Book contents
- Frontmatter
- Contents
- Participants
- Preface
- Acknowledgements
- Observations of Supernovae and the Cosmic Distance Scale
- Type Ia Supernovae
- Type Ib and Type II Supernovae
- Recent Advances in Supernova Theory
- Dynamics of Type-II Supernovae
- Hydrodynamics and Theoretical Light Curves of SNe II
- Instabilities and Mixing in Type II-P and II-b Supernovae
- Progenitors and Hydrodynamics of Type II and Ib Supernovae
- Statistical Analysis of Supernovae and Progenitors of SN Ib and SN Ic
- Supernova Nucleosynthesis in Massive Stars
- Nuclear Weak Processes in Presupernova Stars
- SN 1987A, SN 1993J, and Other Supernovae
- Supernovae and Circumstellar Matter
- Supernova Remnants
- Catalogues
- List of Contributed Papers
Supernova Nucleosynthesis in Massive Stars
from Type Ib and Type II Supernovae
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Participants
- Preface
- Acknowledgements
- Observations of Supernovae and the Cosmic Distance Scale
- Type Ia Supernovae
- Type Ib and Type II Supernovae
- Recent Advances in Supernova Theory
- Dynamics of Type-II Supernovae
- Hydrodynamics and Theoretical Light Curves of SNe II
- Instabilities and Mixing in Type II-P and II-b Supernovae
- Progenitors and Hydrodynamics of Type II and Ib Supernovae
- Statistical Analysis of Supernovae and Progenitors of SN Ib and SN Ic
- Supernova Nucleosynthesis in Massive Stars
- Nuclear Weak Processes in Presupernova Stars
- SN 1987A, SN 1993J, and Other Supernovae
- Supernovae and Circumstellar Matter
- Supernova Remnants
- Catalogues
- List of Contributed Papers
Summary
Presupernova evolution and explosive nucleosynthesis in massive stars for main-sequence masses from 13 M⊙ to 70 M⊙ are calculated. We examine the dependence of the supernova yields on the stellar mass, 12C(α,γ)16O rate, and explosion energy. The supernova yields integrated over the initial mass function are compared with the solar abundances.
Presupernova models and the 12C(α,γ)16O rate
Presupernova models are obtained for helium stars with masses of Mα = 3.3, 4, 5, 6, 8, 16, and 32 M⊙ as an extension of the studies by Nomoto & Hashimoto (1988), Thielemann et al. (1993), and Hashimoto et al. (1993). These helium star masses correspond approximately to main-sequence masses of Mms = 13, 15, 18, 20, 25, 40, and 70 M⊙, respectively (Sugimoto & Nomoto 1980). The systematic study for such a dense grid of stellar masses enables us to understand how explosive nucleosynthesis depends on the presupernova stellar structure and to apply the results to the chemical evolution of galaxies. We use the Schwarzschild criterion for convection and neglect overshooting. The initial composition is given by X(4He) = 0.9879 and X(14N) = 0.0121. These helium stars are evolved from helium burning through the onset of the Fe core collapse.
Nuclear reaction rates are mostly taken from Caughlan & Fowler (1988). For the uncertain rate of 12C(α,γ)16O, we use the rate by Caughlan et al. (1985; CFHZ85), which is larger than the rate by Caughlan & Fowler (1988; CF88) by a factor of ∼ 2.4.
- Type
- Chapter
- Information
- Supernovae and Supernova RemnantsIAU Colloquium 145, pp. 157 - 164Publisher: Cambridge University PressPrint publication year: 1996
- 4
- Cited by