Published online by Cambridge University Press: 15 October 2009
It is often thought that superplasticity is only found at relatively low strain rates, typically about 10–4 to 10–3 s–1. Several recent studies have indicated, however, that superplasticity can exist at strain rates considerably higher than 10–2 s–1. This high-strain-rate superplasticity (HSRS) phenomenon has now been observed in metal-matrix composites, mechanically alloyed materials, and even the more conventionally produced metallic alloys. We will discuss the phenomenon in detail in the following.
Experimental observations
Metal-matrix composites
The phenomenon of HSRS was initially observed in Al-based metal-matrix composites and has continued to be studied mainly in Al-based alloys. Composite reinforcements include SiC and Si3N4 whiskers and SiC particles; matrix alloys include 2000, 6000, and 7000 series Al. A list of published HSRS results is presented in Table 9.1. Despite the differences in the type of reinforcement and matrix composition, all of these composites are noted to exhibit approximately similar deformation and microstructural characteristics. In the following, we use a powder-metallurgy 20%SiC whisker-reinforced 2124Al composite (SiCw/2124Al) as an example to reveal the key experimental observations of HSRS. This composite was the first material observed to exhibit HSRS.
To the present time, reports on HSRS are found in aluminum composites mainly produced by powder-metallurgy methods. High-temperature deformation investigations of the SiCw/2124Al indicated that the material was not superplastic in as-extruded conditions; over the conventional strain-rate range of 1.7×10–3 to 3.3×10–1 s–1, elongation-to-failure values of 30 to 40% were recorded.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.