Book contents
- Frontmatter
- Contents
- Participants
- Preface
- Acknowledgements
- Observations of Supernovae and the Cosmic Distance Scale
- Type Ia Supernovae
- Type Ib and Type II Supernovae
- SN 1987A, SN 1993J, and Other Supernovae
- X-Rays and γ-Rays from SN 1987A
- Spectrophotometry of SN 1987A from the Kuiper Airborne Observatory
- Infrared Spectroscopy of SN 1987A
- SN 1987A: Observations at Later Phases
- Freeze out, IR-Catastrophes, and Non-thermal Emission in SNe
- Understanding the Nebular Spectrum of SN 1987A
- The Oxygen 1.13 µm Fluorescence Line of SN 1987A: a Diagnostic for the Ejecta of Hydrogen-Rich Supernovae
- Review of Contributions to the Workshop on SN 1993J
- A Determination of the Properties of the Peculiar SNIa 1991T through Models of its Early-time Spectra
- Supernovae and Circumstellar Matter
- Supernova Remnants
- Catalogues
- List of Contributed Papers
A Determination of the Properties of the Peculiar SNIa 1991T through Models of its Early-time Spectra
from SN 1987A, SN 1993J, and Other Supernovae
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Participants
- Preface
- Acknowledgements
- Observations of Supernovae and the Cosmic Distance Scale
- Type Ia Supernovae
- Type Ib and Type II Supernovae
- SN 1987A, SN 1993J, and Other Supernovae
- X-Rays and γ-Rays from SN 1987A
- Spectrophotometry of SN 1987A from the Kuiper Airborne Observatory
- Infrared Spectroscopy of SN 1987A
- SN 1987A: Observations at Later Phases
- Freeze out, IR-Catastrophes, and Non-thermal Emission in SNe
- Understanding the Nebular Spectrum of SN 1987A
- The Oxygen 1.13 µm Fluorescence Line of SN 1987A: a Diagnostic for the Ejecta of Hydrogen-Rich Supernovae
- Review of Contributions to the Workshop on SN 1993J
- A Determination of the Properties of the Peculiar SNIa 1991T through Models of its Early-time Spectra
- Supernovae and Circumstellar Matter
- Supernova Remnants
- Catalogues
- List of Contributed Papers
Summary
A series of early-time optical spectra of the peculiar SNIa 1991T, obtained from 2 weeks before to 4 weeks after maximum, have been computed with our Monte Carlo code.
The earlier spectra can be successfully modelled if 56Ni and its decay products, 56Co and 56Fe, dominate the composition of the outer part of the ejecta. This atypical distribution confirms that the explosion mechanism in SN 1991T was different from a simple deflagration wave, the model usually adopted for SNe Ia.
As the photosphere moves further into the ejecta the Ni Co Fe fraction drops, while intermediate mass elements become more abundant. The spectra obtained 3–4 weeks after maximum look very much like those of the standard SN Ia 1990N. A mixed W7 composition produces good fits to these spectra, although Ca and Si are underabundant. Thus, in the inner parts of the progenitor white dwarf the explosion mechanism must have been similar to the standard deflagration model.
The fits were obtained adopting a reddening E(B − V) = 0.13. A Tully-Fisher distance modulus µ = 30.65 to NGC 4527 implies that SN 1991T was about 0.5 mag brighter than SN 1990N. At comparable epochs, the photosphere of SN 1991T was thus hotter than that of SN 1990N. The high temperature, together with the anomalous composition stratification, explains the unusual aspect of the earliest spectra of SN 1991T.
- Type
- Chapter
- Information
- Supernovae and Supernova RemnantsIAU Colloquium 145, pp. 277 - 282Publisher: Cambridge University PressPrint publication year: 1996