Published online by Cambridge University Press: 25 February 2010
STRUCTURAL PROOF THEORY
The idea of mathematical proof is very old, even if precise principles of proof have been laid down during only the past hundred years or so. Proof theory was first based on axiomatic systems with just one or two rules of inference. Such systems can be useful as formal representations of what is provable, but the actual finding of proofs in axiomatic systems is next to impossible. A proof begins with instances of the axioms, but there is no systematic way of finding out what these instances should be. Axiomatic proof theory was initiated by David Hilbert, whose aim was to use it in the study of the consistency, mutual independence, and completeness of axiomatic systems of mathematics.
Structural proof theory studies the general structure and properties of mathematical proofs. It was discovered by Gerhard Gentzen (1909–1945) in the first years of the 1930s and presented in his doctoral thesis Untersuchungen iiber das logische Schliessen in 1933. In his thesis, Gentzen gives the two main formulations of systems of logical rules, natural deduction and sequent calculus. The first aims at a close correspondence with the way theorems are proved in practice; the latter was the formulation through which Gentzen found his main result, often referred to as Gentzen's “Hauptsatz.” It says that proofs can be transformed into a certain “cut-free” form, and from this form general conclusions about proofs can be made, such as the consistency of the system of rules.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.