Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T01:57:27.584Z Has data issue: false hasContentIssue false

3 - Functional genomics of sulphate-reducing prokaryotes

Published online by Cambridge University Press:  22 August 2009

Larry L. Barton
Affiliation:
University of New Mexico
W. Allan Hamilton
Affiliation:
University of Aberdeen
Get access

Summary

INTRODUCTION

Besides their challenging and ancient energy metabolism, and applied relevance, much of the interest in sulphate-reducing bacteria arises from their ecophysiological significance in marine environments (Widdel, 1998). In the biologically highly active shelf sediments they contribute to more than 50% of organic carbon remineralization (Jørgensen, 1982), which can only be explained by complete substrate oxidation (Fenchel and Jørgensen, 1977). While this capacity is not present among the frequently isolated and intensively studied Desulfovibrio spp., it could be demonstrated with e.g. the newly isolated Desulfobacter postgatei (Widdel and Pfennig, 1981) and Desulfobacterium autotrophicum (Brysch et al., 1987). The latter employs the C1/CO-dehydrogenase pathway for complete oxidation of acetate to CO2 as well as for CO2-fixation (Schauder et al., 1989). Most of the known sulphate-reducing bacteria can be grouped into the two deltaproteobacterial families Desulfovibrionaceae (Devereux et al., 1990) or Desulfobacteriaceae (Widdel and Bak, 1992). This phylogenetic distinction is to a large extent paralleled by the capacities for incomplete (to acetate) and complete (to CO2) oxidation of organic substrates, respectively.

At present, more than 450 prokaryotic genomes have been completely sequenced and about 1000 further prokaryotic genomes are in progress (http://www.genomesonline.org). While most genome projects primarily reflect biotechnological or biomedical research interests, environmentally relevant microorganisms have been selected for genome sequencing projects only during the last few years. This chapter provides an overview of the technologies involved and of the current status of genomic research with sulphate-reducing prokaryotes.

Type
Chapter
Information
Sulphate-Reducing Bacteria
Environmental and Engineered Systems
, pp. 117 - 140
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alm, E. J., Huang, K. H., Price, M. N.et al. (2005). The MicrobesOnline Web site for comparative genomics. Genome Res, 15, 1015–22CrossRefGoogle ScholarPubMed
Altschul, S. F., Madden, T. L., Schäffer, A. A.et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25, 3389–402CrossRefGoogle ScholarPubMed
Amann, J. (2004). Metabolic regulation and reconstruction of Desulfobacterium autotrophicum. PhD thesis, University of Bremen.
Boucher, Y., Douady, C. J., Papke, R. T.et al. (2003). Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet, 37, 283–328CrossRefGoogle ScholarPubMed
Boucher, Y., Huber, H., L'Haridon, S., Stetter, K. O. and Doolittle, W. F. (2001). Bacterial origin for the isoprenoid biosynthesis enzyme HMG-CoA reductase of the archaeal orders Thermoplasmatales and Archaeoglobales. Mol Biol Evol, 18, 1378–88CrossRefGoogle ScholarPubMed
Brysch, K., Schneider, C., Fuchs, G. and Widdel, F. (1987). Lithoautotrophic growth of sulphate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch Microbiol, 148, 264–74CrossRefGoogle Scholar
Calteau, A., Gouy, M. and Perrière, G. (2005). Horizontal transfer of two operons coding for hydrogenases between bacteria and archaea. J Mol Evol, 60, 557–65CrossRefGoogle ScholarPubMed
Chang, I. S., Groh, J. L., Ramsey, M. M., Ballard, J. D. and Krumholz, L. R. (2004). Differential expression of Desulfovibrio vulgaris genes in response to Cu(II) and Hg(II) toxicity. Appl Environ Microbiol, 70, 1847–51CrossRefGoogle ScholarPubMed
Chhabra, S. R., He, Q., Huang, K. H.et al. (2006). Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough. J Bacteriol, 188, 1817–28CrossRefGoogle ScholarPubMed
Conway, T. and Schoolnik, G. K. (2003). Microarray expression profiling: capturing a genome-wide portrait of the transcriptome. Mol Microbiol, 47, 879–89CrossRefGoogle ScholarPubMed
Coppi, M. V. (2005). The hydrogenases of Geobacter sulfurreducens: a comparative genomic perspective. Microbiology, 151, 1239–54CrossRefGoogle ScholarPubMed
Dear, S. and Staden, R. (1991). A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res, 19, 3907–11CrossRefGoogle ScholarPubMed
Deppenmeier, U., Johann, A., Hartsch, T.et al. (2002). The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol, 4, 453–61Google ScholarPubMed
Devereux, R., He, S.-H., Doyle, C. L.et al. (1990). Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol, 172, 3609–19CrossRefGoogle ScholarPubMed
Ewing, B., Hillier, L. D., Wendl, M. C. and Green, P. (1998). Base-calling of automated sequencer traces using PHRED. I. Accuracy assessment. Genome Res, 8, 175–85CrossRefGoogle ScholarPubMed
Fenchel, T. M. and Jørgensen, B. B. (1977). Detritus food chains of aquatic ecosystems: the role of bacteria. In Alexander, M. (ed.), Advances in Microbial Ecology, vol I. Plenum Press. pp. 1–58.CrossRefGoogle Scholar
Fleischmann, R. D., Adams, M. D., White, O.et al. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269, 496–512CrossRefGoogle ScholarPubMed
Fournier, M., Aubert, C., Dermoun, Z.et al. (2006). Response of the anaerobe Desulfovibrio vulgaris Hildenborough to oxidative conditions: proteome and transcript analysis. Biochimie, 88, 85–94CrossRefGoogle ScholarPubMed
Fournier, M., Zhang, Y., Wildschut, J. D.et al. (2003). Function of oxygen resistance proteins in the anaerobic sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J Bacteriol, 185, 71–9CrossRefGoogle Scholar
Fraser, C. M., Eisen, J. A. and Salzberg, S. L. (2000). Microbial genome sequencing. Nature, 406, 799–803CrossRefGoogle ScholarPubMed
Fraser, C. M. and Fleischmann, R. D. (1997). Strategies for whole microbial genome sequencing and analysis. Electrophoresis, 18, 1207–16CrossRefGoogle ScholarPubMed
Friedrich, M. W. (2002). Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulphate reductase genes among sulphate-reducing microorganisms. J Bacteriol, 184, 278–89CrossRefGoogle ScholarPubMed
Gaasterland, T. and Sensen, C. W. (1996). Fully automated genome analysis that reflects user needs and preferences. A detailed introduction to the MAGPIE system architecture. Biochimie, 78, 302–10CrossRefGoogle ScholarPubMed
Gade, D., Thiermann, J., Markowsky, D. and Rabus, R. (2003). Evaluation of two-dimensional difference gel electrophoresis for protein profiling. Soluble proteins of the marine bacterium Pirellula sp. strain 1. J Mol Microbiol Biotechnol, 5, 240–51CrossRefGoogle ScholarPubMed
Galagan, J. E., Nusbaum, C., Roy, A.et al. (2002). The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res, 12, 532–42CrossRefGoogle ScholarPubMed
Galperin, M. Y. (2006). The molecular biology database collection: 2006 update. Nucleic Acids Res, 34, D3–D5CrossRefGoogle ScholarPubMed
Gene Ontology Consortium. (2004). The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res, 32, D258–D261CrossRef
Grahame, D. A., Gencic, S. and DeMoll, E. (2005). A single operon-encoded form of the acetyl-CoA decarbonylase/synthase multienzyme complex responsible for synthesis and cleavage of acetyl-CoA in Methanosarcina thermophila. Arch Microbiol, 184, 32–40CrossRefGoogle ScholarPubMed
Groh, J. L., Luo, Q., Ballard, J. D. and Krumholz, L. R. (2005). A method adapting microarray technology for signature-tagged mutagenesis of Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 in anaerobic sediment survival experiments. Appl Environ Microbiol, 71, 7064–74CrossRefGoogle ScholarPubMed
Hattori, S., Galushko, A. S., Kamagata, Y. and Schink, B. (2005). Operation of the CO dehydrogenase/acetyl-coenzyme. A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J Bacteriol, 187, 3471–6CrossRefGoogle ScholarPubMed
Haveman, S. A., Brunelle, V., Voordouw, J. K.et al. (2003). Gene expression analysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenborough indicates an important role of alcohol dehydrogenase. J Bacteriol, 185, 4345–53CrossRefGoogle ScholarPubMed
Haveman, S. A., Greene, E. A., Stilwell, C. P., Voordouw, J. K. and Voordouw, G. (2004). Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol, 186, 7944–50CrossRefGoogle ScholarPubMed
Haveman, S. A., Greene, E. A. and Voordouw, G. (2005). Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria. Environ Microbiol, 7, 1461–5CrossRefGoogle ScholarPubMed
He, Q., Huang, K. H., He, Z. et al. (2006). Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough inferred from global transcriptional analysis. Appl Environ Microbiol, in press.CrossRef
Heidelberg, J. F., Seshadri, R., Haveman, S. A.et al. (2004). The genome sequence of the anaerobic, sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nature Biotechnol, 22, 554–9CrossRefGoogle Scholar
Hemme, C. L. and Wall, J. D. (2004). Genomic insights into gene regulation of Desulfovibrio vulgaris Hildenborough. OMICS, 8, 43–55CrossRefGoogle ScholarPubMed
Hufnagel, P. and Rabus, R. (2006). Mass spectrometric identification of proteins in complex post-genomic projects. Soluble proteins of the metabolically versatile, denitrifying “Aromatoleum” sp. strain EbN1. J Mol Microbiol Biotechnol, 11, 53–81CrossRefGoogle ScholarPubMed
Jørgensen, B. B. (1982). Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature, 296, 643–5CrossRefGoogle Scholar
Kaiser, O., Bartels, D., Bekel, T.et al. (2003). Whole genome shotgun sequencing guided by bioinformatics pipelines – an optimized approach for an established technique. J Biotechnol, 106, 121–33CrossRefGoogle ScholarPubMed
Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. and Hattori, M. (2004). The KEGG resource for deciphering the genome. Nucleic Acids Res, 32, D277–D280CrossRefGoogle ScholarPubMed
Klein, M., Friedrich, M., Roger, A. J.et al. (2001). Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulphate-reducing prokaryotes. J Bacteriol, 183, 6028–35CrossRefGoogle Scholar
Klenk, H.-P., Clayton, R. A., Tomb, J.-F.et al. (1997). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature, 390, 364–70CrossRefGoogle ScholarPubMed
Knoblauch, C., Sahm, K. and Jørgensen, B. B. (1999). Psychrophilic sulphate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Inter J Syst Bacteriol, 49, 1631–43CrossRefGoogle Scholar
Kremer, D. R., Nienhuis-Kuiper, H. E. and Hansen, T. A. (1988). Ethanol dissimilation in Desulfovibrio. Arch Microbiol, 150, 552–7CrossRefGoogle Scholar
Kuever, J., Rainey, F. A. and Widdel, F. (2005). Class IV. Deltaproteobacteria class nov. In Brenner, D. J., Krieg, N. R., Staley, J. T. (eds.), Bergey's manual of systematic bacteriology, Vol 2, Part C. (2nd edn.). New York: Springer, p. 922.
Lander, E. S. and Waterman, M. S. (1988). Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics, 2, 231–9CrossRefGoogle ScholarPubMed
Llobet-Brossa, E., Rabus, R., Böttcher, M. E.et al. (2002). Community structure and activity of sulphate-reducing bacteria in an intertidal surface-sediment: a multi-methods approach. Aquat Microb Ecol, 29, 211–26CrossRefGoogle Scholar
Mann, M., Hendrickson, R. C. and Pandey, A. (2001). Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem, 70, 437–73CrossRefGoogle ScholarPubMed
Matias, P. M., Pereira, I. A. C., Soares, C. M. and Carrondo, M. A. (2005). Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog Biophys Mol Biol, 89, 292–329CrossRefGoogle ScholarPubMed
Methé, B. A., Nelson, K. E., Eisen, J. A.et al. (2003). The genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science, 302, 1967–9CrossRefGoogle ScholarPubMed
Metzker, M. L. (2005). Emerging technologies in DNA sequencing. Genome Res, 15, 1767–76CrossRefGoogle ScholarPubMed
Meyer, F., Goesmann, A., McHardy, A. C.et al. (2003). GenDB – an open source genome annotation system for prokaryote genomes. Nucleic Acids Res, 31, 2187–95CrossRefGoogle ScholarPubMed
Mukhopadhyay, A., He, Z., Yen, H.-C. et al. (2006). Salt stress in Desulfovibrio vulgaris Hildenborough: an integrated genomics approach. Proc Natl Acad Sci USA, (in press).CrossRef
Mulder, N. J., Apweiler, R., Attwood, T. K.et al. (2005). InterPro, progress and status in 2005. Nucleic Acids Res, 33, D201–D205CrossRefGoogle ScholarPubMed
Mussmann, M., Richter, M., Lombardot, T., et al. (2005). Clustered genes related to sulphate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer. J Bacteriol, 187, 7126–37CrossRefGoogle ScholarPubMed
Nie, L., Wu, G. and Zhang, W. (2006). Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify sources of variations. Biochem Biophys Res Commun, 339, 603–10CrossRefGoogle ScholarPubMed
Overbeek, R., Begley, T., Butler, R. M.et al. (2005). The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res, 33, 5691–702CrossRefGoogle Scholar
Overbeek, R., Larsen, N., Walunas, T.et al. (2003). The ERGOTM genome analysis and discovery system. Nucleic Acids Res, 31, 164–71CrossRefGoogle ScholarPubMed
Peterson, J. D., Umayam, L. A., Dickinson, T., Hickey, E. K. and White, O. (2001). The Comprehensive Microbial Resource. Nucleic Acids Res, 29, 123–5CrossRefGoogle ScholarPubMed
Pires, R. H., Lourenço, A. I., Morais, F.et al. (2003). A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta, 1605, 67–82CrossRefGoogle ScholarPubMed
Pires, R. H., Venceslau, S. S., Morais, F.et al. (2006). Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex – a membrane-bound redox complex involved in the sulphate respiratory pathway. Biochemistry, 45, 249–62CrossRefGoogle ScholarPubMed
Postgate, J. R. and Campbell, L. L. (1966). Classification of Desulfovibrio species, the nonsporulating sulphate-reducing bacteria. Bacteriol Rev, 30, 732–8Google Scholar
Rabus, R., Brüchert, V., Amann, J. and Könneke, M. (2002). Physiological response to temperature changes of the marine, sulphate-reducing bacterium Desulfobacterium autotrophicum. FEMS Microbiol Ecol, 42, 409–17CrossRefGoogle Scholar
Rabus, R., Hansen, T. A., and Widdel, F. (2000). Dissimilatory sulphate- and sulfur-reducing prokaryotes. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. and Stackebrandt, E. (eds.), The prokaryotes: an evolving electronic resource for the microbiological community. Heidelberg: Springer Science Online (http://www.prokaryotes.com).Google Scholar
Rabus, R., Kube, M., Heider, J.et al. (2005). The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol, 183, 27–36CrossRefGoogle ScholarPubMed
Rabus, R., Ruepp, A., Frickey, T.et al. (2004). The genome of Desulfotalea psychrophila, a sulphate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol, 6, 887–902CrossRefGoogle Scholar
Rendulic, S., Jagtap, P., Rosinus, A.et al. (2004). A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science, 303, 689–92CrossRefGoogle ScholarPubMed
Riley, M. L., Schmidt, T., Wagner, C., Mewes, H.-W. and Frishman, D. (2005). The PEDANT genome database in 2005. Nucleic Acids Res, 33, D308–D310CrossRefGoogle ScholarPubMed
Rodionov, D. A., Dubchak, I., Arkin, A., Alm, E. and Gelfand, M. S. (2004). Reconstruction of regulatory and metabolic pathways in metal-reducing δ-proteobacteria. Genome Biol, 5, R90.CrossRefGoogle ScholarPubMed
Rohlin, L., Trent, J. D., Salmon, K.et al. (2005). Heat shock response of Archaeoglobus fulgidus. J Bacteriol, 187, 6046–57CrossRefGoogle ScholarPubMed
Schauder, R., Preuß, A., Jetten, M. and Fuchs, G. (1989). Oxidative and reductive acetyl-CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase. Arch Microbiol, 151, 84–9CrossRefGoogle Scholar
Schmidt, A., Kellermann, J. and Lottspeich, F. (2005). A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics, 5, 4–15CrossRefGoogle ScholarPubMed
Shen, Y., Buick, R. and Canfield, D. E. (2001). Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 410, 77–81CrossRefGoogle ScholarPubMed
Stetter, K. O. (1988). Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol, 10, 172–3CrossRefGoogle Scholar
Steuber, J. (2001). Na+ translocation by bacterial NADH:quinone oxidoreductases: an extension to the complex-I family of primary redox pumps. Biochim Biophys Acta, 1505, 45–56CrossRefGoogle ScholarPubMed
Tech, M. and Merkl, R. (2003). YACOP: enhanced gene prediction obtained by a combination of existing methods. In Silico Biol, 3, 441–51Google ScholarPubMed
Tech, M., Pfeifer, N., Morgenstern, B. and Meinicke, P. (2005). TICO: a tool for improving predictions of prokaryotic translation initiation sites. Bioinformatics, 21, 3568–9CrossRefGoogle ScholarPubMed
Berg, W. A. M., Stokkermans, J. P. W. G. and Dongen, W. M. A. M. (1993). The operon for the Fe-hydrogenase in Desulfovibrio vulgaris (Hildenborough): Mapping of the transcript and regulation of expression. FEMS Microbiol Lett, 110, 85–90CrossRefGoogle ScholarPubMed
Vignais, P. M., Billoud, B. and Meyer, J. (2001). Classification and phylogeny of hydrogenases. FEMS Micobiol Rev, 25, 455–501CrossRefGoogle ScholarPubMed
Voordouw, G. and Wall, J. D. (1993). Genetics and molecular biology of sulphate-reducing bacteria. In Sebald, M. (ed.), Genetics and Molecular Biology of Anaerobic Bacteria. New York: Springer-Verlag, pp. 456–73.CrossRefGoogle Scholar
Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. and Stahl, D. A. (1998). Phylogeny of dissimilatory sulfite reductases supports an early origin of sulphate respiration. J Bacteriol, 180, 2975–82Google Scholar
Washburn, M. P., Wolters, D. and Yates, J. R. 3rd (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol, 19, 242–7CrossRefGoogle ScholarPubMed
Widdel, F. (1988). Microbiology and ecology of sulphate- and sulfur-reducing bacteria. In Zehnder, A. J. B. (ed.), Biology of Anaerobic Microorganisms. New York: John Wiley & Sons, pp. 469–585.Google Scholar
Widdel, F., and Bak, F. (1992). Gram-negative mesophilic sulphate-reducing bacteria. In Balows, A., Trüper, H. G., Dworkin, M., Harder, W. and Schleifer, K.-H. (eds.), The Prokaryotes. Vol IV. (2nd edn.). New York: Springer-Verlag, pp. 3352–78.CrossRefGoogle Scholar
Widdel, F. and Pfennig, N. (1981). Studies on dissimilatory sulphate-reducing bacteria that decompose fatty acids. I. Isolation of new sulphate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol, 129, 395–400CrossRefGoogle Scholar
Wu, G., Nie, L. and Zhang, W. (2006). Relation between mRNA expression and sequence information in Desulfovibrio vulgaris: combinatorial contributions of upstream regulatory motifs and coding sequence features to variations in mRNA abundance. Biochem Biophys Res Commun, 344, 114–21CrossRefGoogle ScholarPubMed
Yan, B., Methé, B. A., Lovley, D. R. and Krushkal, J. (2004). Computational prediction of conserved operons and phylogenetic footprinting of transcription regulatory elements in the metal-reducing bacterial family Geobacteraceae. J Theoret Biol, 230, 133–44CrossRefGoogle ScholarPubMed
Zhang, W., Culley, D. E., Wu, G. and Brockman, F. J. (2006). Two-component signal transduction systems of Desulfovibrio vulgaris: structural and phylogenetic analysis and deduction of putative cognate pairs. J Mol Evol, 62, 473–87CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×