Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T04:35:51.307Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  04 December 2009

Carl C. Koch
Affiliation:
North Carolina State University
Ilya A. Ovid'ko
Affiliation:
Russian Academy of Sciences, Moscow
Sudipta Seal
Affiliation:
University of Central Florida
Stan Veprek
Affiliation:
Technische Universität München
Get access

Summary

With the explosion of research interest in nanocrystalline materials in recent years, one sub-area that has received significant attention is the mechanical behavior of materials with grain sizes less than 100 nm. The great interest in the mechanical behavior of nanocrystalline materials originates from the unique mechanical properties first observed and/or predicted by the pioneers of this field, Gleiter and co-workers, in materials prepared by the gas condensation method (Gleiter, 1989). Among these early observations or predictions were:

  • lower elastic moduli than for conventional grain size materials – by as much as 30%–50%;

  • very high hardness and strength – hardness values for nanocrystalline pure metals (~10 nm grain size) that are 2–10 or more times higher than those of larger grained (>1 μm) metals;

  • increased ductility – perhaps even superplastic behavior – at low homologous temperatures in even normally brittle ceramics or intermetallics with nanoscale grain sizes, believed to be caused by grain boundary, diffusional deformation mechanisms.

While some of these early observations and predictions have been verified by subsequent studies, in particular the high hardness and strength values, some have been found to be caused by high porosity in the early bulk samples (for example, elastic constant behavior) or to other artifacts introduced by the processing procedures.

Type
Chapter
Information
Structural Nanocrystalline Materials
Fundamentals and Applications
, pp. 1 - 24
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, M., Kench, P. J., Tsotsos, C., Gibson, P. N., Leyland, A., and Matthews, A. (2005). J. Vac. Sci. Technol. A, 23, 423.CrossRef
Barnett, S. A. (1993). In Physics of Thin Films Vol. 17: Mechanic and Dielectric Properties, ed. Francombe, M. H., and Vossen, J. L.Boston: Academic Press, p. 2.Google Scholar
Barnett, S. A., Madan, A., Kim, I., and Martin, K. (2003). MRS Bulletin, 28, 169.CrossRef
Berger, L. (1996). Phys. Rev. B, 54, 9353.CrossRef
Bunshah, R. F., Nimmagadda, R., Doerr, H. J., Movchan, B. A., Grechanuk, N. I., and Dabidzha, E. V. (1980). Thin Solid Films, 72, 261.CrossRef
Buschow, K. H. J. (1988). In Ferromagnetic Materials Vol 4, ed. Wohlfarth, E. P., and Buschow, K. H. J.Amsterdam:Elsevier, p. 1.Google Scholar
Cowburn, R. P., Koltsov, D. K., Adeyeye, A. O., and Welland, M. E. (1998). Appl. Phys. Lett., 73, 3947.CrossRef
Chung, Y.-W., and Sproul, W. D. (2003). MRS Bulletin, 28, 164.CrossRef
Dekker, C. (1999). Physics Today, 52(5), 22.CrossRef
Ehmann, K. F., DeVor, R. E., Kapoor, S. G., and Ni, J. (2000). Micro/Meso-Mechanical Manufacturing M4, NSF Workshop, May 16–17.
Forró, L., Salvetat, J.-P., Bonard, J.-M., Bacsa, R., Thompson, N. H., Garaj, S., Thier-Nga, L., Gaál, R., Kulik, A., Ruzicka, B., Degiorgi, L., Bachtold, A., Schönenberger, C., Pekker, S., and Hernandi, K. (2000). Science and Application of Nanotubes, ed. Tomànek, D., and Enbody, R. J.New York: Kluwer Academic / Plenum Publishers, p. 297.Google Scholar
Gao, G., Cagin, T., and Goddard, W. A. III (1997). Energetics, Structure, Mechanical and Vibrational Properties of Single Walled Carbon Nanotubes (SWNT) (http://www.wag.caltech.edu/foresight/foresight_2.html). Nanotechnology, 9 (1998), 1984.Google Scholar
Gleiter, H. (1989). Progress in Mater. Sci., 33, 223.CrossRef
Gojnya, F., Wichmann, M., Fiedler, B., Bauhofer, W., and Schulte, K. (2005). Composites A, 15, 1.
Guinier, A. (1938). Nature, 142, 569.CrossRef
Hanemann, T., Boehm, J., Henzi, P., Honnef, K., Litfin, K., Ritzhaupt-Kleissl, E., and Hausselt, J. (2004). IEEE Proc.-Nanobiotechnol., 151, 167.CrossRef
Heinrich, B., and Bland, J. A. C. (1994). Ultrathin Magnetic Structures. Berlin: Springer.CrossRefGoogle Scholar
Holleck, H., Lahres, M., and Woll, P. (1990). Surf. Coat. Technol., 41, 179.CrossRef
Iijima, S. (1991). Nature, 354, 56.CrossRef
Jianu, A., Valeanu, M., Lazar, D. P., Lifei, M., Tomut, M., Pop, V., and Alexandru, S. (2004). Romanian Rep. Phys., 56, 385.
Jilek, M., Cselle, T., Holubar, P., Marstei, M., Veprek-Heijman, M. G. J., and Veprek, S. (2004). Plasma Chem. Plasma Process., 24, 493.CrossRef
Karimpoor, A. A., Erb, U., Aust, K. T., and Palumbo, G. (2003). Scripta Materialia, 49, 651.CrossRef
Karvankova, P., Männling, H.-D., Eggs, C., and Veprek, S. (2001). Surf. Coat. Technol., 146–147, 280.CrossRef
Kashiwagi, T., Grulke, E., Hilding, J., Harris, R., Awad, W., and Douglas, J. (2002). Macromolecules Rapid Commun., 23, 761.3.0.CO;2-K>CrossRef
Kelly, A., and Macmillan, N. H. (1986). Strong Solids, 3rd edition. Oxford: Clarendon Press.Google Scholar
Kneller, E. F., and Hawing, R. (1991). IEEE Trans. Mag., 27, 358.CrossRef
Koch, C. C., Morris, D. G., Lu, K., and Inoue, A. (1999). MRS Bulletin, 24, 54.CrossRef
Koehler, J. S. (1970). Phys. Rev. B, 2, 547.CrossRef
Kovacevic, V., Lucic, S., and Leskovac, M. (2002). J. Adhesion Sci. Technol., 16, 1343.CrossRef
Krivorotov, I. N., Emley, N. C., Sankey, J. C., Kiseiev, S. I., Ralph, D. C., and Buhrman, R. A. (2005). Science, 307, 228.CrossRef
Kusano, E., Kitagawa, M., Nanto, H., and Kinbara, A. (1998). J. Vac. Sci. Technol. A, 16, 1272.CrossRef
Lehocky, S. L. (1978a). J. Appl. Phys., 49, 5479.CrossRef
Lehocky, S. L. (1978b). Phys. Rev. Lett., 41, 1814.CrossRef
Li, H., and Ebrahimi, F. (2004). Appl. Phys. Lett., 84, 4307.CrossRef
Li, S. H., Shi, Y. L., and Peng, H. R. (1992). Plasma Chem. Plasma Process., 12, 287.
Liu, Q., Wijn, J., and Blitterswijk, C. (1997). Biomaterials, 18, 1263.CrossRef
Maziasz, P. J., and Pollard, M. (2003). Adv. Mater. Processes, 161, 57.
McFadden, S. X., Mishra, R. S., Valiev, R. Z., Zhilyaev, A. P., and Mukherjee, A. K. (1999). Nature, 398, 684.CrossRef
Mehl, R. F., and Cahn, R. W. (1983). In: Physical Metallurgy, 3rd edition. Amesterdam: North Holland, p. 1.Google Scholar
Merica, P. D., Waltenburg, R. G., and Scott, H. (1919). Bulletin, AIME (June), 913.
Mohanan, J. L., Arachchige, I. U. and Brock, S. L. (2005). Science, 307(5708), 397.
Münz, W.-D. (2003). MRS Bulletin, 28, 173.CrossRef
Münz, W.-D., Lewis, D. B., Hovsepian, P. Eh., Schönjahn, C., Ehiasarian, A., and Smith, I. J., (2001). Surf. Engineering, 17, 15.CrossRef
Musil, J., Kadlec, S., Vyskocil, J., and Valvoda, V. (1988). Thin Solid Films, 167, 107.CrossRef
Musil, J. (2000). Surf. Coat. Technol., 125, 322.CrossRef
Porter, D. A., and Easterling, K. E. (1983). Phase Transformations in Metals and Alloys. New York: Van Nostrand Reinhold, p. 291.Google Scholar
Preston, G. D. (1938). Nature, 142, 570.CrossRef
Rogl, P., and Schuster, J. C. (1992). Phase Diagrams of Ternary Boron Nitride and Silicon Nitride Systems. Materials Park, Ohio: ASM The Materials Society.Google Scholar
Saito, R., Dresselhaus, G., and Dresselhaus, M. S. (1998). Physical Properties of Carbon Nanotubes. Singapore: Imperial College Press, Utopia Publications.CrossRefGoogle Scholar
Scattergood, R. O., and Koch, C. C. (2003). Unpublished, North Carolina State University.
Shinn, M., Hulman, L., and Barnett, S. A. (1992). J. Mater. Res., 7, 901.CrossRef
Singh, S., Godhkindi, M. M., Krishnarao, R. V., Murthy, B. S., and Mukunda, P. G. (2003). Rev. Adv. Mat. Sci., 5, 337.
Slonczewski, J. C. (1996). J. Magn. Mater., 159, L1.CrossRef
Soe, W.-H., and Yamamoto, R. (1999). Radiat. Effects Defects Solids, 148, 213.CrossRef
Sun, S. H., and Murray, C. B. (1999). J. Appl. Phys., 85, 4325.CrossRef
Tixier, S., Böni, P., and Swygenhoven, H. (1999). Thin Solid Films, 342, 188.CrossRef
Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M. (1996). Nature, 381, 678.CrossRef
Urazhdin, S., Birge, N. O., Pratt, W. P., and Bass, J. (2003). Phys. Rev. Lett., 91, 146 803.CrossRef
Veprek, S. (1999). J. Vac. Sci. Technol. A, 17, 2401.CrossRef
Veprek, S., and Reiprich, S. (1995). Thin Solid Films, 268, 64.CrossRef
Veprek, S., Reiprich, S., and Li, S. H. (1995a). Appl. Phys. Lett., 66, 2640.CrossRef
Veprek, S., Haussmann, M., and Reiprich, S. (1995b). J. Vac. Sci. Technol. A, 14, 46.
Veprek, S., Haussmann, M., Reiprich, S., Li, S. H., and Dian, J. (1996). Surf. Coat. Technol., 86–87, 394.CrossRef
Veprek, S., Männling, H.-D., Jilek, M., and Holubar., P. (2004). Mater. Sci. Eng. A, 366, 202.CrossRef
Veprek, S., Veprek-Heijman, G. M. J., Karvankova, P., and Prochazka, J. (2005). Thin Solid Films, 476, 1.CrossRef
Voevodin, A. A., and Zabinski, J. S. (1998). Diamond and Related Materials, 7, 463.CrossRef
Voevodin., A. A., and Zabinski, J. S. (2000). Thin Solid Films, 370, 223.CrossRef
Voevodin, A. A., Schneider, J. M., Rebholz, C., and Matthews, A. (1996a). Tribology Int., 29, 559.CrossRef
Voevodin, A. A., Capano, M. A., Safriet, A. J., Donley, M. S., and Zabinski, J. S. (1996b). Appl. Phys. Lett., 69, 188.CrossRef
Voevodin, A. A., Prasad, S. V., and Zabinski, J. S. (1997a). J. Appl. Phys., 82, 855.CrossRef
Voevodin, A. A., Walck, S. D., and Zabinski, J. S. (1997b). Wear, 203–204, 516.CrossRef
Voevodin, A. A., Fitz, T. A., Hu, J. J., and Zabinski, J. S. (2002). J. Vac. Sci. Technol. A, 20, 1434.CrossRef
Wilm, A. (1906). German patent DRP244554.
Wu, C. L., Zhang, M. Q., Rong, M. Z., Lehmann, B., and Friedrich, K., (2004). Plastics, Rubbers and Composites, 33 (2/3), 71.CrossRef
Youssef, K. M., Scattergood, R. O., Murty, K. L., and Koch, C. C. (2004). Appl. Phys. Lett., 85, 929.CrossRef
Yu, M. F., Files, B. S., Arepalli, S., and Ruoff, R. S. (2000). Phys. Rev. Lett., 84, 5552.CrossRef
Zeman, P., Cerstvy, R., Mayrhofer, P. H., Mitterer, C., and Musil, J. (2000). Mater. Sci. Eng. A, 289, 189.CrossRef
Zhang, M., and Rong, M. (2003). Chinese J. Polymer Sci., 21(6), 587.
Zhang, R. F., and Veprek, S. (2006). Mater. Sci. Eng. A, 424 (1–2), 128.
Zhitomirsky, V. N., Grimber, I., Rapoport, L., Travitzky, N. A., Bocman, R. L., Goldsmith, S., and Weiss, B. Z. (1999). Surf. Coat. Technol., 120–121, 219.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Carl C. Koch, North Carolina State University, Ilya A. Ovid'ko, Russian Academy of Sciences, Moscow, Sudipta Seal, University of Central Florida, Stan Veprek, Technische Universität München
  • Book: Structural Nanocrystalline Materials
  • Online publication: 04 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618840.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Carl C. Koch, North Carolina State University, Ilya A. Ovid'ko, Russian Academy of Sciences, Moscow, Sudipta Seal, University of Central Florida, Stan Veprek, Technische Universität München
  • Book: Structural Nanocrystalline Materials
  • Online publication: 04 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618840.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Carl C. Koch, North Carolina State University, Ilya A. Ovid'ko, Russian Academy of Sciences, Moscow, Sudipta Seal, University of Central Florida, Stan Veprek, Technische Universität München
  • Book: Structural Nanocrystalline Materials
  • Online publication: 04 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618840.002
Available formats
×