Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-16T17:05:38.593Z Has data issue: false hasContentIssue false

5 - Novel optical devices using negative refraction of light by periodically corrugated surfaces

Published online by Cambridge University Press:  01 June 2011

Wentao Trent Lu
Affiliation:
Northeastern University, Boston, MA 02115, USA
Srinivas Sridhar
Affiliation:
Northeastern University, Boston, MA 02115, USA
Alexei A. Maradudin
Affiliation:
University of California, Irvine
Get access

Summary

Introduction

Negative refraction (NR) has been theoretically predicted [1, 2] and experimentally realized [3–7] in three types of materials. One is a material with a simultaneously negative permittivity and permeability [8–12], leading to a negative refractive index for the medium. The second consists of a photonic crystal (PhC) [13–21], which is a periodic arrangement of scatterers in which the group and phase velocities can be in different directions leading to NR. The third is the indefinite medium [22–28], whose permittivity and/or permeability tensor is an indefinite matrix. In all cases, the bulk properties of the medium, which is inherently inhomogeneous at a subwavelength scale, can be described as having an effective negative refractive index. The active research in these artificial materials has opened doors to a plethora of unusual electromagnetic properties and new applications such as a perfect lens [29], subwavelength imaging [30], cloaking [31], slow light, and optical data storage [32, 33], that cannot be obtained with naturally occurring materials. The holy grail of manufacturing these artificial photonic metamaterial structures is to manipulate light at the nanoscale level for optical information processing and high-resolution imaging.

In order to achieve NR, engineering the bulk electromagnetic properties is normally needed such that the group velocity and phase velocity be at an obtuse angle or even anti-parallel to each other. However, refraction is a surface phenomenon. A bulk-engineered material will have certain inherent surface properties. Negative refraction can be realized in positive index materials by special orientation or by engineering the interface properties.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Veselago, V., “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509–514 (1968).CrossRefGoogle Scholar
[2] Veselago, V. and Narimanov, E. E., “The left hand of brightness: past, present and future of negative index materials,” Nature Mater. 5, 759–762 (2006).CrossRefGoogle ScholarPubMed
[3] Shelby, R. A., Smith, D. R., and Schultz, S., “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).CrossRefGoogle ScholarPubMed
[4] Parazzoli, C. G., Greegor, R. B., Li, K., Koltenbah, B. E. C., and Tanielian, M., “Experimental verification and simulation of negative index of refraction using Snell's law,” Phys. Rev. Lett. 90, 107401(1-4) (2003).CrossRefGoogle ScholarPubMed
[5] Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., and Soukoulis, C. M., “Negative refraction by photonic crystals,” Nature 423, 604–605 (2003).CrossRefGoogle ScholarPubMed
[6] Parimi, P. V., Lu, W. T., Vodo, P., Sokoloff, J., Derov, J. S., and Sridhar, S., “Negative refraction and left-handed electromagnetism in microwave photonic crystals,” Phys. Rev. Lett. 92, 127401(1-4) (2004).CrossRefGoogle ScholarPubMed
[7] Parimi, P. V., Lu, W. T., Vodo, P., and Sridhar, S., “Imaging by flat lens using negative refraction,” Nature 426, 404 (2003).CrossRefGoogle ScholarPubMed
[8] Pendry, J. B., Holden, A. J., Stewart, W. J., and Youngs, I., “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).CrossRefGoogle ScholarPubMed
[9] Pendry, J. B., Holden, A. J., Robbins, D. J., and Stewart, W. J., “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).CrossRefGoogle Scholar
[10] Smith, D. R., Pendry, J. B., and Wiltshire, M. C. K., “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).CrossRefGoogle ScholarPubMed
[11] Shalaev, V. M., “Optical negative-index metamaterials,” Nature Photonics 1, 41–48 (2007).CrossRefGoogle Scholar
[12] Casse, B. D. F., Moser, H. O., Lee, J. W., Bahou, M., Inglis, S., and Jian, L. K., “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106(1-3) (2007).CrossRefGoogle Scholar
[13] Yablonovitch, E., “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).CrossRefGoogle ScholarPubMed
[14] Yablonovitch, E., “Photonic band-gap structures,” J. Opt. Soc. Am. B 10, 283–296 (1993).CrossRefGoogle Scholar
[15] John, S., “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).CrossRefGoogle ScholarPubMed
[16] Joannopoulos, J. D., Meade, R., and Winn, J. N., Photonic Crystals: Modeling the Flow of Light (Princeton, NJ: Princeton University Press, 1995).Google Scholar
[17] Notomi, M., “Theory of light propagation in strongly modulated photonic crystals: refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).CrossRefGoogle Scholar
[18] Luo, C., Johnson, S. G., Joannopoulos, J. D., and Pendry, J. B., “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(1-4) (2002).CrossRefGoogle Scholar
[19] Gralak, B., Enoch, S., and Tayeb, G., “Anomalous refractive properties of photonic crystals,” J. Opt. Soc. Am. A 17, 1012–1020 (2000).CrossRefGoogle ScholarPubMed
[20] Berrier, A., Mulot, M., Swillo, M., Qiu, M., Thylén, L., Talneau, A., and Anand, S., “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902(1-4) (2004).CrossRefGoogle Scholar
[21] Casse, B. D. F., Lu, W. T., Banyal, R. K., Huang, Y. J., Selvarasah, S., Dokmeci, M. R., Perry, C. H., and Sridhar, S., “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996 (2009).CrossRefGoogle ScholarPubMed
[22] Smith, D. R. and Schurig, D., “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405(1-4) (2003).CrossRefGoogle ScholarPubMed
[23] Smith, D. R., Kolinko, P., and Schurig, D., “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032–1043 (2004).CrossRefGoogle Scholar
[24] Hoffman, A. J., Alekseyev, L., Howard, S. S.et al., “Negative refraction in semiconductor metamaterials,” Nature Mater. 6, 946–950 (2007).CrossRefGoogle ScholarPubMed
[25] Lu, W. T. and Sridhar, S., “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77, 233101(1-4) (2008).CrossRefGoogle Scholar
[26] Menon, L., Lu, W. T., Friedman, A. L., Bennett, S., Heiman, D., and Sridhar, S., “Negative index metamaterials based on metal-dielectric nanocomposites for imaging applications,” Appl. Phys. Lett. 93, 123117(1-3) (2008).CrossRefGoogle Scholar
[27] Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D. A., Bartal, G., and Zhang, X., “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).CrossRefGoogle ScholarPubMed
[28] Casse, B. D. F., Lu, W. T., Huang, Y. J., Gultepe, E., Menon, L., and Sridhar, S., “Superresolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(1-3) (2010).CrossRefGoogle Scholar
[29] Pendry, J. B., “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).CrossRefGoogle ScholarPubMed
[30] Luo, C., Johnson, S. G., Joannopoulos, J. D., and Pendry, J. B., “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115(1-15) (2003).CrossRefGoogle Scholar
[31] Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., and Smith, D. R., “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).CrossRefGoogle ScholarPubMed
[32] Tsakmakidis, K. L., Boardman, A. D., and Hess, O., “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).CrossRefGoogle ScholarPubMed
[33] Lu, W. T., Savo, S., Casse, B. D. F., and Sridhar, S., “Slow microwave waveguide made of negative permeability metamaterials,” Microwave Opt. Tech. Lett. 51, 2705 (2009).CrossRefGoogle Scholar
[34] Zhang, Y., Fluegel, B., and Mascarenhas, A., “Total negative refraction in real crystals for ballistic electrons and light,” Phys. Rev. Lett. 91, 157404(1-4) (2003).CrossRefGoogle ScholarPubMed
[35] Lu, W. T., Huang, Y. J., Vodo, P., Banyal, R. K., Perry, C. H., and Sridhar, S., “A new mechanism for negative refraction and focusing using selective diffraction from surface corrugation,” Opt. Express 15, 9166–9175 (2007).CrossRefGoogle ScholarPubMed
[36] Huang, Y. J., Lu, W. T., and Sridhar, S., “Alternative approach to all-angle negative refraction in two-dimensional photonic crystals,” Phys. Rev. A 76, 013824(1-5) (2007).CrossRefGoogle Scholar
[37] Casse, B. D. F., Banyal, R. K., Lu, W. T., Huang, Y. J., Selvarasah, S., Dokmeci, M., and Sridhar, S., “Nanoengineering of a negative-index binary-staircase lens for the optics regime,” Appl. Phys. Lett. 92, 243122(1-3) (2008).CrossRefGoogle Scholar
[38] Feng, Z., Zhang, X., Wang, Y., Li, Z.-Y., Cheng, B., and Zhang, D.-Z., “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94, 247402(1-4) (2005).CrossRefGoogle Scholar
[39] Lezec, H. J., Dionne, J. A., and Atwater, H. A., “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).CrossRefGoogle ScholarPubMed
[40] Neviere, M. and Popov, E., Light Propagation in Periodic Media: Differential Theory and Design (New York: Marcel Dekker, Inc., 2003), p. 3.Google Scholar
[41] Enoch, S., Tayeb, G., and Gralak, B., “The richness of the dispersion relation of electromagnetic bandgap materials,” IEEE Trans. Antennas Propag. 51, 2659–2666 (2003).CrossRefGoogle Scholar
[42] Parazzoli, C. G., Greegor, R. B., Nielsen, J. A., Thompson, M. A., Li, K., Vetter, A. M., Tanielian, M. H., and Vier, D. C., “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84, 3232(1-3) (2004).CrossRefGoogle Scholar
[43] Vodo, P., Parimi, P. V., Lu, W. T., and Sridhar, S., “Focusing by plano-concave lens using negative refraction,” Appl. Phys. Lett. 86, 201108(1-3) (2005).CrossRefGoogle Scholar
[44] Vodo, P., Lu, W. T., Huang, Y., and Sridhar, S., “Negative refraction and plano-concave lens focusing in one-dimensional photonic crystals,” Appl. Phys. Lett. 89, 084104(1-3) (2006).CrossRefGoogle Scholar
[45] Casse, B. D. F., Lu, W. T., Huang, Y. J., and Sridhar, S., “Nano-optical microlens with ultrashort focal length using negative refraction,” Appl. Phys. Lett. 93, 053111(1-3) (2008).CrossRefGoogle Scholar
[46] Taflove, A. and Hagness, S. C., Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn (Norwood, MA: Artech House Publishers, 2005).Google Scholar
[47] Alda, J., Rico-García, J. M., López-Alonso, J. M., Lail, B., and Boreman, G., “Design of Fresnel lenses and binary-staircase kinoforms of low value of the aperture number,” Opt. Commun. 260, 454–461 (2005).CrossRefGoogle Scholar
[48] Fink, Y., Winn, J. N., Fan, S., Chen, C., Michel, J., Joannopoulos, J. D., and Thomas, E. L., “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).CrossRefGoogle ScholarPubMed
[49] Lu, W. T. and Sridhar, S., “Flat lens without optical axis: theory of imaging,” Opt. Express 13, 10673–10680 (2005).CrossRefGoogle ScholarPubMed
[50] Zhang, X., “Absolute negative refraction and imaging of unpolarized electromagnetic waves by two-dimensional photonic crystals,” Phys. Rev. B 70, 205102(1-6) (2004).CrossRefGoogle Scholar
[51] Zhang, X., “Subwavelength far-field resolution in a square two-dimensional photonic crystalPhys. Rev. E 71, 037601(1-4) (2005).CrossRefGoogle Scholar
[52] Gajić, R., Meisels, R., Kuchar, F., and Hingerl, K., “All-angle left-handed negative refraction in Kagomé and honeycomb lattice photonic crystals,” Phys. Rev. B 73, 165310(1-5) (2006).CrossRefGoogle Scholar
[53] Li, Z.-Y. and Lin, L.-L., “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110(1-7) (2003).CrossRefGoogle Scholar
[54] Loewen, E. G. and Popov, E., Diffraction Gratings and Applications (New York: Marcel Dekker, Inc., 1997).Google Scholar
[55] Noponen, E., Electromagnetic Theory of Diffractive Optics. Ph.D. thesis, Helsinki University of Technology, Espoo, Finland, 1994.
[56] Fredkin, D. R. and Ron, A., “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753(1-3) (2002).CrossRefGoogle Scholar
[57] Alú, A. and Engheta, N., “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51, 2558–2571 (2003).CrossRefGoogle Scholar
[58] Lin, S. Y., Fleming, J. G., Hetherington, D. L.et al., “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).CrossRefGoogle Scholar
[59] Ibanescu, M., Fink, Y., Fan, S., Thomas, E. L., and Joannopoulos, J. D., “An all-dielectric coaxial waveguide,” Science 289, 415–419 (2000).CrossRefGoogle Scholar
[60] Qi, M., Lidorikis, E., Rakich, P. T., Johnson, S. G., Joannopoulos, J. D., Ippen, E. P., and Smith, H. I., “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).CrossRefGoogle ScholarPubMed
[61] Decoopman, T., Tayeb, G., Enoch, S., Maystre, D., and Gralak, B., “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905(1-4) (2006).CrossRefGoogle ScholarPubMed
[62] Smith, D. R., Rye, P. M., Mock, J. J., Vier, D. C., and Starr, A. F., “Enhanced diffraction from a grating on the surface of a negative-index metamaterial,” Phys. Rev. Lett. 93, 137405(1-4) (2004).CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×