Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-20T04:36:57.725Z Has data issue: false hasContentIssue false

5 - Mechanical properties of structural nanocrystalline materials – theory and simulations

Published online by Cambridge University Press:  04 December 2009

Carl C. Koch
Affiliation:
North Carolina State University
Ilya A. Ovid'ko
Affiliation:
Russian Academy of Sciences, Moscow
Sudipta Seal
Affiliation:
University of Central Florida
Stan Veprek
Affiliation:
Technische Universität München
Get access

Summary

Introduction

The rapidly growing scientific and technological interest in structural nanocrystalline bulk materials and coatings arises from their outstanding mechanical properties opening a range of new applications; see, for example, reviews (Koch et al., 1999; Gleiter, 2000; Gutkin et al., 2001; Mohamed and Li, 2001; Padmanabhan, 2001; Veprek and Argon, 2002; Kumar et al., 2003a; Milligan, 2003; Ovid'ko, 2004; Valiev, 2004; Chokshi and Kottada, 2006; Han et al., 2005; Ovid'ko, 2005a, b; Wolf et al., 2005) and books (Roco et al., 2000; Chow et al., 2000; Farkas et al., 2001; Berndt et al., 2003; Komarneni et al., 2003; Gutkin and Ovid'ko, 2004a). These outstanding mechanical properties are caused by the interface and nanoscale effects associated with structural peculiarities of nanocrystalline materials where the volume fraction of the interfacial phase is extremely high, and grain size d does not exceed 100 nm. For instance, nanocrystalline bulk materials and coatings often exhibit extremely high strength, superhardness and good fatigue resistance desired for numerous applications; see Chapter 4 and the literature (Siegel and Fougere, 1995; Hahn and Padmanabhan, 1995; Koch et al., 1999; Gleiter, 2000; Gutkin et al., 2001; Mohamed and Li, 2001; Niederhofer et al., 2001; Padmanabhan, 2001; Veprek and Argon, 2002; Kumar et al., 2003a; Milligan, 2003; Patscheider, 2003; Valiev, 2004; Chokshi and Kottada, 2006; Han et al., 2005; Ovid'ko, 2005a, b; Wolf et al., 2005). At the same time, in most cases, nanocrystalline materials show low tensile ductility at room temperature, which essentially limits their practical utility.

Type
Chapter
Information
Structural Nanocrystalline Materials
Fundamentals and Applications
, pp. 204 - 316
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrievskii, R. A., Kalinnikov, G. V., Kobelev, N. P., Soifer, Ya.M., and Shtansky, D. V. (1997). Phys. Solid State, 39, 1661.CrossRef
Andrievskii, R. A. (1998). Nanostructured Materials: Science and Technology. Dordrecht: Kluwer Academic Publishers.Google Scholar
Argon, A. S. (1979). Acta Mater., 27, 47.CrossRef
Armstrong, R. W., and Head, A. K. (1965). Acta Met., 13, 759.CrossRef
Asaro, R. J., Krysl, P., and Kad, B. (2003). Phil. Mag. Lett., 83, 733.CrossRef
Asaro, R. J., and Suresh, S. (2005). Acta Mater., 53, 3369.CrossRef
Ashby, M. F., Gandhi, C., and Taplin, D. M. R. (1979). Acta Mater., 27, 699.CrossRef
Astanin, V. V., Sisanbaev, A. V., Pshenichnyuk, A. I., and Kaibyshev, O. A. (1997). Scr. Mater., 36, 117.CrossRef
Balluffi, R. W., Kwok, T., and Bristowe, P. D. (1981). Scripta Met., 15, 951.CrossRef
Benoist, P., and Martin, G. (1975). Thin Solid Films, 25, 181.CrossRef
Berndt, C. C., Fischer, T., Ovid'ko, I. A., Skandan, G., and Tsakalakos, T. (eds.) (2003). Nanomaterials for Structural Applications, Vol. 740, Warrendale: MRS Symp. Proc.
Birringer, R., Gleiter, H., Klein, H. P., and Mazquardt, P. (1984). Phys. Lett., A 102, 365.CrossRef
Bobylev, S. V., Ovid'ko, I. A., and Sheinerman, A. G. (2001). Phys. Rev., B 64, 224507.CrossRef
Bobylev, S. V., Gutkin, M.Yu., and Ovid'ko, I. A. (2004). Acta Mater., 52, 3793.CrossRef
Bokshtein, B. S. (1978). Diffusion in Metals. Moscow: Metallurgiya (in Russian).Google Scholar
Bokstein, B., Ivanov, V., Oreshina, O., Peteline, A., and Peteline, S. (2001). Mater. Sci. Eng., A 302, 151.CrossRef
Bollmann, W. (1989). Mater. Sci. Eng., A 113, 129.CrossRef
Bristowe, P. D., Brokman, A., Spaepen, T., and Balluffi, R. W. (1980). Scripta Met., 14, 943.CrossRef
Brokman, A., Bristowe, P. D., and Balluffi, R. W. (1981). Appl. Phys., 52, 6116.CrossRef
Carsley, J. E., Ning, J., Milligan, W. W., Hackney, S. A., and Aifantis, E. C. (1995). Nanostruct. Mater., 5, 441.CrossRef
Caro, A., and Swygenhoven, H. (2001). Phys. Rev., B 63, 134101.CrossRef
Champion, Y., Langlois, C., Guerin-Mailly, S., Langlois, P., Bonnentier, J.-L., and Hytch, M. (2003). Science, 300, 310.CrossRef
Chen, M., Ma, E., Hemker, K. J., Sheng, H., Wang, Y., and Cheng, X. (2003). Science, 300, 1275.CrossRef
Cheng, S., Spencer, J. A., and Milligan, W. W. (2003). Acta Mater., 51, 4505.CrossRef
Chokshi, A. H., and Kottada, R. S. (2006). Transactions of the Indian Institute of Metals. (in press).
Chokshi, A. H., Rosen, A., Karch, J., and Gleiter, H. (1989). Scr. Metall., 23, 1679.CrossRef
Chou, Y. T. (1967). J. Appl. Phys., 38, 2080.CrossRef
Chow, G.-M., Ovid'ko, I. A., and Tsakalakos, T. (eds.), (2000). Nanostructured Films and Coatings, NATO Science Series. Dordrecht: Kluwer.CrossRefGoogle Scholar
Clarke, D. R. (1987). J. Amer. Ceram. Soc., 70, 15.CrossRef
Coble, R. L. (1963). J. Appl. Phys., 34, 1679.CrossRef
Cocks, A. C. F., and Ashby, M. F. (1982). Progr. Mater. Sci., 27, 189.CrossRef
Conrad, H. (2003). Mater. Sci. Eng. A, 341, 216.CrossRef
Conrad, H., and Narayan, J. (2000). Scr. Mater., 42, 1025.CrossRef
Das, J., Loeser, W., Kuehn, U., Eckert, J., Roy, S. K., and Schultz, L. (2003). Appl. Phys. Lett., 82, 4690.CrossRef
Ebrahimi, F., Zhai, Q., and Kong, D. (1998). Scr. Mater., 39, 315.CrossRef
Evans, A. G., and Hirth, J. P. (1992). Scr. Metall. Mater., 26, 1675.CrossRef
Farkas, D., Kung, H., Mayo, M., Swygenhoven, H., and Weertman, J. (2001). Structure and Mechanical Properties of Nanophase Materials – Theory and Computer Simulations vs. Experiment. Warrendale: MRS.Google Scholar
Farkas, D., Swygenhoven, H., and Derlet, P. M. (2002). Phys. Rev., B 66, 060101 (R).CrossRef
Fedorov, A. A., Gutkin, M.Yu., and Ovid'ko, I. A. (2002). Scr. Mater., 47, 51.CrossRef
Fedorov, A. A., Gutkin, M.Yu., and Ovid'ko, I. A. (2003). Acta Mater., 51, 887.CrossRef
Fischer, J. C. (1951). J. Appl. Phys., 22, 74.CrossRef
Frozeth, A. G., Derlet, P. M., and Swygenhoven, H. (2004a). Acta Mater., 52, 5863.CrossRef
Frozeth, A. G., Derlet, P. M., and Swygenhoven, H. (2004b). Acta Mater., 52, 2259.CrossRef
Gan, Y., and Zhou, B. (2001). Scr. Mater., 45, 625.CrossRef
Gandhi, C., and Ashby, M. F. (1979). Acta Mater., 27, 1565.CrossRef
Girifalco, L. A., and Welch, D. O. (1967). Point Defects and Diffusion in Strained Metals. Gordon and Breach.Google Scholar
Gleiter, H. (1989). Progr. Mater. Sci., 33, 223.CrossRef
Gleiter, H. (1995). Nanostruct. Mater., 6, 3.CrossRef
Gleiter, H. (2000). Acta Mater., 48, 1.CrossRef
Gottstein, G., King, A. H., and Shvindlerman, L. S. (2000). Acta Mater., 48, 397.CrossRef
Gryaznov, V. G., Kaprelov, A. M., and Romanov, A. E. (1989). Scr. Metall., 23, 1443.CrossRef
Gryaznov, V. G., Polonsky, I. A., Romanov, A. E., and Trusov, L. I. (1991). Phys. Rev., B 44, 42.CrossRef
Gryaznov, V. G., and Trusov, L. I. (1993). Progr. Mater. Sci., 37, 289.CrossRef
Gryaznov, V. G., Gutkin, M.Yu., Romanov, A. E., and Trusov, L. I. (1993). J. Mater. Sci., 28, 4359.CrossRef
Gutkin, M.Yu., and Ovid'ko, I. A. (1993). Nanostruct. Mater., 2, 631.CrossRef
Gutkin, M.Yu., and Ovid'ko, I. A. (1994). Phil. Mag., A 70, 561.CrossRef
Gutkin, M.Yu., and Ovid'ko, I. A. (2001). Phys. Rev., B 63, 064515.CrossRef
Gutkin, M.Yu., and Ovid'ko, I. A. (2004a). Plastic Deformation in Nanocrystalline Materials. Berlin, New York: Springer.CrossRefGoogle Scholar
Gutkin, M.Yu., and Ovid'ko, I. A. (2004b). Phil. Mag. Lett., 84, 655.CrossRef
Gutkin, M.Yu., and Ovid'ko, I. A. (2005). Appl. Phys. Lett., 87, 251916.CrossRef
Gutkin, M.Yu., and Ovid'ko, I. A. (2006). Phil. Mag., 86, 1483.CrossRef
Gutkin, M.Yu., Ovid'ko, I. A., and Pande, C. S. (2001). Rev. Adv. Mater. Sci., 2, 80.
Gutkin, M.Yu., Kolesnikova, A. L., Ovid'ko, I. A., and Skiba, N. V. (2002). Phil. Mag. Lett., 82, 651.CrossRef
Gutkin, M.Yu., Ovid'ko, I. A., and Skiba, N. V. (2003a). Acta Mater., 51, 4059.CrossRef
Gutkin, M.Yu., Ovid'ko, I. A., and Skiba, N. V. (2003b). Mater. Sci. Eng., A 339, 73.CrossRef
Gutkin, M.Yu., Ovid'ko, I. A., and Skiba, N. V. (2003c). J. Phys., D 36, L47.
Gutkin, M.Yu., Ovid'ko, I. A., and Pande, C. S. (2004a). Phil. Mag., 84, 847.CrossRef
Gutkin, M.Yu., Ovid'ko, I. A., and Skiba, N. V. (2004b). Acta Mater., 52, 1711.CrossRef
Gutkin, M.Yu., Ovid'ko, I. A., and Skiba, N. V. (2005a). J. Phys., D 38, 3921.
Gutkin, M.Yu., Ovid'ko, I. A., and Skiba, N. V. (2005b). Rev. Adv. Mater. Sci., 10, 483.
Hahn, H., and Padmanabhan, K. A. (1995). Nanostruct. Mater., 6, 191.CrossRef
Hahn, H., and Padmanabhan, K. A. (1997). Phil. Mag., B 76, 559.CrossRef
Hahn, H., Mondal, P., and Padmanabhan, K. A. (1997). Nanostruct. Mater., 9, 603.CrossRef
Han, B. Q., Lavernia, E., and Mohamed, F. A. (2005). Rev. Adv. Mater. Sci., 9, 1.
Harris, K. E., Singh, V. V., and King, A. H. (1998). Acta Mater., 46, 2623.CrossRef
Harrison, G. (1961). Trans. Faraday Soc., 57, 1191.CrossRef
Hart, E. W. (1967). Acta Mater., 15, 351.CrossRef
Haslam, A. J., Moldovan, D., Yamakov, V., Wolf, D., Phillpot, S. R., and Gleiter, H. (2003). Acta Mater., 51, 2097.CrossRef
Hasnaoui, A., Derlet, P. M., and Swygenhoven, H. (2004). Acta Mater., 52, 2251.CrossRef
He, J. H., and Lavernia, E. J. (2001). J. Mater. Res., 16, 2724.CrossRef
He, G., Eckert, J., Loeser, W., and Schultz, L. (2003). Nature Mater., 2, 33.CrossRef
He, G., Hagiwara, M., Eckert, J., and Loeser, W. (2004). Phil. Mag. Lett., 84, 365.CrossRef
Hirth, J. P., and Lothe, J. (1982). Theory of Dislocations. NewYork: McGraw-Hill Publ. Co.Google Scholar
Hoefler, H. J., Hahn, H., and Averback, S. (1993). Defect and Diffusion Forum, 68, 99.
Horvath, J., Birringer, R., and Gleiter, H. (1987). Solid State Comm., 62, 391.CrossRef
Hugo, R. C., Kung, H., Weertman, J. R., Mitra, R., Knapp, J. A., and Follstaedt, D. M. (2003). Acta Mater., 51, 1937.CrossRef
Indenbom, V. I. (1961). Sov. Phys. Sol. State 3, 1506.
Islamgaliev, R. K., Valiev, R. Z., Mishra, R. S., and Mukherjee, A. K. (2001). Mater. Sci. Eng., A 304–306, 206.CrossRef
Jia, D., Ramesh, K. T., and Ma, E. (2003). Acta Mater., 51, 3495.CrossRef
Jin, M., Minor, A. M., Stach, E. A., and Morris, J. W. Jr (2004). Acta Mater., 52, 5381.CrossRef
Karimpoor, A. A., Erb, U., Aust, K. T., and Palumbo, G. (2003). Scr. Mater., 49, 651.CrossRef
Ke, M., Milligan, W. W., Hackney, S. A., Carsley, J. E., and Aifantis, E. C. (1995). Nanostruct. Mater., 5, 689.CrossRef
Kim, H. S. (1998). Scr. Mater., 39, 1057.CrossRef
Kim, H. S., Estrin, Y., and Bush, M. B. (2000). Acta Mater., 48, 493.CrossRef
King, A. H. (1999). Interf. Sci., 7, 251.CrossRef
Klimanek, P., Klemm, V., Romanov, A. E., and Seefeldt, M. (2001). Adv. Eng. Mater., 3, 877.3.0.CO;2-L>CrossRef
Klinger, L. M., and Gorbunov, D. A. (1988). Structure and Properties of Interfaces in Metals. Moscow: Nauka (in Russian).Google Scholar
Koch, C. C. (2003). Scr. Mater., 49, 657.CrossRef
Koch, C. C., and Narayan, J. (2001). Mater. Res. Soc. Symp. Proc., 634, B5.1.1.
Koch, C. C., Morris, D. G., Lu, K., and Inoue, A. (1999). MRS Bullet., 24, 54.CrossRef
Kolobov, Yu. R. (2002). Interf. Sci., 10, 31.CrossRef
Kolobov, Yu. R., Grabovetskaya, G. P., Ratochka, I. V., and Ivanov, K. V. (1999). Nanostruct. Mater., 12, 1127.CrossRef
Kolobov, Yu.R., Grabovetskaya, G. P., Ivanov, K. V., Valiev, R. Z., and Lowe, T. C. (2000). In Investigations and Applications of Severe Plastic Deformation, ed. Lowe, T. C., and Valiev, R. Z., NATO Science Series. Dordrecht: Kluwer, p. 261.CrossRefGoogle Scholar
Komarneni, S., Vaja, R. A., Lu, G. Q., Matsushita, J.-I., and Parker, J. C. (eds.) (2003). Nanophase and Nanocomposite Materials IV, vol. 703, Warrendale: MRS Symp. Proc.Google Scholar
Konstantinidi s, D. A., and Aifantis, E. C. (1998). Nanostruct. Maters., 10, 1111.CrossRef
Krujicic, M., and Olson, G. B. (1998). Interface Sci., 6, 155.CrossRef
Kumar, K. S., Suresh, S., and Swygenhoven, H. (2003a). Acta Mater., 51, 5743.CrossRef
Kumar, K. S., Suresh, S., Chisholm, M. F., Norton, J. A., and Wang, P. (2003b). Acta Mater., 51, 387.CrossRef
Kuntz, J. D., Zhan, G.-D., and Mukherjee, A. K. (2004). MRS Bullet., 29, 22.CrossRef
Kurzydlowski, K. J. (1990). Scr. Metall. Mater., 24, 879.CrossRef
Kwok, T., Ho, P. S., Yip, S., and Balluffi, R. W. (1981). Phys. Rev. Lett., 47, 1148.CrossRef
Larikov, L. N. (1995). Metal. Phys. Appl. Tech., 17, 1.
Lasalmonie, A., and Strudel, J. L. (1986). J. Mater. Sci., 21, 1837.CrossRef
Li, J. C. M. (1963). Trans. TMS-AIME, 227, 247.
Li, J. C. M., and Chou, Y. T. (1970). Met. Trans., 1, 1145.CrossRef
Li, H., and Ebrahimi, F. (2004). Appl. Phys. Lett., 84, 4307.CrossRef
Li, H., and Ebrahimi, F. (2005). Adv. Mater., 17, 1969.
Lian, J., Baudelet, B., and Nazarov, A. A. (1993). Mater. Sci. Eng., A 172, 23.CrossRef
Liao, X. Z., Zhou, F., Lavernia, E. J., et al. (2003a). Appl. Phys. Lett., 83, 632.CrossRef
Liao, X. Z., Zhou, F., Lavernia, E. J., He, D. W., and Zhu, Y. T. (2003b). Appl. Phys. Lett., 83, 5062.CrossRef
Liao, X. Z., Zhao, Y. H., Srinivasan, S. G., Zhu, Y. T., Valiev, R. Z., and Gunderov, D. V. (2004a). Appl. Phys. Lett., 84, 592.CrossRef
Liao, X. Z., Srinivasan, S. G., Zhao, Y. H., Baskes, M. I., Zhu, Y. T., Zhou, F., Lavernia, E. J., and Hu, H. F. (2004b). Appl. Phys. Lett., 84, 3564.CrossRef
Lu, K., and Sui, M. L. (1993). Scr. Metall. Mater., 28, 1465.CrossRef
Lubarda, V. A., Schneider, M. S., Kalantar, D. H., Remington, B. A., and Meyers, M. A. (2004). Acta Mater., 52, 1397.CrossRef
Ma, E. (2003). Nature Mater., 2, 7.CrossRef
Ma, Q., and Balluffi, R. W. (1994). Acta Metall. Mater., 42, 1.CrossRef
MacHahon, G., and Erb, U. (1989). Microstruct. Sci., 17, 447.
Markmann, J., Bunzel, P., Roesner, H., Liu, K. W., Padmanabhan, K. W., Birringer, R., Gleiter, H., and Weissmueller, J. (2003). Scr. Mater., 49, 637.CrossRef
Malygin, G. A. (1995). Phys. Solid State, 37, 1248.
Masumura, R. A., Hazzledine, P. M., and Pande, C. S. (1998). Acta Mater., 46, 4527.CrossRef
Masumura, R. A., and Ovid'ko, I. A. (2000). Mater. Phys. Mech., 1, 31.
Mayo, M. J. (1997). Nanostruct. Mater., 9, 717.CrossRef
Mayo, M. J. (1998). In: Nanostructured Materials: Science and Technology, ed. Chow, G.-M., and Noskova, N. I.Dordrecht: Kluwer, p. 361.CrossRefGoogle Scholar
McFadden, S. X., Misra, R. S., Valiev, R. Z., Zhilyaev, A. P., and Mukherjee, A. K. (1999). Nature, 398, 684.CrossRef
Milligan, W. W. (2003). Mechanical behavior of bulk nanocrystalline and ultrafine-grain metals. In Comprehensive Structural Integrity, ed. Milne, I., Ritchie, R. O., and Karihaloo, B.Amsterdam: Elsevier, p. 529.Google Scholar
Mishin, Yu., and Herzig, Ch. (1995). Nanostruct. Mater., 6, 859.CrossRef
Mishra, R. S., Valiev, R. Z., McFadden, S. X., and Mukherjee, A. K. (1998). Mater. Sci. Eng., A 252, 174.CrossRef
Mishra, R. S., Valiev, R. Z., McFadden, S. X., Islamgaliev, R. K., and Mukherjee, A. K., (2001). Phil. Mag., A 81, 37.CrossRef
Moldovan, D., Wolf, D., and Phillpot, S. R. (2001). Acta Mater., 49, 3521.CrossRef
Mohamed, F. A., and Li, Y. (2001). Mater. Sci. Eng., A 298, 1.CrossRef
Morozov, N. F., Ovid'ko, I. A., Petrov, Yu. V., and Sheinerman, A. G. (2003). Rev. Adv. Mater. Sci., 4, 65.
Mukai, T., Suresh, S., Kita, K., Sasaki, H., Kobayashi, N., Higashi, K., and Inoue, A. (2003). Acta Mater., 51, 4197.CrossRef
Mukherjee, A. K. (2002a). Mater. Sci. Eng., A 322, 1.CrossRef
Mukherjee, A. K. (2002b). Creep Deformation: Fundamentals and Applications, ed. Mishra, R. S., Earthman, J. C., and Raj, S. V.Warrendale: TMS, p. 3.Google Scholar
Mullner, P., and Romanov, A. E. (2000). Acta Mater., 48, 2337.CrossRef
Murayama, M., Howe, J. M., Hidaka, H., and Takaki, S. (2002). Science, 295, 2433.CrossRef
Nazarov, A. A. (1996a). Scr. Mater., 34, 697.CrossRef
Nazarov, A. A. (1996b). Annales de Chimie (Fr.), 21, 461.
Nazarov, A. A. (1997). Mater. Sci. Forum, 243–245, 31.
Nazarov, A. A. (2000). Phil. Mag. Lett., 80, 221.CrossRef
Nazarov, A. A. (2003). Phys. Sol. State, 45, 1166.CrossRef
Nazarov, A. A., Bachurin, D. V., Shenderova, O. A., and Brenner, D. W. (2003). Interface Sci., 11, 417.CrossRef
Nazarov, A. A., Romanov, A. E., and Valiev, R. Z. (1990). Scripta Metall. Mater., 24, 1929.CrossRef
Nazarov, A. A., Romanov, A. E., and Valiev, R. Z. (1993). Acta Met. Mater., 41, 1033.CrossRef
Niederhofer, A., Bolom, T., Nesadek, P., Moto, K., Eggs, C., Patil, D. S., and Veprek, S. (2001). Surf. Coat. Technol., 146–147, 183.CrossRef
Nieh, T. G., and Wadsworth, J. (1991). Scr. Metall. Mater., 25, 955.CrossRef
Nieman, G. W., Weertman, J. R., and Siegel, R. W. (1991). J. Mater. Res., 6, 1012.CrossRef
Niihara, K., Nakahira, A., and Sekino, T. (1993). In: Nanophase and Nanocomposite Materials, ed. Kormaneni, S., Parker, J. C., and Thomas, G. J., MRS Symp. Proc. 286. Pittsburg, p. 405.
Osipov, A. V., and Ovid'ko, I. A. (1992). Appl. Phys., A 54, 517.CrossRef
Ovid'ko, I. A. (1994). J. Phys. D, 27, 999.CrossRef
Ovid'ko, I. A. (1997). Nanostruct. Mater., 7, 149.CrossRef
Ovid'ko, I. A. (2000). Mater. Sci. Eng., A 280, 355.
Ovid'ko, I. A. (2002). Science, 295, 2386.CrossRefPubMed
Ovid'ko, I. A. (2003). Phil. Mag. Lett., 83, 611.CrossRef
Ovid'ko, I. A. (2004). In: Encyclopedia on Nanoscience and Nanotechnology, Vol. 4, ed. Nalwa, H. S.California: American Sci. Publ., p. 249.
Ovid'ko, I. A. (2005a). Int. Mater. Rev., 50, 65.CrossRef
Ovid'ko, I. A. (2005b). Rev. Adv. Mater. Sci., 10, 89.
Ovid'k o, I. A., and Reizis, A. B. (1999). J. Phys. D, 32, 2833.CrossRef
Ovid'k o, I. A., and Reizis, A. B. (2001). Phys. Sol. State, 43, 35.CrossRef
Ovid'k o, I.A, and Sheinerman, A. G. (2003). Phil. Mag., 83, 1551.CrossRef
Ovid'k o, I. A., and Sheinerman, A. G. (2004a). Acta Mater., 52, 1201.CrossRef
Ovid'k o, I. A., and Sheinerman, A. G. (2004b). Rev. Adv. Mater. Sci., 6, 21.
Ovid'k o, I. A., and Sheinerman, A. G. (2005a). Acta Mater., 53, 1347.CrossRef
Ovid'k o, I. A., and Sheinerman, A. G. (2005b). Rev. Adv. Mater. Sci., 9, 17.
Ovid'k o, I.A, and Sheinerman, A. G. (2006). Phil. Mag., 86, 1415.CrossRef
Padmanabhan, K. A. (2001). Mater. Sci. Eng., A 304–306, 200.CrossRef
Padmanabhan, K. A., and Gleiter, H. (2004). Mater. Sci. Eng., A 381, 28.CrossRef
Palumbo, G., and Aust, K. T. (1989). Mater. Sci. Eng., A 113, 139.CrossRef
Pande, C. S., and Masumura, R. A. (1984). In: Proceedings of Sixth International Conference on Fracture, p. 857.
Pande, C. S., and Masumura, R. A. (1996). In: Processing and Properties of Nanocrystalline Materials, ed. Suryanarayana, C., Singh, J., and Froes, F. H.Warrendale: TMS, p. 387.
Pande, C. S., Masumura, R. A., and Armstrong, R. W. (1993). Nanostruct. Mater., 2, 323.CrossRef
Patscheider, J. (2003). MRS Bulletin, 28, 180.CrossRef
Pozdnyakov, V. A. (2003). Tech. Phys. Lett., 29, 151.CrossRef
Pozdnyakov, V. A., and Glezer, A. M. (2005). Phys. Sol. State, 47, 817.CrossRef
Pumphrey, P. H., and Gleiter, H. (1974). Philos. Mag., 30, 593.CrossRef
Rabukhin, V. B. (1986). Poverkhnost', 7, 126 (in Russian).
Roco, M. C., Williams, R. S., and Alivisatos, P. (eds.), (2000). Nanotechnology Research Directions. Dordrecht: Kluwer.CrossRefGoogle Scholar
Romanov, A. E., and Vladimirov, V. I. (1992). Dislocations in Solids, ed. Nabarro, F. R. N., Vol. 9. Amsterdam: North-Holland.Google Scholar
Romanov, A. E. (1995). Nanostruct. Mater., 6, 125.CrossRef
Romanov, A. E. (2003). European J. Mech., A 22, 727.CrossRef
Rybin, V. V., and Zhukovskii, I. M. (1978). Sov. Phys. Sol. State, 20, 1056.
Sahimi, M. (1994). Applications of Percolation Theory. London: Taylor and Francis.Google Scholar
Samaras, M., Derlet, P. M., Swygenhoven, H., and Victoria, M. (2002). Phys. Rev. Lett., 88, 125505.CrossRef
Sanders, P. G., Eastman, J. A., and Weertman, J. R. (1996). In Processing and Properties of NC Materials, ed. Suryanarayana, C., Singh, J., and Froes, F. H.Warrendale: TMS, p. 397.
Scattergood, R. O., and Koch, C. C. (1992). Scr. Mater., 27, 1195.CrossRef
Schaefer, H.-E., Wurschum, R., Gessmann, T., Stockl, G., Scharwaechter, P., Frank, W., Valiev, R. Z., Fecht, H.-J., and Moelle, C. (1995). Nanostruct. Mater., 6, 869.CrossRef
Schaefer, H.-E., Reimann, K., Straub, W., Philipp, F., Tanimoto, H., Brossmann, U., and Würschum, R. (2000). Mater. Sci. Eng., A 286, 24.CrossRef
Schiotz, J. (2004). Scr. Mater., 51, 837.CrossRef
Schiotz, J., and Jacobsen, K. W. (2003). Science, 301, 1357.CrossRef
Schiotz, J., Di Tolla, F. D., and Jakobsen, K. W. (1998). Nature, 391, 561.CrossRef
Schiotz, J., Vegge, T., Di Tiolla, F. D., and Jakobsen, K. W. (1999). Phys. Rev., B 60, 11971.CrossRef
Seefeldt, M. (2001). Rev. Adv. Mater. Sci., 2, 44.
Sergueeva, A. V., Mara, N. A., and Mukherjee, A. K. (2004). Rev. Adv. Mater. Sci., 7, 67.
Shan, Z., Stach, E. A., Wiezorek, J. M. K., Knapp, J. A., Follstaedt, D. M., and Mao, S. X. (2004). Science, 305, 654.CrossRef
Shimokawa, T., Nakatani, A., and Kitagawa, H. (2005). Phys. Rev., B 71, 224110.CrossRef
Siegel, R. W. (1994). In: Encyclopedia of Applied Physics, ed. Trigg, G. L., Vol. 11. Weinheim: VCH, p. 1.Google Scholar
Siegel, R. W., and Fougere, G. E. (1995). Nanostruct. Mater., 6, 205.CrossRef
Smirnova, E. S., and Chuvil'deev, V. N. (1999). Fiz. Met. Metalloved., 88, 74 (in Russian).
Soer, W. A., Hosson, J. T. M., Minor, A., Moris, J. W. Jr., and Stach, E. (2004). Acta Mater., 52, 5783.CrossRef
S⊘rens en, M. R., Mishin, Yu., and Voter, A. F. (2000). Phys. Rev., B 62, 3658.CrossRef
Stauffer, D., and Aharony, A. (1992). Introduction to Percolation Theory. London: Taylor and Francis.Google Scholar
Suryanarayana, R., Frey, C. A., Sastry, S. M. L., Waller, B. E., Bates, S. E., and Buhro, W. E. J. (1996). Mater. Res., 11, 439.CrossRef
Sutton, A. P., and Balluffi, R. W. (1996). Interfaces in Crystalline Materials. Oxford: Oxford Science Publications.Google Scholar
Suzuoka, T. (1961). Trans. Jap. Inst. Metals, 2, 25.CrossRef
Tanimoto, H., Farber, P., Würschum, R., Valiev, R. Z., and Schaefer, H.-E. (1999). Nanostruct. Mater., 12, 681.CrossRef
Tanimoto, H., Pasquini, L., Prümmer, R., Kronmüller, H., and Schaefer, H.-E. (2000). Scripta Mater., 42, 961.CrossRef
Tellkamp, V. L., Melmed, A., and Lavernia, E. J. (2001). Metall. Mater. Trans., A 32, 2335.CrossRef
Valiev, R. Z., Gertsman, V.Yu., and Kaibyshev, O. A. (1980). Phys. Stat. Sol., 61, K95.CrossRef
Valiev, R. Z., and Langdon, T. G. (1993). Acta Metall., 41, 949.CrossRef
Valiev, R. Z., Islamgaliev, R. K., and Alexandrov, I. V. (2000). Progr. Mater. Sci., 45, 103.CrossRef
Valiev, R. Z., Song, C., McFadden, S. X., Mukherjee, A. K., and Mishra, R. S. (2001). Phil. Mag., A. 81, 25.CrossRef
Valiev, R. Z., Alexandrov, I. V., Zhu, Y. T., and Lowe, T. C. (2002). J. Mater. Res., 17, 5.CrossRef
Valiev, R. Z. (2004). Nature Mater., 3, 511.CrossRef
Swygenhoven, H., and Derlet, P. M. (2001). Phys. Rev., B 64, 224105.CrossRef
Swygenhoven, H., Spaczer, M., and Caro, A. (1999a). Acta Mater., 47, 3117.CrossRef
Swygenhoven, H., Spavzer, M., Caro, A., and Farkas, D. (1999b). Phys. Rev., B 60, 22.CrossRef
Swygenhoven, H., Derlet, P. M., and Hasnaoui, A. (2002). Phys. Rev., B 66, 024101.CrossRef
Van Swygenhoven, H., Derlet P. M., Hasnaoui, A., and Samaras, M. (2003). In Nanostructures: Synthesis, Functional Properties and Applications, ed. Tsakalakos, T., Ovid'ko, I. A., and Vasudevan, A. K.Dordrecht: Kluwer, p. 155.
Veprek, S., and Argon, A. S. (2002). J. Vac. Sci. Technol., 20, 650.CrossRef
Vladimirov, V. I. (1975). Einfuhrüng in die Physikalishe Theorie der Plastizität and Festigkeit. Leipzig: VEB eutscher Verlag für Grundstoffindutrie.Google Scholar
Volpp, T., Göring, E., Kuschke, W.-M., and Arzt, E. (1997). Nanostruct. Mater., 8, 855.CrossRef
Wang, N., Wang, Z., Aust, K. T., and Erb, U. (1995). Acta Metall. Mater., 43, 519.CrossRef
Wang, Y., Chen, M., Zhou, F., and Ma, E. (2002). Nature, 419, 912.CrossRef
Wang, Y. M., and Ma, E. (2004a). Acta Mater., 52, 1699.CrossRef
Wang, Y. M., and Ma, E. (2004b). Appl. Phys. Lett., 85, 2750.CrossRef
Wang, Y. M., Hodge, A. M., Biener, J., Hamza, A. V., Barnes, D. E., Liu, K., and Nieh, T. G. (2005). Appl. Phys. Lett., 86, 101915.CrossRef
Weertman, J. R., and Sanders, P. G. (1994). Solid State Phenom., 35–36, 249.
Wei, Q., Jia, D., Ramesh, K. T., and Ma, E. (2002). Appl. Phys. Lett., 81, 1240.CrossRef
Wei, Q., Cheng, S., Ramesh, K. T., and Ma, E. (2004). Mater. Sci. Eng., A, 381, 71.CrossRef
Weissmueller, J., and Markmann, J. (2005). Adv. Eng. Mater., 7, 202.CrossRef
Witney, A. B., Sanders, P. G., Weertman, J. R., and Eastman, J. A. (1995). Scr. Metall. Mater., 33, 2025.CrossRef
Wolf, D., Yamakov, V., Phillpot, S. R., Mukherjee, A. K., and Gleiter, H. (2005). Acta Mater., 53, 1.CrossRef
Würsch um, R., Kübler, A., Gruß, S., Scharwaechter, P., Frank, W., Valiev, R. Z., Mulyukov, R. R., and Schaefer, H.-E. (1996). Annales de Chimie (Fr.), 21, 471.
Würsch um, R., Reimann, K., Gruß, S., Farber, P., Kübler, A., Scharwaechter, P., Frank, W., Kruse, O., Carstanjen, H. D., and Schaefer, H.-E. (1997). Phil. Mag., B 76, 407.
Whipple, R. T. P. (1954). Phil. Mag., 45, 1225.CrossRef
Yamakov, V., Wolf, D., Salazar, M., Phillpot, S. R., and Gleiter, H. (2001). Acta Mater., 49, 2713.CrossRef
Yamakov, V., Wolf, D., Phillpot, S. R., and Gleiter, H. (2002). Acta Mater., 50, 61.CrossRef
Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K., and Gleiter, H. (2003). Phil. Mag. Lett., 83, 385.CrossRef
Yin, K. M., King, A. H., Hsieh, T. E., Chen, F. R., Kai, J. J., and Chang, L. (1997). Microscopy and Microanalysis, 3, 417.
Youngdahl, C. J., Sanders, P. G., Eastman, J. A., and Weertman, J. R. (1997). Scr. Mater., 37, 809.CrossRef
Youssef, K. M., Scattergood, R. O., Murty, K. L., and Koch, C. C. (2004). Appl. Phys. Lett., 85, 929.CrossRef
Youssef, K. M., Scattergood, R. O., Murty, K. L., Horton, J. A., and Koch, C. C. (2005). Appl. Phys. Lett., 87, 091904.CrossRef
Youssef, K. M., Scattergood, R. O., Murty, K. L., and Koch, C. C. (2006). Scr. Mater., 54, 251.CrossRef
Zaichenko, S. G., and Glezer, A. M. (1997). Phys. Sol. State, 39, 1810.CrossRef
Zelin, M. G., and Mukherjee, A. K. (1993). Phil. Mag., A 68, 1183.CrossRef
Zelin, M. G., and Mukherjee, A. K. (1995). Acta Metall. Mater., 43, 2359.CrossRef
Zelin, M. G., and Mukherjee, A. K. (1996). Mater. Sci. Eng., A 208, 210.CrossRef
Zelin, M. G., Dunlap, M. R., Rosen, R., and Mukherjee, A. K. (1993). J. Appl. Phys., 74, 4972.CrossRef
Zelin, M. G., Guillard, S., and Mukherjee, A. (2001). Mater. Sci. Eng., A 309–310, 514.CrossRef
Zghal, S , Hytch, M. J., Chevalier, J.-P., Twesten, R., Wu, F., and Bellon, P. (2002). Acta Mater., 50, 4695.CrossRef
Zhan, G.-D., Kuntz, J. D., Wan, J., and Mukherjee, A. K. (2003). In Nanomaterials for Structural Applications, ed. Berndt, C. C., Fisher, T., Ovid'ko, I. A., Skandan, G., and Tsakalakos, T., Vol. 740. Warrendale: MRS Symp. Proc., p. 49.
Zhan, G.-D., Kuntz, J. D., Wan, J., and Mukherjee, A. K. (2004). MRS Bull., 29, 22.
Zhu, Y. T., Liao, X. Z., Srivansan, S. G., Zhao, Y. H., Baskes, M. I., Zhou, F., and Lavernia, E. J. (2004). Appl. Phys. Lett., 85, 5049.CrossRef
Zhu, Y. T., Liao, X. Z., and Valiev, R. Z. (2005a). Appl. Phys. Lett., 86, 103112.CrossRef
Zhu, B., Asaro, R. J., Krysl, P., and Bailey, R. (2005b). Acta Mater., 53, 4825.CrossRef
Ziman, J. (1979). Models of Disorder. Cambridge: Cambridge University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×