vallone, B. (2007). Photochem. Photobiol. Sci., 6, 1047.Google Scholar
Bragg, W. H. & Bragg, W. L. (1915). X-Rays and Crystal Structure, London: G. Bell & Sons. (www.archive.org/stream/xrayscrystalstru00braguoft#page/202/mode/2up)Google Scholar
Brown, F. C., Bachrach, R. Z. & Lien, N. (1978). Nucl. Instrum. Methods, 152, 73.Google Scholar
Brown, F. C., Stott, J. P. & Hulbert, S. L. (1986). Nucl. Instrum. Methods A, 246, 278.Google Scholar
Burmeister, W. P. (2000). Acta Cryst. D., 56, 328.Google Scholar
Butchers, M. W., Duffy, J. A., Taylor, J. W. et al. (2015). Phys. Rev. B., 92, 121107.Google Scholar
Carra, P., Thole, B. T., Alterelli, M. & Wang, X. (1993). Phys. Rev. Lett., 70, 694.Google Scholar
Cheng, L., Fenter, P., Bedzyk, M. J. & Sturchio, N. C. (2003). Phys. Rev. Lett., 90, 255503.Google Scholar
Cinque, G., Frogley, M. D. & Bartolini, R. (2011). Rendiconti Lincei., 22, 33.Google Scholar
Cocco, D., Bianco, A., Kaulich, B. et al. (2007). AIP Conf. Proc., 879, 497.Google Scholar
Cooper, M. J., Mijnarends, P. E., Shiotani, N., Sakai, N. & Bansil, A. (2004). X-Ray Compton Scattering, Oxford University Press.Google Scholar
Cotte, M., Susini, J., Metrich, N., Moscato, A., Gratzui, C., Bertagnini, A. & Pagano, M. (2006). Anal. Chem., 78, 7484.Google Scholar
Curbis, F., Allaria, E., Danailov, M. et al. (2005). In Reitemeyer, R., ed., Proc. 27th Internat. FEL Conf, Document SLAC –R-791. www-public.slac.stanford.edu/sciDoc/docMeta.aspx?slacPubNumber=slac-r-791Google Scholar
Deacon, D. A. G., Elias, L. R., Madey, J. M. J. et al. (1977). Phys. Rev. Lett., 38, 892.Google Scholar
De Samber, B., Scharf, O., Buzanich, G. et al. (2019). J. Anal. At. Spectrom., 34, 2083.Google Scholar
Diamon, H. (2018). J. Phys. Soc. Jpn., 87, 061001.Google Scholar
Dietz, E., Braun, W., Bradshaw, A. M. & Johnson, R. L. (1985). Nucl. Instrum. Methods A, 239, 359.Google Scholar
Eastwood, D. S., Bayley, P. M., Chang, H. J. et al. (2015). Chem. Commun., 51, 266.Google Scholar
Egami, T. & Billinge, S. J. L. (2012). Underneath the Bragg Peaks: Structural Analysis of Complex Materials, 2nd ed. Oxford: Pergamon.Google Scholar
Eggl, E., Dierolf, M., Achterhold, K. et al. (2016). J. Synchroton Radiat., 23, 1137.Google Scholar
Eggl, E., Schleede, S., Bech, M. et al. (2015). Proc. Nat. Acad. Sci., 112, 5567.Google Scholar
Einstein, A. (1905). Ann. Phys., 17, 132.Google Scholar
Elder, F. R., Gurewitsch, A. M., Langmuir, R. V., & Pollack, H. C. (1947). Phys. Rev., 71, 829.Google Scholar
Elder, F. R., Langmuir, R. V., & Pollack, H. C. (1948). Phys. Rev., 74, 52.Google Scholar
Elias, L. R., Fairbank, W. M., Madey, J. M. J., Schwettman, H. A. & Smith, T. I. (1976). Phys. Rev. Lett., 36, 718.Google Scholar
Elleaume, P., Ortéga, J. M., Billardon, M. et al. (1984). J. Physique, 45, 989.Google Scholar
Emma, P., Akre, R., Arthur, J. et al. (2010). Nature Phot., 4, 641.Google Scholar
Eriksson, M. (1997). J. Synchrotron Rad., 4, 111.Google Scholar
Fabian, D. J., Watson, L. M. & Marshall, C. A. W. (1971). Rep. Prog. Phys., 34, 601.Google Scholar
Fara, P. (2015). Phil. Trans. Roy. Soc. A, 373, 20140213.Google Scholar
Fathallah, O., Manceron, L., Dridi, N., Rotger, M. & Aroui, H. (2020). J. Quant. Spec. Rad. Transfer, 242, 106777.Google Scholar
Feynman, R. P., Leighton, R. B. & Sands, M. (1964). The Feynman Lectures in Physics, vol. 3, Ch. 2. Boston, MA: Addison-Wesley. (www.feynmanlectures.caltech.edu/)Google Scholar
Figueroa, A. I., van der Laan, G., Collins-McIntyre, L. J. et al. (2015). J. Phys. Chem. C, 119, 17344.Google Scholar
Fisher, C. J, Ithin, R., Jones, R. G. et al. (1998). J. Phys.: Condens. Matter, 10, L623.Google Scholar
Flavell, W. R., Quinn, F. M., Clarke, J. A. et al. (2005). Proc. SPIE 5917, Fourth Generation X-Ray Sources and Optics III, 59170C. Bellingham, WA.Google Scholar
Follath, R. (2001). Nucl. Instrum. Methods A, 467–468, 418.Google Scholar
Fukuda, N., Hokura, A., Kitajuma, N. et al. (2008). J. Anal. At. Spec., 23, 1068.Google Scholar
Gaarenstroom, S. W. & Winograd, N. (1977). J. Chem. Phys., 67, 3500.Google Scholar
Garman, E. F. (2010). Acta Cryst. D, 66, 339.Google Scholar
Ghidini, M., Zhu, B., Mansell, R. et al. (2018). J. Phys. D: Appl. Phys., 51, 224007.Google Scholar
Gianoncelli, A., Kourousias, G., Merolle, L., Altissimo, M. & Bianco, A. (2016). J. Synchrotron Rad., 23, 1526.Google Scholar
Gog, T., Len, P. M., Materlik, G. et al. (2014). Phys. Rev. Lett., 76, 3132.Google Scholar
Gold, S. H., Hardesty, D. L., Kinkead, A. K., Barnett, L. R. & Granatstein, V. L. (1984). Phys. Rev. Lett., 52, 1218.Google Scholar
Goward, F. K. & Barnes, D. E. (1946). Nature, 158, 413.Google Scholar
Green, G. K. (1976). Spectra and Optics of Synchrotron Radiation, Brookhaven National Lab. Report BNL 50522.Google Scholar
Grunwaldt, J.-D., Hannemann, S., Schroer, C. G. & Baiker, A. (2006). J. Phys. Chem. B., 110, 8674.Google Scholar
Guinier, A. (1939) Ann. Phys., 12, 161.Google Scholar
Guinier, A. & Fournét, G. (1955). Small-Angle Scattering of X-rays, New York: Wiley.Google Scholar
Gurman, S. J., Binstead, N. & Ross, I. (1984). J. Phys. C: Solid State Phys., 17, 143.Google Scholar
Gurman, S. J., Binstead, N. & Ross, I. (1986). J. Phys. C: Solid State Phys., 19, 1845.Google Scholar
Hall, G. (1995) Quarterly Rev. Biophys., 28, 1.Google Scholar
Hall, R. I., Dawber, G., McConkey, A., MacDonald, M. A. & King, G. C. (1992). Phys. Rev. Lett., 68, 2751.Google Scholar
Hancock, J. N., Chabot-Couture, G., Li, Y. et al. (2009). Phys. Rev. B., 80, 092509.Google Scholar
Harkiolaki, M., Darrow, M. C., Spink, M. C., Kosier, E., Dent, K. & Duke, E. (2018). Emerg. Top. Life Sci., 2, 81.Google Scholar
Haynes, T. D., Maskery, I., Butchers, M. W. et al. (2012). Phys. Rev. B, 85, 115137.Google Scholar
He, H., Marchesini, S., Howells, M. et al. (2003). Phys. Rev. Lett., 67, 174114.Google Scholar
Heinmann, P. A., Koike, M. & Padmore, H. A. (2005). Rev. Sci. Instrum., 76, 063102.Google Scholar
Henderson, R. (1990). Proc. Roy. Soc. Lond. B, 241, 6.Google Scholar
Henderson, R. (1995). Q. Rev. Biophys., 28, 171.Google Scholar
Henke, B. L., Gullikson, E. M. & Davis, J. C. (1993). At. Data Nucl. Data Tables 54, 181.Google Scholar
Hermann, P., Hoel, A., Patoka, P. et al. (2013). Optics Express, 21, 2914.Google Scholar
Hirschmugl, C. J., Chabal, Y. J., Hoffmann, F. M. & Williams, G. P. (1994). J. Vac. Sci. Technol. A, 12, 2229.Google Scholar
Holman, H. -Y. N., Martin, M. C. & McKinney, W. R. (2003). Spectroscopy, 17, 139.Google Scholar
Hu, W., Hayashi, K., Ohwada, K. et al. (2014). Phys. Rev. B., 89, 140103.Google Scholar
Huang, J., Günther, B., Achterhold, K. et al. (2020). Sci. Rep., 10, 8772.Google Scholar
Itou, M., Harada, T. & Kita, T. (1989). Appl. Optics, 28, 146.Google Scholar
Ivanenko, D. & Pomeranchuk, I. (1944). Phys. Rev., 65, 343.Google Scholar
Janssens, K., Vittiglio, G., Deraedt, I., Aerts, A. et al. (2000). X-ray Spectrom., 29, 73.Google Scholar
Jensen, K. M. Ø., Juhas, P., Tofanelli, M. A. et al. (2016). Nature Commun., 7, 11859.Google Scholar
Jones, N., Norris, C., Nicklin, C. L. et al. (1998). Surf. Sci., 409, 27.Google Scholar
Jonsson, G. K., Ulama, J., Johansson, M. Z. & Bergenholtz, J. (2017). Colloid Polym. Sci., 295, 1983.Google Scholar
Kawamura, N., Tsutsui, S., Mizumaki, M. et al. (2009). J. Phys. Conf. Series, 190, 012020.Google Scholar
Kerst, D. W. (1940). Phys. Rev., 58, 841.Google Scholar
Khatib, O., Bechtel, H. A., Martin, M. C., Raschke, M. B & Carr, G. L. (2018). ACS Photonics, 5, 2773.Google Scholar
Kingslake, R. (1994). Opt. Photonics News, 5, 20.Google Scholar
Kirkpatrick, P. & Baez, A. V. (1948). J. Opt. Soc. Am., 38, 766.Google Scholar
Kitamura, H (1980). Jap. J. Appl. Phys., 19, L185.Google Scholar
Knight, M. J., Allegretti, F., Kröger, E. A. et al. (2008). Surf. Sci., 602, 2524.Google Scholar
Kopittke, P. M., Punshon, T., Paterson, D. J. et al. (2018). Plant Physiology, 178, 507.Google Scholar
Kossel, W. (1920). Z. Phys., 1, 119.Google Scholar
Krafft, G. A. & Priebe, G. (2010). Rev. Accel. Sci. Tech., 3, 147.Google Scholar
Kraft, P., Bergamaschi, A., Broennimann, Ch. et al. (2009). J. Synchrotron Rad., 16, 368.Google Scholar
Krisch, M. & Sette, F. (2017). Crystal. Rep., 62, 1.Google Scholar
Kronig, R. L. (1931). Z. Phys., 70, 317.Google Scholar
Kumakhov, M. A. (1990). Nucl. Instrum. Methods, B48, 283.Google Scholar
Larmor, J. (1897). Phil. Mag., 44, 503.Google Scholar
LaShell, S., McDougall, B. A. & Jensen, E. (1996). Phys. Rev. Lett., 77, 3419.Google Scholar
Lee, J. (2002). PhD thesis, University of Warwick.Google Scholar
Lee, J., Fisher, C., Woodruff, D. P. et al. (2001). Surf. Sci., 494, 166.Google Scholar
Lee, P. A. & Pendry, J. B. (1975). Phys. Rev. B, 11, 2795.Google Scholar
Lee, P. A., Citrin, P. H., Eisenberger, P. & Kincaid, B. M. (1981). Rev. Mod. Phys., 53, 769.Google Scholar
Lee, T.-L., Bihler, C., Schoch, W. et al. (2010). Phys. Rev. B, 81, 235207.Google Scholar
Liénard, A. (1898). L’Eclairage Elect., 16, 5.Google Scholar
Liu, Y., Nelson, J., Holzner, C., Andrews, J. C. & Pianetta, P. (2013). J. Phys. D: Appl. Phys., 46, 494001.Google Scholar
Locatelli, A., Wang, C., Africh, C. et al. (2013). ACS Nano, 7, 6955.Google Scholar
Lovesey, S. W. & Collins, S. P. (1996). X-ray Scattering Absorption by Magnetic Materials, Oxford: Oxford University Press.Google Scholar
Lytle, F. W. (1999). J. Synchrotron Rad., 6, 123.Google Scholar
Ma, Y., Wassdahl, N., Skytt, P. et al. (1992). Phys. Rev. Lett., 69, 2598.Google Scholar
MacDonald, C. A. (2011). X-Ray Optics. Instrum., 2010, 867049.Google Scholar
Madey, J. M. J. (1971). J. Appl. Phys., 42, 1906.Google Scholar
Marcelli, A., Cricenti, A, Kwiatek, W. M. & Petisbois, C. (2012). Biotech. Adv., 30, 1390.Google Scholar
Marcelli, A. & Cinque, G. (2019). EMU Notes in Mineralogy, 20, 411Google Scholar
Margariti, C. (2019). Herit. Sci., 7, 63.Google Scholar
Mariedahl, D., Perakis, F., Späh, A. et al. (2018). J. Phys. Chem. B, 122, 7616.Google Scholar
Marks, L. D., Erdman, N. & Subramanian, A. (2001). J. Phys.: Condens. Matter, 13, 10677.Google Scholar
Masadeh, A. S. (2016). J. Exp. Nanosci., 11, 951.Google Scholar
Masadeh, A. S., Božin, E. S., Farrow, C. L. et al. (2007). Phys. Rev. B, 76, 115413.Google Scholar
Matsui, F., Eguchi, R., Nishiyama, S. et al. (2016). Sci. Rep., 6, 36258.Google Scholar
Matsushita, T., Muro, T., Matsui, F. et al. (2018). J. Phys. Soc. Jpn., 87, 061002.Google Scholar
Matsuyama, S., Yasuda, S., Yamada, J. (2017). Sci. Rep., 7, 46358.Google Scholar
McKellar, A. R. W. (2010). J. Mol. Spec., 262, 1.Google Scholar
Merminga, L. (2020). In Jaeschke, E. J., Khan, S., Schneider, J. R. & Hastings, J. B., eds, Synchrotron Light Sources and Free-Electron Lasers, 2nd ed. Switzerland: Springer Nature, 439477.Google Scholar
Miao, J., Ishikawa, T., Robinson, I. K. & Murmane, M. M. (2015). Science, 348, 530.Google Scholar
Michette, A. G. (1993). In Michette, A. G. & Buckley, C. J., eds, X-Ray Science and Technology. London: IOP Publishing Ltd.Google Scholar
Mills, D. M., Helliwell, J. R., Kvick, Å. et al. (2005). J. Synch. Rad., 12, 385.Google Scholar
Mirolo, M., Leanza, D., Höltschi, L. et al. (2020). Anal Chem., 92, 3023.Google Scholar
Miyahara, T., Kitamura, H., Sato, S. et al. (1976). Particle Accelerators, 7, 163.Google Scholar
Mohammadi, S., Larsson, E., Alves, F. et al. (2014). J. Synch. Rad., 21, 784.Google Scholar
Moretti, G. (1998). J. Electron Spectrosc. Relat. Phenom., 95, 95.Google Scholar
Morowe, Ch., Carau, D. & Peffen, J. -Ch. (2017). Proc. SPIE, 10386, 1038603.Google Scholar
Morris, D., Schmidt, A., Acosta, R. E. et al. (1995). Proc. SPIE, 2437, 134.Google Scholar
Mudd, J. J., Lee, T. -L., Muñoz-Sanjosé, V. et al. (2014). Phys. Rev. B, 89, 165305.Google Scholar
Murray, C. A., Potter, J., Day, S. J. et al. (2017). J. Appl. Cryst., 50, 172.Google Scholar
Nakasako, M., Takayama, Y., Oroguchi, T. (2013). Rev. Sci. Instrum., 84, 093705.Google Scholar
Namioka, T. (1959). J. Opt. Soc. Amer., 49, 951.Google Scholar
Neil, G. R., Bohn, C. L., Benson, S. V. et al. (2000). Phys. Rev. Lett., 84, 662.Google Scholar
Newton, I. (1671). Phil Trans. Roy Soc., 6, 3075.Google Scholar
Nilsson, A. & Pettersson, L. G. M. (2004). Surf. Sci. Rep., 55, 49.Google Scholar
Nilsson, A. & Pettersson, L. G. M. (2008). In Nilsson, A., Pettersson, L. G. M, Nørskov, J. K., eds. Chemical Bonding at Surfaces and Interfaces. Amsterdam: B. V. Elsevier. 58.Google Scholar
Patterson, A. L. (1934). Phys. Rev., 46, 372.Google Scholar
Patterson, A. L. (1935). Z. Krist., 90, 517.Google Scholar
Persson, B. N. J. & Volokitin, A. I (1994). Surf. Sci., 310, 314.Google Scholar
Pilling, M. & Gardner, P. (2016). Chem. Soc. Rev., 45, 1935.Google Scholar
Porod, G (1951). Kolloid Z., 124, 83Google Scholar
Prins, J. (1934). Nature, 133, 795.Google Scholar
Puschmann, A., Haase, J., Crapper, M. D., Riley, C. E. & Woodruff, D. P. (1985). Phys. Rev. Lett., 54, 2250.Google Scholar
Okasinski, J. S., Kim, C. -Y., Walko, D. A. & Bedzyk, M. J. (2004). Phys. Rev. B, 69, 041401.Google Scholar
Orzechowski, T. J., Anderson, B., Fawley, W. M. et al. (1985). Phys. Rev. Lett., 54, 889.Google Scholar
Phillips, R. M. (1988). Nucl. Instrum. Methods A, 272, 1.Google Scholar
Plekan, O., Feyer, V., Richter, R. et al. (2009). J. Phys. Chem. A 113, 9376.Google Scholar
Pollack, H. C. (1983). Am. J. Phys. 51, 278.Google Scholar
Poole, M. W. (2017). Private communication.Google Scholar
Rasado-Colambo, I., Avila, J., Vignaud, D. et al. (2018) Scientific Rep., 8, 10190.Google Scholar
Ravel, R. & Newville, M. (2005). J. Synch. Rad., 12, 537.Google Scholar
Rehr, J. J. & Albers, R. C. (1990). Phys. Rev. B., 41, 8139.Google Scholar
Rehr, J. J. & Albers, R. C. (2000). Rev. Mod. Phys., 72, 621.Google Scholar
Rehr, J. J., Albers, R. C., Natoli, C. R. & Stern, E. A. (1986). Phys. Rev. B, 34, 4350.Google Scholar
Reiche, I., Lebon, M., Chadefaux, C. et al. (2010). Anal Bioanal. Chem., 397, 2491.Google Scholar
Richardson, J. S. (2000). Nature Struct. Bio., 7, 624.Google Scholar
Rietveld, H. M. (1969). J. Appl. Cryst., 2, 65.Google Scholar
Riley, J. M., Mazzola, F., Dendzik, M. et al. (2014). Nature Phys., 10, 835.Google Scholar
Rolles, D., Boll, R., Tamrakar, S. R., Anielski, D. & Bomme, C. (2014). Ultrafast nonlinear imaging and spectroscopy II Book Series: Proc. SPIE 9198, 91980O.Google Scholar
Sandell, A., Björneholm, O., Nilsson, A. (1993). Phys. Rev. Lett., 70, 2000.Google Scholar
Sasaki, S. (1994). Nucl. Instrum. Methods A, 347, 83.Google Scholar
Sayers, D. E., Stern, E. A. & Lytle, F. W. (1971). Phys. Rev. Lett., 27, 1204.Google Scholar
Schott, G. A. (1912). Electromagnetic Radiation, Cambridge, UK: Cambridge University Press.Google Scholar
Schroer, C. G., Boye, P., Feldkam, J. M. et al. (2008). Phys. Rev. Lett., 101, 090801.Google Scholar
Schwinger, J. (1949). Phys. Rev., 75, 1912.Google Scholar
Seah, M. P. & Dench, W. A. (1979). Surf. Interface Analysis, 1, 2.Google Scholar
Seddon, E. A., Clarke, J. A., Dunning, D. J. et al. (2017). Rep. Prog. Phys., 80, 115901.Google Scholar
Senf, F., Eggenstein, F., Flechsig, U. et al. (2001). Nucl. Instrum. Methods A, 467–468, 474.Google Scholar
Senf, F., Eggenstein, F. & Peatman, W. (1992). Rev. Sci. Instrum., 63, 1326.Google Scholar
Shi, X., Fischer, P., Neu, V. et al. (2016) Appl. Phys. Lett., 108, 094103.Google Scholar
Shirley, D. A. (1973). Advan. Chem. Phys., 23, 85.Google Scholar
Smedh, M., Beutler, A., Ramsvik, T. et al. (2001). Sur. Sci., 491, 99.Google Scholar
Stapelfeldt, H. & Seidemen, T (2003). Rev. Mod. Phys., 75, 543.Google Scholar
Stöhr, J. (1999). J. Magn. Magn. Mater., 200, 470.Google Scholar
Stöhr, J., Sette, F. & Johnson, A. L. (1984). Phys. Rev. Lett., 53, 1684.Google Scholar
Surman, M., Hagans, P. L., Wilson, N. E., Baily, C. J. & Russell, A. E. (2002). Surf. Sci., 511, L303.Google Scholar
Suzuki, Y., Uchida, F. & Hirai, Y. (1989). Jpn. J. Appl. Phys., 28, L1660.Google Scholar
Szöke, A. (1986). AIP Conference Proceedings, 147, 361.Google Scholar
Takayama, Y., Takami, Y., Fukuda, K., Miyagawa, T. & Kagashima, Y. (2018). J. Synchrotron Rad., 25, 1229.Google Scholar
Tanaka, T. & Kitamura, H. (2001). J. Synchrotron Rad., 8, 1221.Google Scholar
Tanner, B. K., Vijayaraghavan, R. K., Roarty, B., Danilewsky, A. N. & McNally, P. J. (2019). Mocroelect. Reliability, 99, 232.Google Scholar
Tavassoly, M. T., Hosseini, S. R., Fard, A. M. & Naraghi, R. R. (2012). Appl. Optics, 51, 7170.Google Scholar
Tegze, M. & Faigel, G. (1996). Nature, 380, 49.Google Scholar
Thole, B. T., Carra, P., Sette, F. & van der Laan, G. (1992). Phys. Rev. Lett., 68, 1943.Google Scholar
Tomboulian, D. H. & Hartman, P. L. (1956). Phy. Rev., 102, 1423.Google Scholar
Tsutui, K., Matsushita, T., Natori, K. et al. (2017). Nano Lett., 17, 7533.Google Scholar
Valegård, K., Hasse, D., Andersson, I. & Gunn, L. H. (2018). Acta Cryst., D74, 1.Google Scholar
van der Laan, G. & Figueroa, A. I. (2014). Coord, Chem. Rev., 277 –278, 95.Google Scholar
Vartanyants, I. A. & Zegenhagen, J. (1999). Solid State Commun., 113, 299.Google Scholar
Verbeni, R., Sette, F., Krisch, M. H. et al. (1996). J. Synchrotron Rad., 3, 62.Google Scholar
Victoreen, J. A. (1943). J. Appl. Phys., 14, 95.Google Scholar
Vinze, L., Vekemans, B., Brenker, F. E. et al. (2004). Anal. Chem., 76, 6786.Google Scholar
Walker, R. P. (1993). Nucl. Instrum. Methods A, 335, 328.Google Scholar
Walker, R. P. (1998). CERN Accelerator School: Synchrotron Radiation and Free Electron Lasers, Grenoble, 1996, CERN 98-04, 129.Google Scholar
Walker, R. P., Clarke, J. A., Couprie, M. E. et al. (2001). Nucl. Instrum. Methods. A, 475, 20.Google Scholar
Walker, R. P. & Diviacco, B. (1992). Rev. Sci. Instrum., 63, 392.Google Scholar
Wehinger, B., Krisch, M. & Reinchert, H. (2011). New J. Phys., 13, 023021.Google Scholar
Westendorp, W. F. & Charlton, E. E. (1945). J. Appl. Phys., 16, 581.Google Scholar
Williams, G. P. (2001). J. Phys. Condens. Matter, 13, 11367.Google Scholar
Williamson, G. K. & Hall, W. H. (1953). Acta Met., 1, 22.Google Scholar
Wilson, M. N., Smith, A. I. C., Kempson, V. C. et al. (1993) IBM J. Res. Develop., 37, 351.Google Scholar
Woodruff, D. P. (2005). Rep. Prog. Phys., 68, 743.Google Scholar
Woodruff, D. P. (2007). Surf. Sci. Rep., 62, 1.Google Scholar
Woodruff, D. P. (2016). Modern Techniques of Surface Science, 3rd ed. Cambridge, UK: Cambridge University Press.Google Scholar
Woodruff, D. P., Cowie, B. C. C. & Ettema, A. R. H. F. (1994). J. Phys. Condens. Matter, 6 10633.Google Scholar
Woodruff, D. P., Seymour, D. L., McConville, C. F. et al. (1988). Surf. Sci., 195, 237.Google Scholar
Wu, H., Lustbader, J. W., Liu, Y., Canfield, R. E. & Hendrickson, W. A. (1994). Structure, 2, 545.Google Scholar
Xiong, G., Clarke, J. N., Nicklin, C., Rawle, J. & Robinson, I. K. (2014). Sci. Rep., 4, 6765.Google Scholar
Yabashi, M., Tamasaku, K., Kikuta, S. & Ishikawa, T. (2001). Rev. Sci. Instrum., 72.Google Scholar
Zakharov, A. A., Mikkelsen, A. & Andersen, J. N. (2012). J. Elect. Spect. Rel. Phenom., 185, 417.Google Scholar
Zegenhagen, J. (1993). Surf. Sci. Rep., 18, 199.Google Scholar
Zhang, Z., Fenter, P., Cheng, L. et al. (2004). Surf. Sci., 554, L95.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • D. Phil Woodruff, University of Warwick
  • Book: Synchrotron Radiation
  • Online publication: 24 September 2021
  • Chapter DOI: https://doi.org/10.1017/9781316995747.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • D. Phil Woodruff, University of Warwick
  • Book: Synchrotron Radiation
  • Online publication: 24 September 2021
  • Chapter DOI: https://doi.org/10.1017/9781316995747.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • D. Phil Woodruff, University of Warwick
  • Book: Synchrotron Radiation
  • Online publication: 24 September 2021
  • Chapter DOI: https://doi.org/10.1017/9781316995747.010
Available formats
×