Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T04:33:03.787Z Has data issue: false hasContentIssue false

3 - Stability of structural nanocrystalline materials – grain growth

Published online by Cambridge University Press:  04 December 2009

Carl C. Koch
Affiliation:
North Carolina State University
Ilya A. Ovid'ko
Affiliation:
Russian Academy of Sciences, Moscow
Sudipta Seal
Affiliation:
University of Central Florida
Stan Veprek
Affiliation:
Technische Universität München
Get access

Summary

Introduction

Knowledge of the thermal stability of nanocrystalline materials is important for both technological and scientific reasons. From a technological point of view, the thermal stability is important for consolidation of nanocrystalline particulates without coarsening the microstructure. That is, many methods, as described in Chapter 2, for synthesis of nanocrystalline materials result in particulate products which must be consolidated into bulk form. Since most consolidation processes involve both heat and pressure, the thermal stability of the nanoscale microstructure is always at risk. The goal of particulate consolidation is to attain essentially 100% theoretical density and good particulate bonding while preventing or minimizing grain growth of the nanocrystalline grains.

Understanding the scientific nature of stability, grain growth of nanocrystalline microstructures is a criterion for allowing strategies for minimizing grain growth to be developed. A basic scientific question with regard to nanocrystalline materials is whether their behavior involves “new physics” or is simply the expected grain-size-dependent behavior extrapolated to nanocrystalline grain sizes. Thermal stability is an important phenomenon to be addressed in this regard. The thermal stability in a broader sense involves not only the stability of the grain structure, that is the microstructure, but also the stability of the structure of the grain boundaries in nanocrystalline materials. A number of investigations on the thermal stability of nanocrystalline materials have been conducted. Grain growth in nanocrystalline materials has been reviewed by Suryanarayana (1995), Weissmuller (1996), and Malow and Koch (1996a,b).

Type
Chapter
Information
Structural Nanocrystalline Materials
Fundamentals and Applications
, pp. 93 - 133
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, Y. R., and Johnson, W. L. (1992). Mater. Sci. Forum, 88–90, 513.CrossRef
Abe, Y. R., Holzer, J. C., and Johnson, W. L. (1992). Mater. Res. Soc. Symp. Proc., 238, 721.CrossRef
Atkinson, H. V. (1988). Acta Metall., 36, 469.CrossRef
Bansal, C., Gao, Z., and Fultz, B. (1995). NanoStructured Mater., 5, 327.CrossRef
Barnett, S. A., Madan, A., Kim, I., and Martin, K. (2003). MRS Bulletin, 28, 169.CrossRef
Bertaut, E. F. (1950). Acta Crystallogr., 3, 14; ibid., 5, 117.CrossRef
Binder, K. (1991). In Materials Science and Technology, Vol. 5, Phase Transformations in Materials, chapter 7, ed. Cahn, R. W., Haasen, P., and Kramer, E. J. p. 405.
Birringer, R. (1989). Mater. Sci. Engr. A, A117, 33.CrossRef
Boylan, K., Ostrander, D., Erb, U., Palumbo, G., and Aust, K. T. (1991). Scripta Metall. Mater., 25, 2711.CrossRef
Burke, J. E., and Turnbull, D. (1952). Progr. Metal Phys., 3, 220.CrossRef
Burkert, N., Grüne, R., Schmalzried, H., and Rahman, S. (1992). Ber. Bunsenges. Phys. Chem., 96, 1603.CrossRef
Cahn, J. W. (1967). Trans. Metall. Soc. of AIME, 242, 166.
Cahn, J. W. (1999). Scand. J. Metallurgy, 20, 9.
Cahn, J. W., and Hillard, J. E. (1958). J. Chem. Phys., 28, 258.CrossRef
Campbell, J. H., and Fauchet, M. (1986). Solid State Comm., 58, 739.CrossRef
Chang, H., Altstetter, C. J., and Averback, R. S. (1992). J. Mater. Res., 7, 2962.CrossRef
Chase, M. W., Davies, C. A., Downey, J. R., Frurip, D. J., McDonald, R. A., and Syverud, A. N. (1985). JANAF Thermochemical Tables, 3rd edition, J. Phys. Chem. Data, 14 (Supplement No. 1).
Chen, I. W. (1987). Acta Metall., 35, 1723.CrossRef
Chen, L. C., and Spaepen, F. (1988). Nature, 336, 366.CrossRef
Chen, L. C., and Spaepen, F. (1991). J. Appl. Phys., 69, 679.CrossRef
Chen, L. C., and Spaepen, F. (1992). NanoStructured Mater., 1, 59.CrossRef
Czubayko, U., Sursaeva, V. G., Gottstein, G., and Shvindlerman, L. S. (1998). Acta Mater., 46, 5863.CrossRef
Delhez, R., de Keijser, Th. H., and Mittemeijer, E. J. (1980). In Accuracy in Powder Diffraction, NBS Special Publication No. 567, ed. Block, S. and Hubbard, C. R.Washington, D.C.: NBS, p. 213.CrossRefGoogle Scholar
Doherty, R. D. (1975). Metall. Trans., A 6, 588.CrossRef
Eckert, J., Holzer, J. C., Krill, C. E. III., and Johnson, W. L. (1992). J. Mater. Res., 7, 1751.CrossRef
El-Sh erik, A. M., Boylan, D., Erb, U., Palumbo, G., and Aust, K. T. (1992). Mater. Res. Soc. Symp. Proc., 238, 727.CrossRef
Enzo, S., Fagherazzi, G., Benedetti, A., and Polizzi, S. (1988). J. Appl. Phys., 21, 536.
Estrin, Y., Gottstein, G., Rabkin, E., and Shvindlerman, L. S. (2000). Scripta Mater., 43, 141.CrossRef
Farber, B., Cadel, E., Menand, A., Schmitz, G., and Kirchheim, R. (2000). Acta Mater., 48, 789.CrossRef
Feltham, P. (1957). Acta Metall., 5, 97.CrossRef
Galina, A. V., Fradkov, V. Y., and Shvindlerman, L. S. (1987). Phys. Met. Metall., 63, 1220.
Gao, Z., and Fultz, B. (1993). NanoStructured Mater., 2, 231.CrossRef
Gao, Z., and Fultz, B. (1994). NanoStructured Mater., 4, 939.CrossRef
Gertsman, V. Y., and Birringer, R. (1994). Scripta Metall. Mater., 30, 577.CrossRef
Gottstein, G., King, A. H., and Shvindlerman, L. S. (2000). Acta Mater., 48, 397.CrossRef
Guinier, A. (1963). X-ray Diffraction, San Francisco: W. H. Freeman and Co., p. 121.Google Scholar
Günth er, B., Kumpmann, A., and Kunze, H.-D. (1992). Scripta Metall. Mater., 27, 833.CrossRef
Gutkin, M. Yu., and Ovid'ko, I. A. (2004). Plastic Deformation in Nanocrystalline Materials. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Gutkin, M. Yu., Ovid'ko, I. A., and Skiba, N. V. (2003). Acta Mater., 51, 4059.CrossRef
Hammer, P., Steiner, A., Villa, R., Baker, M., Gibson, P. N., and Haupt, J. (1994). Surf. Coat. Technol., 68–69, 194.CrossRef
Haslam, A. J., Moldovan, D., Yamakov, V., Wolf, D., Phillpot, S. R., and Gleiter, H. (2003). Acta Mater., 51, 2097.CrossRef
Harris, K. E., Singh, V. V., and King, A. H. (1998). Acta Mater., 46, 2623.CrossRef
Hillert, M. (1965). Acta Metall., 13, 227.CrossRef
Hofler, H. J., and Averback, R. S. (1990). Scripta Metall. Mater., 24, 2401.CrossRef
Hondros, E. D., and Seah, M. P. (1983). In Physical Metallurgy, 3rd edition, ed. Cahn, R. W., and Haasen, P.Netherlands: Elsevier Sci. Pub. BV, p. 856.Google Scholar
Hu, H., and Rath, B. B. (1970). Metall. Trans., 1, 3181.
Humphreys, F. J., and Hatherly, M. (1996). Recrystallization and Related Annealing Phenomena, chapter 9. Tarrytown, NY: Elsevier Science Inc., p. 281.Google Scholar
Hunderi, O., and Ryum, N. (1980). J. Mater. Sci., 5, 1104.CrossRef
Iqbal, Z., and Veprek, S. (1982). J. Phys. C: Solid St. Phys., 15, 377.CrossRef
Iqbal, Z., Veprek, S., Webb, A. P., and Cappezuto, P. (1981). Sol. State Commun., 37, 993.CrossRef
Jin, M., Minor, A. M., Stach, E. A., and Morris, J. W. Jr (2004). Acta Mater., 52, 5381.CrossRef
Karvankova, P., Männling, H.-D., Eggs, C., and Veprek, S. (2001). Surf. Coat. Technol., 146–147, 280.CrossRef
Karvankova, P., Veprek-Heijman, M. G. J., Zawrah, M. F., and Veprek, S. (2004). Surf. Coat. Technol., 467, 133.
Karvankova, P., Veprek-Heijman, M. G. J., Azinovic, D., and Veprek, S. (2006). Surf. Coat. Technol., 200, 2978.CrossRef
Kirchheim, R. (2002). Acta Mater., 50, 413.CrossRef
Kissinger, H. E. (1957). Anal. Chem., 29, 1702.CrossRef
Klement, U., Erb, U., El-Sherik, A. M., and Aust, K. T. (1995). Mater. Sci. Eng. A, A203, 177.CrossRef
Klug, H. P., and Alexander, L. E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edition, chapter 9. New York: Wiley.Google Scholar
Knauth, P., Charai, A., and Gas, P. (1993). Scripta Metall. Mater., 28, 325.CrossRef
Krill, C. E., and Birringer, R. (1998). Phil. Mag. A, 77, 621.CrossRef
Krill, C. E., and Birringer, R. (2001). In Recrystallization and Grain Growth, ed. Gottstein, G., and Molodov, A. D.Berlin: Springer-Verlag, p. 205.Google Scholar
Krill, C. E., Helfen, L., Michels, D., et al. (2001). Phys. Rev. Lett., 86, 842.CrossRef
Kurtz, S. K., and Carpay, F. M. A. (1980). J. Appl. Phys., 51, 5725.CrossRef
Li, J. C. M. (1962). J. Appl. Phys., 33, 2958.CrossRef
Li, S. Z., Fang, Q. F., Liu, Q., Li, Z. S., Gao, J., Nesladek, P., Prochazka, J., Veprek-Heijman, M. G. J., and Veprek, S. (2005). Composites Science and Technology, 65, 735.CrossRef
Liu, F., and Kirchheim, R. (2004). Scripta Mater., 51, 521.CrossRef
Liu, K. W., and Mucklich, F. (2001). Acta Mater., 49, 395.CrossRef
Louat, N. P. (1974). Acta Metall., 22, 721.CrossRef
Lu, K. (1993). NanoStructured Mater., 2, 643.CrossRef
Malow, T. R., and Koch, C. C. (1996a). In Synthesis and Processing of Nanocrystalline Powder, ed. Bourell, D. L.Warrendale, PA: TMS, pp. 33–44.Google Scholar
Malow, T. R., and Koch, C. C. (1996b). Mater. Sci. Forum, 225–227, 595.CrossRef
Männl ing, H.-D., Patil, D. S., Moto, K., Jilek, M., and Veprek, S. (2001). Surf. Coat. Technol., 146–147, 263.CrossRef
Mayrhofer, P. H., Hörling, A., Karlsson, L., et al. (2003). Appl. Phys. Lett., 83, 2049.CrossRef
Melendres, C. A., Narayanasamy, A., Maroni, V. A., and Siegel, R. W. (1989). J. Mater. Res., 4, 1246.CrossRef
Michels, A., Krill, C. E., Ehrhardt, H., Birringer, R., and Wu, D. T. (1999). Acta Mater., 47, 2143.CrossRef
Moldovan, D., Wolf, D., and Phillpot, S. R. (2001). Acta Mater., 49, 3521.CrossRef
Moral, J. E., and Ashby, M. F. (1974). Acta Metall., 22, 567.CrossRef
Mukherjee, A. K. (2002). Mater. Sci. Eng., A 322, 1.CrossRef
Mullins, W. W. (1956). J. Appl. Phys., 27, 900.CrossRef
Mullins, W. W. (1998). Acta Mater., 46, 6219.CrossRef
Murayama, M., Howe, J. M., Hidaka, H., and Takaki, S. (2002). Science, 295, 2433.CrossRef
Nichols, C. S., Mansuri, C. M., Townsend, S. J., and Smith, D. A. (1993). Acta Metall. Mater., 41, 1861.CrossRef
Niederhofer, A., Nesladek, P., Männling, H.-D., Moto, K., Veprek, S., and Jilek, M. (1999). Surf. Coat. Technol., 120–121, 173.CrossRef
Obraztsova, E. D. (1994). In Nanophase Materials, ed. Hadjipanayis, G. C., and Siegel, R. W.Dordrecht, Netherlands: Kluwer Academic Publishing, p. 438.CrossRefGoogle Scholar
Okuda, S., Kobiyama, M., Inami, T., and Takamura, S. (2001). Scr. Mater., 44, 2009.CrossRef
Ossadnik, Ch., Veprek, S., and Gregora, I. (1999). Thin Solid Films, 337, 148.CrossRef
Ovid'ko, I.. (2002). Science, 295, 2386.CrossRefPubMed
Ovid'ko, I. A. (2005). Int. Mater. Rev., 50, 65.CrossRef
Ovid'ko, I. A., Pande, C. S., and Masumura, R. A. (2006). In Handbook on Nanomaterials, ed. Gogotsi, Y. G.Florida: CRC, p. 531.CrossRefGoogle Scholar
Pande, C. S. (1987). Acta Metall., 35, 2671.CrossRef
Pande, C. S., and Dantsker, E. (1990). Acta Metall., 38, 945.CrossRef
Pande, C. S., and Dantsker, E. (1991). Acta Metall., 39, 1359.CrossRef
Pande, C. S., and Dantsker, E. (1994). Acta Metall. Mater., 42, 2899.CrossRef
Pande, C. S., and Masumura, R. A. (2003). In Nanostructures: Synthesis, Functional Properties and Applications, ed. Tsakalakos, T., Ovid'ko, I. A., and Vasudevan, A. K., Dordrecht: Kluwer, p. 169.CrossRefGoogle Scholar
Pande, C. S., and Rajagopal, A. K. (2001). Acta Mater., 49, 1805.CrossRef
Pande, C. S., Masumura, R. A., and Marsh, S. P. (2001). Phil. Mag., A 81, 1229.CrossRef
Perez, R. J., Jiang, H. G., Dogan, C. P., and Lavernia, E. J. (1998). Metall. Mater. Trans. A, 29A, 2469.CrossRef
Porter, D. A., and Easterling, K. E. (2001). Phase Transformations in Metals and Alloys. Cheltenham, UK:Nelson Thomas Ltd, p. 291.Google Scholar
Prochazka, J., Karvankova, P., Veprek-Heijman, M. G. J., and Veprek, S. (2004). Mater. Sci. Eng., A 384, 102.CrossRef
Rabkin, E. (1999). Interface Sci., 7, 297.CrossRef
Rhines, F. N., and Craig, K. R. (1974). Metall. Trans., A 5, 413.CrossRef
Richter, H., Wang, Z. P., and Ley, L. (1981). Solid State Commun., 39, 625.CrossRef
Rogl, P., and Schuster, J. C. (1992). Phase Diagrams of Ternary Boron Nitride and Silicon Nitride Systems. Materials Park, Ohio: ASM The Materials Society.Google Scholar
Sarott, F.-A., Iqbal, Z., and Veprek, S. (1982). Solid State Commun., 42, 465.CrossRef
Sattler, K., Raina, G., Ge, M., Venkatiswaran, N., Xhie, J., Liao, Y. X., and Siegel, R. W. (1994). J. Appl. Phys., 76, 546.CrossRef
Shan, Zh., Stach, E. A., Wiezorek, J. M. K., Knapp, J. A., Follstaedt, D. M., and Mao, S. X. (2004). Science, 305, 654.CrossRef
Shaw, L., Luo, H., Villegas, J., and Miracle, D. (2003). Acta Mater., 51, 2647.CrossRef
Shen, T. D., Koch, C. C., McCormick, T. L., Nemanich, R. J., Huang, J. Y., and Huang, J. G. (1995). J. Mater. Res., 10, 139.CrossRef
Smith, C. S. (1948). Transactions AIME, 175, 15.
Smith, C. S. (1953). Acta Metall., 1, 295.CrossRef
Smith, C. S. (1964). Metall. Rev., 9, 1.
Soer, W. A., Hosson, J. T. M., Minor, A. M., Morris, J. W. Jr, and Stach, E. A. (2004). Acta Mater., 52, 5783.CrossRef
Suryanarayana, C. (1995). Intl. Mater. Rev., 40, 41.CrossRef
Sutton, A. P., and Balluffi, R. W. (1996). Grain Boundaries in Crystalline Materials. Oxford: Oxford Science Publications.Google Scholar
Terwilliger, C. D., and Chiang, Y. M. (1995). Acta Mater., 43, 319.CrossRef
Ungar, T., and Borbely, A. (1996). Appl. Phys. Lett., 69, 3173.CrossRef
Ungar, T., Ott, S., Sanders, P. G., Borbely, A., and Weertman, J. R. (1998). Acta Mater., 46, 3693.CrossRef
Upmanyu, M., Srolovitz, D. J., Shvindlerman, L. S., and Gottstein, G. (1998). Interface Sci., 6, 287.
Upmanyu, M., Srolovitz, D. J., Shvindlerman, L. S., and Gottstein, G. (2002). Acta Mater., 50, 1405.CrossRef
Vandermeer, R. A., and Hu, H. (1994). Acta Metall. Mater., 42, 3071.CrossRef
Veprek, S. (1999). J. Vac. Sci. Technol., A 17, 2401.CrossRef
Veprek, S., and Reiprich, S. (1995). Thin Solid Films, 268, 64.CrossRef
Veprek, S., Sarott, F.-A., and Iqbal, Z. (1987). Phys. Rev., B 36, 3344.CrossRef
Veprek, S., Reiprich, S., and Li, S. H. (1995). Appl. Phys. Lett., 66, 2640.CrossRef
Veprek, S., Haussmann, M., and Reiprich, S. (1996). J. Vac. Sci. Technol., A 14, 46.CrossRef
Veprek, S., Nesladek, P., Niederhofer, A., Glatz, F., Jilek, M., and Sima, M. (1998). Surf. Coat. Technol., 108–109, 138.CrossRef
Veprek, S., Männling, H.-D., Jilek, M., and Holubar., P. (2004a). Mater. Sci. Eng., A 366, 202.CrossRef
Vep rek, S., Männling, H.-D., Niederhofer, A., Ma, D., and Mukherjee, S. (2004b). J. Vac. Sci. Technol., B 22, L5.CrossRef
Veprek, S., Veprek-Heijman, G. M. J., Karvankova, P., and Prochazka, J. (2005a). Thin Solid Films, 476, 1.CrossRef
Veprek, S., Männling, H.-D., Karvankova, P., and Prochazka, J. (2006). Surf. Coat. Technol., 200, 3876.CrossRef
Verhoeven, J. D. (1986). Scanning electron microscopy. In Metals Handbook, 9th edition, Vol. 10. Metals Park, OH: ASM, p. 490.Google Scholar
Wagner, R., and Kampmann, R. (1991). In Materials Science and Technology, Vol. 5, Phase Transformations in Materials, chapter 4, ed. Cahn, R. W., Haasen, P., and Kramer, E. J., p. 213.
Wang, N., Wang, Z., Aust, K. T., and Erb, U. (1997). Acta Mater., 45, 1655.CrossRef
Warren, B. E. (1990). X-ray Diffraction. New York: Dover Publication Inc., p. 262.Google Scholar
Weissmuller, J. (1993). NanoStructured Mater., 3, 261.CrossRef
Weissmuller, J. (1994). J. Mater. Res., 9, 4.CrossRef
Weissmuller, J. (1996). In Synthesis and Processing of Nanocrystalline Powder, ed. Bourell, D. L.Warrendale, PA: TMS, p. 3.Google Scholar
Weissmuller, J., Krauss, W., Haubold, T., Birringer, R., and Gleiter, H. (1992). NanoStructured Mater., 1, 439.CrossRef
Williamson, G. K., and Hall, W. H. (1953). Acta Metall., 1, 22.CrossRef
Wurschum, R., Brossmann, U., and Schaefer, H.-E. (2002). In Nanostructured Materials: Processing, Properties, and Applications, ed. Koch, C. C.Norwich, NY: William Andrew Pub., p. 267.Google Scholar
Youssef, K. M. (2003). Synthesis, structure, and properties of nanocrystalline zinc by pulsed-current electrodeposition. Ph.D. Thesis, North Carolina State University, p. 166.Google Scholar
Zarzycki, J. (1991). Glasses and the Vitreous State. Cambridge: Cambridge University Press, p. 161.Google Scholar
Zhang, R. F., and Liu, B. X. (2003). J. Mater. Res., 18, 1499.CrossRef
Zhang, R. F., and Veprek, S. (2006). Mater. Sci. Eng., A424, 128.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×