Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-18T13:40:31.992Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  18 September 2020

Tomasz R. Bielecki
Affiliation:
Illinois Institute of Technology
Jacek Jakubowski
Affiliation:
Uniwersytet Warszawski, Poland
Mariusz Niewȩgłowski
Affiliation:
Politechnika Warszawska, Poland
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksamit, Anna, and Jeanblanc, Monique. 2017. Enlargements of Filtrations with Finance in View. Springer.Google Scholar
Amendinger, Jürgen. 2000. Martingale representation theorems for initially enlarged filtrations. Stochastic Process. Appl., 89(1), 101116.Google Scholar
Asimit, Vali, and Booneny, Tim J. 2017. Insurance with multiple insurers: A game-theoretic approach. European J. Operational Res. Available online 20 December 2017.Google Scholar
Asmussen, Søren. 2003. Applied Probability and Queues, Second Edition. Academic Press.Google Scholar
Asmussen, Søren, and Albrecher, Hansjörg. 2010. Ruin Probabilities, Second Edition. Advanced Series on Statistical Science and Applied Probability, vol. 14. World Scientific Publishing Co. Pte. Ltd.Google Scholar
Assefa, Samson, Bielecki, Tomasz R., Cousin, Areski, Crépey, Stéphane, and Jeanblanc, Monique. 2011. Credit Risk Frontiers: Subprime Crisis, Pricing and Hedging, CVA, MBS, Ratings and Liquidity. Wiley, pp. 397436.Google Scholar
Avram, Florin, Palmowski, Zbigniew, and Pistorius, Martijn. 2008. A two-dimensional ruin problem on the positive quadrant. Insurance Math. Econom., 42(1), 227234.Google Scholar
Bacry, E., Delattre, S., Hoffmann, M., and Muzy, J. 2013a. Modelling microstructure noise with mutually exciting point processes. Quant. Finance, 13(1), 6577.Google Scholar
Bacry, E., Delattre, S., Hoffmann, C., and Muzy, J. 2013b. Some limit theorems for Hawkes processes and application to financial statistics. Stochastic Proc. Applic., 123(7), 24752499.Google Scholar
Bacry, Emmanuel, and Muzy, Jean-François. 2014. Hawkes model for price and trades high-frequency dynamics. Quant. Finance, 14(7), 11471166.Google Scholar
Ball, Frank, and Yeo, Geoffrey F. 1993. Lumpability and marginalisability for continuous-time Markov chains. J. Appl. Probab., 30(3), 518528.Google Scholar
Ball, Frank, Milne, Robin K., and Yeo, Geoffrey F. 1994. Continuous-time Markov chains in a random environment, with applications to ion channel modelling. Adv. Appl. Probab., 26(4), 919946.Google Scholar
Biagini, Francesca, Groll, Andreas, and Widenmann, Jan. 2013. Intensity-based premium evaluation for unemployment insurance products. Insurance Math. Econom., 53(1), 302316.Google Scholar
Bielecki, Tomasz R., and Rutkowski, Marek. 2004. Credit Risk: Modelling, Valuation and Hedging. Springer.Google Scholar
Bielecki, Tomasz R., Vidozzi, Andrea, and Vidozzi, Luca. 2008a. Markov copulae approach to pricing and hedging of credit index derivatives and ratings triggered step-up bonds. J. Credit Risk, 4(1), 4776.Google Scholar
Bielecki, Tomasz R., Jakubowski, Jacek, Vidozzi, Andrea, and Vidozzi, Luca. 2008b. Study of dependence for some stochastic processes. Stoch. Anal. Appl., 26(4), 903924.Google Scholar
Bielecki, Tomasz R., Crépey, Stephane, Jeanblanc, Monique, and Rutkowski, Marek. 2008c. Valuation of basket credit derivatives in the credit migrations environment. In Birge, J. and Linetsky, V. (eds) Handbooks in Operations Research and Management Science. Financial Engineering, vol. 15. pp. 471510.Google Scholar
Bielecki, Tomasz R., Jakubowski, Jacek, and Nieweglowski, Mariusz. 2010. Dynamic modeling of dependence in finance via copulae between stochastic processes. Pages 33–76 of Copula Theory and Its Applications. Lecture Notes in Statistical Processes, vol. 198. Springer.Google Scholar
Bielecki, Tomasz R., Cousin, Areski, Crépey, Stéphane, and Herbertsson, Alexander. 2014a. A bottom-up dynamic model of portfolio credit risk with stochastic intensities and random recoveries. Commun. Statistis – Theory and Methods, 43(7), 13621389.CrossRefGoogle Scholar
Bielecki, Tomasz R., Cousin, Areski, Crépey, Stéphane, and Herbertsson, Alexander. 2014b. Dynamic hedging of portfolio credit risk in a Markov copula model. J. Optim. Theory Appl., 161(1), 90102.Google Scholar
Bielecki, Tomasz R., Jakubowski, Jacek, and Nieweglowski, Mariusz. 2015. Conditional Markov chains – construction and properties. Pages 33–42 of Banach Center Publications 105 (2015), Stochastic Analysis. Special volume in honour of Jerzy Zabczyk. Polish Academy of Sciences, Institute of Mathematics, Warsaw.Google Scholar
Bielecki, Tomasz R., Jakubowski, Jacek, and Nieweglowski, Mariusz. 2017a. Conditional Markov chains: properties, construction and structured dependence. Stochastic Process. Appl., 127(4), 11251170.Google Scholar
Bielecki, Tomasz R., Jakubowski, Jacek, and Nieweglowski, Mariusz. 2017b. A note on independence copula for conditional Markov chains. Pages 303–321 of Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science. Fields Inst. Commun., vol. 79. Springer.Google Scholar
Bielecki, Tomasz R., Cialenco, Igor, and Feng, Shibi. 2018a. A dynamic model of central counterparty risk. Int. J. Theore. Appl. Finance, 21(8), 1850050 (32 pp.).Google Scholar
Bielecki, Tomasz R., Jakubowski, Jacek, Jeanblanc, Monique, and Nieweglowski, Mariusz. 2018b. Semimartingales and shrinkage of filtration. To appear.Google Scholar
Blanes, S., Casas, F., Oteo, J. A., and Ros, J. 2009. The Magnus expansion and some of its applications. Phys. Rep., 470(5-6), 151238.Google Scholar
Blumenthal, R. M., and Getoor, R. K. 1968. Markov Processes and Potential Theory. Pure and Applied Mathematics, vol. 29. Academic Press.Google Scholar
Böttcher, Björn, Schilling, René, and Wang, Jian. 2013. Lévy Matters, Volume III. Lecture Notes in Mathematics, vol. 2099. Springer.Google Scholar
Brémaud, P. 1975. An extension of Watanabe’s theorem of characterization of Poisson processes over the positive real half line. J. Appl. Probab., 12, 396399.CrossRefGoogle Scholar
Brémaud, Pierre. 1981. Point Processes and Queues. Springer-Verlag. Martingale dynamics, Springer Series in Statistics.Google Scholar
Brémaud, Pierre, and Massoulié, Laurent. 1996. Stability of nonlinear Hawkes processes. Ann. Probab., 24(3), 15631588.Google Scholar
Burke, C. J., and Rosenblatt, M. 1958. A Markovian function of a Markov chain. Ann. Math. Statist., 29, 11121122.Google Scholar
Carstensen, Lisbeth. 2010. Hawkes processes and combinatorial transcriptional regulation. Ph.D. thesis, University of Copenhagen.Google Scholar
Çınlar, Erhan. 2011. Probability and Stochastics. Graduate Texts in Mathematics, vol. 261. Springer.Google Scholar
Chang, Yu-Sin. 2017. Markov chain structures with applications to systemic risk. Ph.D. thesis, Illinois Iinstitute of Technology.Google Scholar
Clark, N.J., and Dixon, P.M. 2017. Modeling and estimation for self-exciting spatio-temporal models of terrorist activity. https://arxiv.org/pdf/1703.08429.pdf.Google Scholar
Courrège, Philippe. 1965–1966. Sur la forme intégro-différentielle des opérateurs de C0 danc C satisfaisant au principe du maximum. Proc. Séminaire Brelot–Choquet–Deny. Théorie du potentiel, 10(1), 138.Google Scholar
Crépey, S., Bielecki, T. R., and Brigo, D. 2014. Counterparty Risk and Funding: A Tale of Two Puzzles. CRC Press.Google Scholar
Duffie, D., Filipović, D., and Schachermayer, W. 2003. Affine processes and applications in finance. Ann. Appl. Probab., 13(3), 9841053.Google Scholar
Dynkin, E. B. 1965. Markov processes, Vols. I, II. Translated with the authorization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra, and G. Majone. Academic Press.Google Scholar
Embrechts, Paul, Liniger, Thomas, and Lin, Lu. 2011. Multivariate Hawkes processes: an application to financial data. J. Appl. Probab., 48 A (New frontiers in applied probability: a Festschrift for Søren Asmussen), 367378.Google Scholar
Ethier, Stewart N., and Kurtz, Thomas G. 1986. Markov Processes. Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons.Google Scholar
Föllmer, Hans, and Protter, Philip. 2011. Local martingales and filtration shrinkage. ESAIM Probab. Stat., 15, S25S38 (supplement in honour of Marc Yor).Google Scholar
Gikhman, Iosif I., and Skorokhod, Anatoli V. 2004. The Theory of Stochastic Processes. Volume II. Classics in Mathematics. Springer-Verlag. Translated from the Russian by S. Kotz, reprint of the 1975 edition.Google Scholar
Granger, C.W.J. 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424438.Google Scholar
Hansen, N. R., Reynaud-Bouret, P., and Rivoirard, V. 2015. Lasso and probabilistic inequalities for multivariate point processes. Bernoulli, 21, 83143.Google Scholar
Hawkes, Alan G. 1971a. Point spectra of some mutually exciting point processes. J. Royal Statist. Soc., Series B, 33(3), 438443.Google Scholar
Hawkes, Alan G. 1971b. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58(1), 8390.Google Scholar
He, Sheng-Wu, and Wang, Jia-Gang. 1984. Two results on jump processes. Pages 256–267 of Séminaire de Probabilités XVIII 1982/83. Springer.Google Scholar
He, Sheng Wu, Wang, Jia Gang, and Yan, Jia An. 1992. Semimartingale Theory and Stochastic Calculus. Kexue Chubanshe (Science Press).Google Scholar
Hoh, Walter. 1998. Pseudo differential operators generating Markov processes. Der Fakultat fur Mathematik der Universitat Bielefeld als Habilitationsschrift.Google Scholar
Hoyle, E., and Mengütürk, L. 2013. Archimedean survival processes. J. Multivariate Anal., 115, 115.Google Scholar
Hoyle, E., Hughston, L., and Macrina, A. 2011. Lévy random bridges and the modelling of financial information. Stochastic Process. Appl., 121(4), 856884.Google Scholar
Itô, Kiyosi, and McKean, Henry P. Jr. 1974. Diffusion Processes and Their Sample Paths. Springer. Second printing, corrected.Google Scholar
Iyengar, Satish. 2001. The analysis of multiple neural spike trains. Pages 507–524 of Advances in Methodological and Applied Aspects of Probability and Statistics, N. Balakrishnan (ed.). Taylor and Francis.Google Scholar
Jacob, N. 1998. Characteristic functions and symbols in the theory of Feller processes. Potential Anal., 8(1), 6168.Google Scholar
Jacob, N. 2001. Pseudo Differential Operators and Markov Processes. Volume I. Imperial College Press.Google Scholar
Jacob, N. 2002. Pseudo Differential Operators & Markov Processes. Volume II. Imperial College Press.Google Scholar
Jacob, N. 2005. Pseudo Differential Operators and Markov Processes. Volume III. Imperial College Press.Google Scholar
Jacob, Niels, and Schilling, René L. 2001. Lévy-type processes and pseudodifferential operators. Pages 139–168 of Lévy Processes. Birkhäuser Boston.Google Scholar
Jacod, Jean. 1974/75. Multivariate point processes: predictable projection, Radon-Nikodým derivatives, representation of martingales. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 31, 235253.Google Scholar
Jacod, Jean, and Shiryaev, Albert N. 2003. Limit Theorems for Stochastic Processes, Second Editon. Springer.Google Scholar
Jakubowski, Jacek, and Niewęgłowski, Mariusz. 2008. Pricing bonds and CDS in the model with rating migration induced by a Cox process. Pages 159–182 of Stettner, Łukasz (ed.), Advances in Mathematics of Finance. Banach Center Publications.Google Scholar
Jakubowski, Jacek, and Niewęgłowski, Mariusz. 2010. A class of F-doubly stochastic Markov chains. Electron. J. Probab., 15(56), 17431771.Google Scholar
Jakubowski, Jacek, and Pytel, Adam. 2016. The Markov consistency of Archimedean survival processes. J. Appl. Probab., 53(02), 392409.Google Scholar
Jeanblanc, Monique, Yor, Marc, and Chesney, Marc. 2009. Mathematical Methods for Financial Markets. Springer.Google Scholar
Kallenberg, Olav. 2002. Foundations of Modern Probability, Second Edition. Springer.Google Scholar
Kallsen, Jan, and Tankov, Peter. 2006. Characterization of dependence of multidimensional Lévy processes using Lévy copulas. J. Multivariate Anal., 97(7), 15511572.Google Scholar
Kurtz, Thomas G. 1998. Martingale problems for conditional distributions of Markov processes. Electron. J. Probab., 3, 129.Google Scholar
Last, Günter, and Brandt, Andreas. 1995. Marked Point Processes on the Real Line. Springer.Google Scholar
Liniger, Thomas Josef. 2009. Multivariate Hawkes processes. Ph.D. thesis, ETH Zurich.Google Scholar
Massoulié, Laurent. 1998. Stability results for a general class of interacting point processes dynamics, and applications. Stochastic Process. Appl., 75(1), 130.Google Scholar
Michalik, Zofia. 2015. Markov chain and Poisson copulae and their applications in finance. M.Phil. thesis, University of Warsaw. In Polish.Google Scholar
Mohler, G. O., Short, M. B., Brantingham, P. J., Schoenberg, F. P., and Tita, G. E. 2011. Self-exciting point process modeling of crime. J. Amer. Statist. Assoc., 106(493), 100108.Google Scholar
Nelsen, Roger B. 2006. An Introduction to Copulas, Second Edition. Springer.Google Scholar
Oakes, David. 1975. The Markovian self-exciting process. J. Appl. Probab., 12, 6977.Google Scholar
Ogata, Y. 1998. Space–time point–process models for earthquake occurrences. Ann. Inst. Math. Statist., 50, 379402.Google Scholar
Ogata, Y. 1999. Seismicity analysis through point-process modeling: a review. Pure Appl. Geophys., 155, 471507.Google Scholar
Pazy, A. 1983. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer.Google Scholar
Peszat, S., and Zabczyk, J. 2007. Stochastic Partial Differential Equations with Lévy Noise. Encyclopedia of Mathematics and its Applications, vol. 113. Cambridge University Press.Google Scholar
Rao, Murali. 1972. On modification theorems. Trans. Amer. Math. Soc., 167, 443450.Google Scholar
Reynaud-Bouret, Patricia, and Schbath, Sophie. 2010. Adaptive estimation for Hawkes processes; application to genome analysis. Ann. Statist., 38(5), 27812822.Google Scholar
Reynaud-Bouret, Patricia, Rivoirard, Vincent, and Tuleau-Malot, Christine. 2013. Inference of functional connectivity in neurosciences via Hawkes processes. Pages 317–320 of Proc Global Conf. on Signal and Information Processing (GlobalSIP), 2013. IEEE.Google Scholar
Reynaud-Bouret, Patricia, Rivoirard, Vincent, Grammont, Franck, and Tuleau-Malot, Christine. 2014. Goodness-of-fit tests and nonparametric adaptive estimation for spike train analysis. J. Math. Neurosci., 4(1), 3.Google Scholar
Richmond, Douglas R. 1995. Issues and problems in “other insurance,” multiple insurance, and self-insurance. Pepperdine Law Rev., 22(4), 13731465.Google Scholar
Rogers, L.C.G., and Pitman, J.W. 1981. Markov functions. Ann. Probab., 9(4), 573582.CrossRefGoogle Scholar
Rogers, L.C.G., and Williams, David. 2000. Diffusions, Markov Processes, and Martingales. Volume 2. Cambridge Mathematical Library. Cambridge University Press.Google Scholar
Rüschendorf, Ludger, Schnurr, Alexander, and Wolf, Viktor. 2016. Comparison of time-inhomogeneous Markov processes. Adv. Appl. Probab., 48(4), 10151044.Google Scholar
Scarsini, M. 1989. Copulae of probability measures on product spaces. J. Multivariate Anal., 31, 201219.Google Scholar
Schilling, René L. 1998. Growth and Hölder conditions for the sample paths of Feller processes. Probab. Theory Rel. Fields, 112(4), 565611.Google Scholar
Schnurr, J.A. 2009. The symbol of a Markov semimartingale. Ph.D. thesis, Technischen Universität, Dresden.Google Scholar
Sklar, A. 1959. Fonctions de rèpartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris, 8, 229231.Google Scholar
Stricker, C. 1977. Quasimartingales, martingales locales, et filtrations naturelles. Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 39, 5563.Google Scholar
Stroock, Daniel W. 1975. Diffusion processes associated with Lévy generators. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 32(3), 209244.Google Scholar
Tankov, Peter. 2003. Dependence structure of spectrally positive multidimensional Lévy processes. Technical report.Google Scholar
Vacarescu, A. 2011. Filtering and parameter estimation for partially observed generalized Hawkes processes. Ph.D. thesis, Stanford University.Google Scholar
van Abdel-Hameed, M. 1987. Inspection and maintenance policies of devices subject to deterioration. Adv. Appl. Probab., 19(4), 917931.Google Scholar
van Casteren, Jan A. 2011. Markov Processes, Feller Semigroups and Evolution Equations. Series on Concrete and Applicable Mathematics, vol. 12. World Scientific.Google Scholar
van Noortwijk, J. 2007. A survey of the application of gamma processes in maintenance. Reliability Eng. Safety Syst., 94, 221.Google Scholar
Watanabe, Shinzo. 1964. On discontinuous additive functionals and Lévy measures of a Markov process. Japan. J. Math., 34, 5370.Google Scholar
Wentzell, A. D. 1981. A Course in the Theory of Stochastic Processes. McGraw-Hill. Translated from the Russian by S. Chomet, with a foreword by K. L. Chung.Google Scholar
Zhu, L. 2013. Nonlinear Hawkes processes. Ph.D. thesis, New York University.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×