Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T05:09:59.537Z Has data issue: false hasContentIssue false

2 - Painlevé Equations: Continuous, Discrete and Ultradiscrete

Published online by Cambridge University Press:  05 July 2011

Basil Grammaticos
Affiliation:
Université Paris
Alfred Ramani
Affiliation:
Centre de Physique Théorique, École Polytechnique
Decio Levi
Affiliation:
Università degli Studi Roma Tre
Peter Olver
Affiliation:
University of Minnesota
Zora Thomova
Affiliation:
SUNY Institute of Technology
Pavel Winternitz
Affiliation:
Université de Montréal
Get access

Summary

Abstract

We present a derivation of the continuous and discrete Painlevé equations and then proceed to establish a parallel between the special properties these equations possess, and which are related to their integrable character. The ultradiscrete forms of Painlevé equations are then derived and we show that their properties follow closely the ones of their continuous and discrete counterparts.

Introduction

Deriving integrable systems is a (very) delicate business. In the absence of a general, constructive theory the usual approach to discovering new integrable equations is to try to construct specific examples. Sometimes they are suggested by physical models, the KdV equation being the prototype of such a system. Once a sufficient number of examples are obtained one can formulate conjectures and proceed to propose integrability criteria. Painlevé equations are a minor exception to this approach. Their discovery is due to the inspired intuition of Painlevé [23]. He was faced with the problem of defining new functions from the solutions of differential equations, a challenge set by Picard [25], who thought that this would have been impossible for second-order equations. This pessimistic attitude was due to the fact that nonlinear differential equations possess multivaluedness-inducing singularities, the position of which depends on the initial conditions, thus making impossible any uniformisation treatment. The masterful solution of Painlevé was to look only for equations free of these “bad” singularities.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ablowitz, M. J., Ramani, A., and Segur, H. 1978. Nonlinear evolution equations and ordinary differential equations of Painlevé type. Lett. Nuovo Cimento (2), 23(9), 333–338.CrossRefGoogle Scholar
[2] Bureau, F. J. 1964. Differential equations with fixed critical points. Ann. Mat. Pura Appl. (4), 64, 229–364.CrossRefGoogle Scholar
[3] Bureau, F. J. 1972. Équations différentielles du second ordre en Y et du second degré en ÿ dont l'intégrale générale est à points critiques fixes. Ann. Mat. Pura Appl. (4), 91, 163–281.CrossRefGoogle Scholar
[4] Fokas, A. S., and Ablowitz, M. J. 1982. On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys., 23, 2033–2042.CrossRefGoogle Scholar
[5] Fokas, A. S., Grammaticos, B., and Ramani, A. 1993. From continuous to discrete Painlevé equations. J. Math. Anal. Appl., 180(2), 342–360.CrossRefGoogle Scholar
[6] Gambier, B. 1910. Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est à points critiques fixes. Acta Math., 33(1), 1–55.CrossRefGoogle Scholar
[7] Grammaticos, B., and Ramani, A. 2000. The hunting for the discrete Painlevé equations. Sophia Kovalevskaya to the 150th anniversary. Regul. Chaotic Dyn., 5(1), 53–66.CrossRefGoogle Scholar
[8] Grammaticos, B., Ramani, A., and Papageorgiou, V. 1991. Do integrable mappings have the Painlevé property? Phys. Rev. Lett., 67(14), 1825–1828.CrossRefGoogle ScholarPubMed
[9] Grammaticos, B., Ohta, Y., Ramani, A., and Takahashi, D. 1998. The ultimate discretisation of the Painlevé equations. Phys. D, 114(3-4), 185–196.Google Scholar
[10] Gromak, V. A., and Lukashevich, N. A. 1990. Analytic Properties of Solutions of Painlevé Equations. Minsk: Universitetskoye. in Russian.Google Scholar
[11] Hietarinta, J., and Viallet, C. M. 1998. Singularity confinement and chaos in discrete systems. Phys. Rev. Lett., 81(2), 325–328.CrossRefGoogle Scholar
[12] Ince, E. L. 1944. Ordinary Differential Equations. New York: Dover.Google Scholar
[13] Jimbo, M., and Miwa, T. 1981. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D, 2(11), 407–448.CrossRefGoogle Scholar
[14] Jimbo, M., and Sakai, H. 1996. A q-analog of the sixth Painlevé equation. Lett. Math. Phys., 38(2), 145–154.CrossRefGoogle Scholar
[15] Joshi, N., Nijhoff, F. W., and Ormerod, C. 2004. Lax pairs for ultra-discrete Painlevé cellular automata. J. Phys. A, 37(44), L559–L565.CrossRefGoogle Scholar
[16] Kruskal, M. D. 2000. Private communication.
[17] Malmquist, J. 1922. Sur les équations différentielles du second ordre dont l'intégrale générale a ses points critiques fixes. Ark. Mat. Astr. Fys., 17(8), 1–89.Google Scholar
[18] Nijhoff, F., Satsuma, J., Kajiwara, K., Grammaticos, B., and Ramani, A. 1996. A study of the alternate discrete Painlevé II equation. Inverse Problems, 12(5), 697–716.CrossRefGoogle Scholar
[19] Ohta, Y., Tamizhmani, K. M., Grammaticos, B., and Ramani, A. 1999. Singularity confinement and algebraic entropy: the case of the discrete Painlevé equations. Phys. Lett. A, 262(2-3), 152–157.CrossRefGoogle Scholar
[20] Ohta, Y., Ramani, A., and Grammaticos, B. 2002. Elliptic discrete Painlevé equations. J. Phys. A, 35(45), L653–L659.CrossRefGoogle Scholar
[21] Okamoto, K. 1979. Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé. Japan. J. Math. (N. S.), 5(1), 1–79.CrossRefGoogle Scholar
[22] Okamoto, K. 1981. On the τ-function of the Painlevé equations. Phys. D, 2(3), 525–535.CrossRefGoogle Scholar
[23] Painlevé, P. 1888. Sur les équations différentielles du premier ordre. C. R. Acad. Sci. Paris, 107, 221–224, 320–323, 724–727.Google Scholar
[24] Papageorgiou, V., Nijhoff, F., Grammaticos, B., and Ramani, A. 1992. Isomonodromic deformation problems for discrete analogues of Painlevé equations. Phys. Lett. A, 164(1), 57–64.CrossRefGoogle Scholar
[25] Picard, E. 1889. Mémoire sur la théorie des fonctions algébriques de deux variables. J. Math. Pures Appl. (4), 5, 135–320.Google Scholar
[26] Quispel, G. R. W., Roberts, J. A. G., and Thompson, C. J. 1989. Integrable mappings and soliton equations. II. Phys. D, 34(1-2), 183–192.CrossRefGoogle Scholar
[27] Ramani, A., and Grammaticos, B. 1992. Miura transforms for discrete Painlevé equations. J. Phys. A, 25(14), L633–L637.CrossRefGoogle Scholar
[28] Ramani, A., and Grammaticos, B. 1996. Discrete Painlevé equations: coalescences, limits and degeneracies. Phys. A, 228, 160–171.CrossRefGoogle Scholar
[29] Ramani, A., Grammaticos, B., and Hietarinta, J. 1991. Discrete versions of the Painlevé equations. Phys. Rev. Lett., 67(14), 1829–1832.CrossRefGoogle ScholarPubMed
[30] Ramani, A., Ohta, Y., Satsuma, J., and Grammaticos, B. 1998. Self-duality and Schlesinger chains for the asymmetric d-PII and q-PIII equations. Comm. Math. Phys., 192(1), 67–76.CrossRefGoogle Scholar
[31] Ramani, A., Grammaticos, B., Tamizhmani, T., and Tamizhmani, K. M. 2000. On a transcendental equation related to Painlevé III, and its discrete forms. J. Phys. A, 33(3), 579–590.CrossRefGoogle Scholar
[32] Ramani, A., Grammaticos, B., and Willox, R. 2008. Contiguity relations for discrete and ultradiscrete Painlevé equations. J. Nonlinear Math. Phys., 15(4), 353–364.CrossRefGoogle Scholar
[33] Sakai, H. 2001. Rational surfaces associated with affine root systems and geometry of the Painlevé equations. Comm. Math. Phys., 220(1), 165–229.CrossRefGoogle Scholar
[34] Takahashi, D., Tokihiro, T., Grammaticos, B., Ohta, Y., and Ramani, A. 1997. Constructing solutions to the ultradiscrete Painlevé equations. J. Phys. A, 30(22), 7953–7966.CrossRefGoogle Scholar
[35] Takenawa, T. 2001. A geometric approach to singularity confinement and algebraic entropy. J. Phys. A, 34(10), L95–L102.CrossRefGoogle Scholar
[36] Tamizhmani, K. M., Grammaticos, B., and Ramani, A. 1993. Schlesinger transforms for the discrete Painlevé IV equation. Lett. Math. Phys., 29(1), 49–54.CrossRefGoogle Scholar
[37] Tamizhmani, K. M., Ramani, A., Grammaticos, B., and Ohta, Y. 1996. A study of the discrete PV equation: Miura transformations and particular solutions. Lett. Math. Phys., 38(3), 289–296.CrossRefGoogle Scholar
[38] Tamizhmani, T., Grammaticos, B., Ramani, A., and Tamizhmani, K. M. 2001. On a class of special solutions of the Painlevé equations. Phys. A, 295(3-4), 359–370.CrossRefGoogle Scholar
[39] Tokihiro, T., Takahashi, D., Matsukidaira, J., and Satsuma, J. 1996. From soliton equations to integrable cellular automata through a limiting procedure. Phys. Rev. Lett., 76(18), 3247–3250.CrossRefGoogle ScholarPubMed
[40] Tokihiro, T., Grammaticos, B., and Ramani, A. 2002. From the continuous PV to discrete Painlevé equations. J. Phys. A, 35(28), 5943–5950.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×