Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T12:00:40.415Z Has data issue: false hasContentIssue false

2 - Large-scale structures in random graphs

Published online by Cambridge University Press:  21 July 2017

Julia Böttcher
Affiliation:
Department of Mathematics, London School of Economics Houghton St, London WC2A 2AE, UK
Anders Claesson
Affiliation:
University of Iceland, Reykjavik
Mark Dukes
Affiliation:
University College Dublin
Sergey Kitaev
Affiliation:
University of Strathclyde
David Manlove
Affiliation:
University of Glasgow
Kitty Meeks
Affiliation:
University of Glasgow
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] R., Aharoni and P., Haxell, Hall's theorem for hypergraphs, J. Graph Theory 35 (2000), no. 2, 83–88.Google Scholar
[2] M., Ajtai, J., Komlós, and E., Szemerédi, The longest path in a random graph, Combinatorica 1 (1981), no. 1, 1–12.Google Scholar
[3] P., Allen, J., Böttcher, J., Ehrenmüller, and A., Taraz, The bandwidth theorem in sparse graphs, arXiv:1612.00661.
[4] P., Allen, J., Böttcher, S., Griffiths, Y., Kohayakawa, and R., Morris, Chromatic thresholds in sparse random graphs, Random Structures Algorithms, accepted, arXiv:1508.03875.
[5] P., Allen, J., Böttcher, H., Hàn, Y., Kohayakawa, and Y., Person, Blowup lemmas for sparse graphs, arXiv:1612.00622.
[6] N., Alon, Universality, tolerance, chaos and order, An irregular mind, Bolyai Soc. Math. Stud., vol. 21, János Bolyai Math. Soc., Budapest, 2010, pp. 21–37.
[7] N., Alon and M., Capalbo, Sparse universal graphs for bounded-degree graphs, Random Structures Algorithms 31 (2007), no. 2, 123–133.Google Scholar
[8] N., Alon and M., Capalbo, Optimal universal graphs with deterministic embedding, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2008, pp. 373–378.
[9] N., Alon, M., Capalbo, Y., Kohayakawa, V., Rödl, A., Ruciński, and E., Szemerédi, Universality and tolerance (extended abstract), 41st Annual Symposium on Foundations of Computer Science (Redondo Beach, CA, 2000), IEEE Comput. Soc. Press, Los Alamitos, CA, 2000, pp. 14–21.
[10] N., Alon and Z., Füredi, Spanning subgraphs of random graphs, Graphs Combin. 8 (1992), no. 1, 91–94.Google Scholar
[11] N., Alon, M., Krivelevich, and B., Sudakov, Embedding nearlyspanning bounded degree trees, Combinatorica 27 (2007), no. 6, 629– 644.Google Scholar
[12] N., Alon and R., Yuster, Threshold functions for H-factors, Combin. Probab. Comput. 2 (1993), no. 2, 137–144.Google Scholar
[13] D., Angluin and L. G., Valiant, Fast probabilistic algorithms for Hamiltonian circuits and matchings, J. Comput. System Sci. 18 (1979), no. 2, 155–193.Google Scholar
[14] L., Babai, M., Simonovits, and J., Spencer, Extremal subgraphs of random graphs, J. Graph Theory 14 (1990), no. 5, 599–622.Google Scholar
[15] D., Bal and A., Frieze, The Johansson-Kahn-Vu solution of the Shamir problem, https://www.math.cmu.edu/∼af1p/Teaching/ATIRS/Papers/FRH/Shamir.pdf.
[16] J., Balogh, B., Csaba, M., Pei, and W., Samotij, Large bounded degree trees in expanding graphs, Electron. J. Combin. 17 (2010), no. 1, Research Paper 6, 9.Google Scholar
[17] J., Balogh, B., Csaba, and W., Samotij, Local resilience of almost spanning trees in random graphs, Random Structures Algorithms 38 (2011), no. 1-2, 121–139.Google Scholar
[18] J., Balogh, C., Lee, and W., Samotij, Corrádi and Hajnal's theorem for sparse random graphs, Combin. Probab. Comput. 21 (2012), no. 1-2, 23–55.Google Scholar
[19] J., Balogh, R., Morris, and W., Samotij, Independent sets in hypergraphs, J. Amer. Math. Soc. 28 (2015), no. 3, 669–709.Google Scholar
[20] S., Ben-Shimon, M., Krivelevich, and B., Sudakov, Local resilience and Hamiltonicity maker-breaker games in random regular graphs, Combin. Probab. Comput. 20 (2011), no. 2, 173–211.Google Scholar
[21] S., Ben-Shimon, M., Krivelevich, and B., Sudakov, On the resilience of Hamiltonicity and optimal packing of Hamilton cycles in random graphs, SIAM J. Discrete Math. 25 (2011), no. 3, 1176–1193.Google Scholar
[22] P., Bennett, A., Dudek, and A., Frieze, Square of a Hamilton cycle in a random graph, arXiv:1611.06570.
[23] S. N., Bhatt, F. R. K., Chung, F. T., Leighton, and A. L., Rosenberg, Universal graphs for bounded-degree trees and planar graphs, SIAM J. Discrete Math. 2 (1989), no. 2, 145–155.Google Scholar
[24] B., Bollobás, Threshold functions for small subgraphs, Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 2, 197–206.Google Scholar
[25] B., Bollobás, The evolution of sparse graphs, Graph theory and combinatorics (Cambridge, 1983), Academic Press, London, 1984, pp. 35–57.
[26] B., Bollobás, Random graphs, second ed., Cambridge Studies in Advanced Mathematics, vol. 73, Cambridge University Press, Cambridge, 2001.
[27] B., Bollobás, T. I., Fenner, and A. M., Frieze, An algorithm for finding Hamilton paths and cycles in random graphs, Combinatorica 7 (1987), no. 4, 327–341.Google Scholar
[28] B., Bollobás and A. M., Frieze, On matchings and Hamiltonian cycles in random graphs, Ann. Discrete Math. 28 (1985), 23–46.Google Scholar
[29] B., Bollobás and A. M., Frieze, Spanning maximal planar subgraphs of random graphs, Random Structures Algorithms 2 (1991), no. 2, 225–231.Google Scholar
[30] B., Bollobás and A., Thomason, Random graphs of small order, Random graphs ‘83 (Poznań, 1983), North-Holland Math. Stud., vol. 118, North-Holland, Amsterdam, 1985, pp. 47–97.
[31] B., Bollobás and A., Thomason, Threshold functions, Combinatorica 7 (1987), no. 1, 35–38.Google Scholar
[32] J., Böttcher, Y., Kohayakawa, and A., Taraz, Almost spanning subgraphs of random graphs after adversarial edge removal, Combin. Probab. Comput. 22 (2013), no. 5, 639–683.Google Scholar
[33] J., Böttcher, K. P., Pruessmann, A., Taraz, and A., Würfl, Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs, European J. Combin. 31 (2010), no. 5, 1217–1227.Google Scholar
[34] J., Böttcher, M., Schacht, and A., Taraz, Proof of the bandwidth conjecture of Bollobás and Komlós, Math. Ann. 343 (2009), no. 1, 175– 205. Google Scholar
[35] G., Brightwell, K., Panagiotou, and A., Steger, Extremal subgraphs of random graphs, Random Structures Algorithms 41 (2012), no. 2, 147–178.Google Scholar
[36] M. R., Capalbo, A small universal graph for bounded-degree planar graphs, Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 1999), ACM, New York, 1999, pp. 156–160.
[37] F. R. K., Chung, Labelings of graphs, Selected topics in graph theory, 3, Academic Press, San Diego, CA, 1988, pp. 151–168.
[38] D., Conlon, A., Ferber, R., Nenadov, and N., Škorić, Almost-spanning universality in random graphs, Random Structures Algorithms, accepted, arXiv:1503.05612.
[39] D., Conlon and W. T., Gowers, Combinatorial theorems in sparse random sets, Ann. of Math. (2) 184 (2016), no. 2, 367–454.Google Scholar
[40] D., Conlon, W. T., Gowers, W., Samotij, and M., Schacht, On the KŁR conjecture in random graphs, Israel J. Math. 203 (2014), no. 1, 535– 580.Google Scholar
[41] K., Corrádi and A., Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963), 423– 439.Google Scholar
[42] D., Dellamonica, Y., Kohayakawa, M., Marciniszyn, and A., Steger, On the resilience of long cycles in random graphs, Electron. J. Combin. 15 (2008), 26 pp., R32.Google Scholar
[43] D., Dellamonica, Y., Kohayakawa, V., Rödl, and A., Ruciński, Universality of random graphs, SIAM J. Discrete Math. 26 (2012), no. 1, 353–374.Google Scholar
[44] D., Dellamonica, Y., Kohayakawa, V., Rödl, and A., Ruciński, An improved upper bound on the density of universal random graphs, Random Structures Algorithms 46 (2015), no. 2, 274– 299.Google Scholar
[45] B., DeMarco and J., Kahn, Turán's Theorem for random graphs, arXiv:1501.01340.
[46] B., DeMarco and J., Kahn, Mantel's theorem for random graphs, Random Structures Algorithms 47 (2015), no. 1, 59–72.Google Scholar
[47] G. A., Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69–81.Google Scholar
[48] M., Drmota, O., Giménez, M., Noy, K., Panagiotou, and A., Steger, The maximum degree of random planar graphs, Proc. Lond. Math. Soc. (3) 109 (2014), no. 4, 892–920.Google Scholar
[49] P., Erdʺos and A., Rényi, On random graphs. I, Publ. Math. Debrecen 6 (1959), 290–297.Google Scholar
[50] P., Erdʺos and A., Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 17–61.Google Scholar
[51] P., Erdʺos and A., Rényi, On random matrices, Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1964), 455–461 (1964).Google Scholar
[52] P., Erdʺos and A., Rényi, On the existence of a factor of degree one of a connected random graph, Acta Math. Acad. Sci. Hungar. 17 (1966), 359–368.Google Scholar
[53] P., Erdʺos and A. H., Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087–1091.Google Scholar
[54] A., Ferber, G., Kronenberg, and K., Luh, Optimal threshold for a random graph to be 2-universal, arXiv:1612.06026.
[55] A., Ferber, K., Luh, and O., Nguyen, Embedding large graphs into a random graph, arXiv:1606.05923.
[56] A., Ferber, R., Nenadov, and U., Peter, Universality of random graphs and rainbow embedding, Random Structures Algorithms 48 (2016), no. 3, 546–564.Google Scholar
[57] W. Fernandez de la, Vega, Long paths in random graphs, Studia Sci. Math. Hungar. 14 (1979), no. 4, 335–340.Google Scholar
[58] W. Fernandez de la, Vega, Trees in sparse random graphs, J. Combin. Theory Ser. B 45 (1988), no. 1, 77–85.Google Scholar
[59] P., Frankl and V., Rödl, Large triangle-free subgraphs in graphs without K4, Graphs Combin. 2 (1986), no. 2, 135–144.Google Scholar
[60] E., Friedgut, Sharp thresholds of graph properties, and the k-sat problem, J. Amer. Math. Soc. 12 (1999), no. 4, 1017–1054, With an appendix by Jean Bourgain.Google Scholar
[61] E., Friedgut, Hunting for sharp thresholds, Random Structures Algorithms 26 (2005), no. 1-2, 37–51.Google Scholar
[62] J., Friedman and N., Pippenger, Expanding graphs contain all small trees, Combinatorica 7 (1987), no. 1, 71–76.Google Scholar
[63] A., Frieze and M., Karoński, Introduction to random graphs, Cambridge University Press, 2015.
[64] A., Frieze and M., Krivelevich, On two Hamilton cycle problems in random graphs, Israel J. Math. 166 (2008), 221–234.Google Scholar
[65] Z., Füredi, Random Ramsey graphs for the four-cycle, Discrete Math. 126 (1994), no. 1-3, 407–410.Google Scholar
[66] S., Gerke, Random graphs with constraints, 2005, Habilitationsschrift, Institut für Informatik, TU München.
[67] S., Gerke, Y., Kohayakawa, V., Rödl, and A., Steger, Small subsets inherit sparse ∊-regularity, J. Combin. Theory Ser. B 97 (2007), no. 1, 34–56.Google Scholar
[68] S., Gerke and A., McDowell, Nonvertex-balanced factors in random graphs, J. Graph Theory 78 (2015), no. 4, 269–286, (arXiv:1304.3000).Google Scholar
[69] S., Gerke, H. J., Prömel, T., Schickinger, A., Steger, and A., Taraz, K4- free subgraphs of random graphs revisited, Combinatorica 27 (2007), no. 3, 329–365.Google Scholar
[70] S., Gerke, T., Schickinger, and A., Steger, K5-free subgraphs of random graphs, Random Structures Algorithms 24 (2004), no. 2, 194–232.Google Scholar
[71] Y., Gurevich and S., Shelah, Expected computation time for Hamiltonian path problem, SIAM J. Comput. 16 (1987), no. 3, 486–502.Google Scholar
[72] A., Hajnal and E., Szemerédi, Proof of a conjecture of P. Erdʺos, Combinatorial theory and its applications, II (Proc. Colloq., Balatonf üred, 1969), North-Holland, Amsterdam, 1970, pp. 601–623.
[73] P. E., Haxell, Tree embeddings, J. Graph Theory 36 (2001), no. 3, 121–130.Google Scholar
[74] P. E., Haxell, Y., Kohayakawa, and T., Łuczak, Turán's extremal problem in random graphs: forbidding even cycles, J. Combin. Theory Ser. B 64 (1995), no. 2, 273–287.Google Scholar
[75] P. E., Haxell, Y., Kohayakawa, and T., Łuczak, Turán's extremal problem in random graphs: forbidding odd cycles, Combinatorica 16 (1996), no. 1, 107–122.Google Scholar
[76] D., Hefetz, M., Krivelevich, and T., Szabó, Hamilton cycles in highly connected and expanding graphs, Combinatorica 29 (2009), no. 5, 547–568.Google Scholar
[77] D., Hefetz, M., Krivelevich, and T., Szabó, Sharp threshold for the appearance of certain spanning trees in random graphs, Random Structures Algorithms 41 (2012), no. 4, 391–412.Google Scholar
[78] H., Huang, C., Lee, and B., Sudakov, Bandwidth theorem for random graphs, J. Combin. Theory Ser. B 102 (2012), no. 1, 14–37.Google Scholar
[79] S., Janson, T., Łuczak, and A., Ruciński, Random graphs, Wiley- Interscience, New York, 2000.
[80] D., Johannsen, M., Krivelevich, and W., Samotij, Expanders are universal for the class of all spanning trees, Combin. Probab. Comput. 22 (2013), no. 2, 253–281.Google Scholar
[81] A., Johansson, J., Kahn, and V., Vu, Factors in random graphs, Random Structures Algorithms 33 (2008), no. 1, 1–28.Google Scholar
[82] J., Kahn and G., Kalai, Thresholds and expectation thresholds, Combin. Probab. Comput. 16 (2007), no. 3, 495–502.Google Scholar
[83] J., Kahn, E., Lubetzky, and N., Wormald, Cycle factors and renewal theory, Comm. Pure Appl. Math., accepted, arXiv:1401.2707.
[84] J., Kahn, E., Lubetzky, and N., Wormald, The threshold for combs in random graphs, Random Structures Algorithms 48 (2016), no. 4, 794–802.Google Scholar
[85] J. H., Kim and S. J., Lee, Universality of random graphs for graphs of maximum degree two, SIAM J. Discrete Math. 28 (2014), no. 3, 1467–1478.Google Scholar
[86] J. H., Kim and V. H., Vu, Concentration of multivariate polynomials and its applications, Combinatorica 20 (2000), no. 3, 417–434.Google Scholar
[87] J. H., Kim and V. H., Vu, Sandwiching random graphs: universality between random graph models, Adv. Math. 188 (2004), no. 2, 444–469.Google Scholar
[88] Y., Kohayakawa, Szemerédi's regularity lemma for sparse graphs, Foundations of computational mathematics, Springer, 1997, pp. 216– 230.
[89] Y., Kohayakawa, B., Kreuter, and A., Steger, An extremal problem for random graphs and the number of graphs with large even-girth, Combinatorica 18 (1998), no. 1, 101–120.Google Scholar
[90] Y., Kohayakawa, T., Łuczak, and V., Rödl, On K4-free subgraphs of random graphs, Combinatorica 17 (1997), no. 2, 173–213.Google Scholar
[91] Y., Kohayakawa and V., Rödl, Regular pairs in sparse random graphs. I, Random Structures Algorithms 22 (2003), no. 4, 359–434.Google Scholar
[92] Y., Kohayakawa and V., Rödl, Szemerédi's regularity lemma and quasi-randomness, Recent advances in algorithms and combinatorics, Springer, 2003, pp. 289–351.
[93] Y., Kohayakawa, V., Rödl, and M., Schacht, The Turán theorem for random graphs, Combin. Probab. Comput. 13 (2004), no. 1, 61–91.Google Scholar
[94] Y., Kohayakawa, V., Rödl, M., Schacht, and E., Szemerédi, Sparse partition universal graphs for graphs of bounded degree, Adv. Math. 226 (2011), no. 6, 5041–5065.Google Scholar
[95] J., Komlós, The blow-up lemma, Combin. Probab. Comput. 8 (1999), no. 1-2, 161–176, Recent trends in combinatorics (Mátraháza, 1995).Google Scholar
[96] J., Komlós, G. N., Sárközy, and E., Szemerédi, Proof of a packing conjecture of Bollobás, Combin. Probab. Comput. 4 (1995), no. 3, 241–255.Google Scholar
[97] J., Komlós, G. N., Sárközy, and E., Szemerédi, Blow-up lemma, Combinatorica 17 (1997), no. 1, 109–123.Google Scholar
[98] J., Komlós, G. N., Sárközy, and E., Szemerédi, An algorithmic version of the blow-up lemma, Random Structures Algorithms 12 (1998), no. 3, 297–312.Google Scholar
[99] J., Komlós, G. N., Sárközy, and E., Szemerédi, Spanning trees in dense graphs, Combin. Probab. Comput. 10 (2001), no. 5, 397–416.Google Scholar
[100] J., Komlós, A., Shokoufandeh, M., Simonovits, and E., Szemerédi, The regularity lemma and its applications in graph theory, Theoretical aspects of computer science (Tehran, 2000), Lecture Notes in Comput. Sci., vol. 2292, Springer, Berlin, 2002, pp. 84–112.
[101] J., Komlós and M., Simonovits, Szemerédi's regularity lemma and its applications in graph theory, Combinatorics, Paul Erdʺos is eighty, Vol. 2 (Keszthely, 1993), Bolyai Soc. Math. Stud., vol. 2, János Bolyai Math. Soc., Budapest, 1996, pp. 295–352.
[102] J., Komlós and E., Szemerédi, Limit distribution for the existence of Hamiltonian cycles in a random graph, Discrete Math. 43 (1983), no. 1, 55–63.Google Scholar
[103] A., Korshunov, Solution of a problem of Erdʺos and Rényi on Hamiltonian cycles in nonoriented graphs., Sov. Math., Dokl. 17 (1976), 760–764.Google Scholar
[104] A., Korshunov, Solution of a problem of P. Erdʺos and A. Rényi on Hamiltonian cycles in undirected graphs, Metody Diskretn. Anal. 31 (1977), 17–56.Google Scholar
[105] M., Krivelevich, Triangle factors in random graphs, Combin. Probab. Comput. 6 (1997), no. 3, 337–347.Google Scholar
[106] M., Krivelevich, Embedding spanning trees in random graphs, SIAM J. Discrete Math. 24 (2010), no. 4, 1495–1500.Google Scholar
[107] M., Krivelevich, C., Lee, and B., Sudakov, Resilient pancyclicity of random and pseudorandom graphs, SIAM J. Discrete Math. 24 (2010), no. 1, 1–16.Google Scholar
[108] D., Kühn and D., Osthus, On Pósa's conjecture for random graphs, SIAM J. Discrete Math. 26 (2012), no. 3, 1440–1457.Google Scholar
[109] C., Lee and W., Samotij, Pancyclic subgraphs of random graphs, J. Graph Theory 71 (2012), no. 2, 142–158.Google Scholar
[110] C., Lee and B., Sudakov, Dirac's theorem for random graphs, Random Structures Algorithms 41 (2012), no. 3, 293–305.Google Scholar
[111] T., Łuczak and A., Ruciński, Tree-matchings in graph processes, SIAM J. Discrete Math. 4 (1991), no. 1, 107–120.Google Scholar
[112] C., McDiarmid and B., Reed, On the maximum degree of a random planar graph, Combin. Probab. Comput. 17 (2008), no. 4, 591–601.Google Scholar
[113] R., Montgomery, Embedding bounded degree spanning trees in random graphs, arXiv:1405.6559.
[114] R., Montgomery, Sharp threshold for embedding combs and other spanning trees in random graphs, arXiv:1405.6560.
[115] J. W., Moon, On the maximum degree in a random tree, Michigan Math. J. 15 (1968), 429–432.Google Scholar
[116] R., Nenadov and N., Škorić, Powers of cycles in random graphs and hypergraphs, arXiv:1601.04034.
[117] A., Noever and A., Steger, Local resilience for squares of almost spanning cycles in sparse random graphs, arXiv:1606.02958.
[118] O., Parczyk and Y., Person, Spanning structures and universality in sparse hypergraphs, Random Structures Algorithms, accepted, arXiv:1504.02243.
[119] L., Pósa, Hamiltonian circuits in random graphs, Discrete Math. 14 (1976), no. 4, 359–364.Google Scholar
[120] O., Riordan, Spanning subgraphs of random graphs, Combin. Probab. Comput. 9 (2000), no. 2, 125–148.Google Scholar
[121] V., Rödl and A., Ruciński, Perfect matchings in ε-regular graphs and the blow-up lemma, Combinatorica 19 (1999), no. 3, 437–452.Google Scholar
[122] V., Rödl, A., Ruciński, and A., Taraz, Hypergraph packing and graph embedding, Combin. Probab. Comput. 8 (1999), no. 4, 363–376, Random graphs and combinatorial structures (Oberwolfach, 1997).Google Scholar
[123] A., Ruciński, Matching and covering the vertices of a random graph by copies of a given graph, Discrete Math. 105 (1992), no. 1-3, 185– 197.Google Scholar
[124] D., Saxton and A., Thomason, Hypergraph containers, Invent. Math. 201 (2015), no. 3, 925–992.Google Scholar
[125] M., Schacht, Extremal results for random discrete structures, Ann. of Math. (2) 184 (2016), no. 2, 333–365.Google Scholar
[126] A., Scott, Szemerédi's regularity lemma for matrices and sparse graphs, Combin. Probab. Comput. 20 (2011), no. 3, 455–466.Google Scholar
[127] E., Shamir, How many random edges make a graph Hamiltonian?, Combinatorica 3 (1983), no. 1, 123–131.Google Scholar
[128] J., Spencer, Threshold functions for extension statements, J. Combin. Theory Ser. A 53 (1990), no. 2, 286–305.Google Scholar
[129] B., Sudakov and V. H., Vu, Local resilience of graphs, Random Structures Algorithms 33 (2008), no. 4, 409–433.Google Scholar
[130] T., Szabó and V. H., Vu, Turán's theorem in sparse random graphs, Random Structures Algorithms 23 (2003), no. 3, 225–234.Google Scholar
[131] A., Thomason, A simple linear expected time algorithm for finding a Hamilton path, Discrete Math. 75 (1989), no. 1-3, 373–379, Graph theory and combinatorics (Cambridge, 1988).Google Scholar
[132] P., Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436–452.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×