Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T12:18:10.632Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  06 January 2022

Andries E. Brouwer
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
H. Van Maldeghem
Affiliation:
Universiteit Gent, Belgium
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, R. J. R., Colbourn, C. J. & Dinitz, J. H., Mutually orthogonal Latin squares (MOLS) , pp. 160– 193 in: Handbook of Combinatorial Designs, 2nd ed., Colbourn, C. J. & Dinitz, J. H. (eds.), Chapman & Hall/CRC, Boca Raton, 2007. (p. 203)Google Scholar
Abel, R. J. R. & Greig, M., BIBDs with small block size , Chapter II.3, pp. 72–79 in: Handbook of Combinatorial Designs, 2nd ed., Colbourn, C. J. & Dinitz, J. H. (eds.), Chapman & Hall/CRC, Boca Raton, 2007. (p. 208)Google Scholar
Abiad, A. &Haemers, W. H., Switched symplectic graphs and their 2-ranks , Des. Codes Cryptogr. 81 (2016) 35–41. (pp. 235, 254)Google Scholar
Abramenko, P. & Brown, K. S., Buildings, Theory and Applications, GTM 248, Springer, New York, 2008. (p. 123)Google Scholar
Adm, M., Bergen, R., Ihringer, F., Jaques, S., Meagher, K., Purdy, A. & Yang, B., Ovoids of generalized quadrangles of order (q, q 2q) and Delsarte cocliques in related strongly regular graphs , J. Combin. Designs 26 (2018) 249–263. (p. 214)CrossRefGoogle Scholar
Ahrens, R. W. & Szekeres, G., On a combinatorial generalization of27 lines associated with a cubic surface , J. Austral. Math. Soc. 10 (1969) 485–492. (p. 111)Google Scholar
Al-Azemi, A., Betten, A. & Betten, D., Unital designs with blocking sets , Discr. Appl. Math. 163 (2014) 102–112. (p. 294)Google Scholar
Alfuraidan, M. R., Sarumi, I. O. & Shpectorov, S., On the non-existence of srg(76, 21, 2, 7) , Graphs Combin. 35 (2019) 847–854. (p. 16)Google Scholar
Amarra, C., Jin, Wei & Praeger, C. E., On locally n × n grid graphs, arXiv:1903.07931, Mar. 2019. (p. 150)Google Scholar
В. Л. Арлазаров, А. А. Леман & М. З. Розенфельд (V. L. Arlazarov, A. A. Lehman & M. Z. Rozenfel’d), Построение и исследование на ЭВМ графов с 25, 26 и 29 вершинами (The construction and analysis by a computer of the graphs on 25, 26 and 29 vertices) (Russian), preprint, 58 pp., Institute of Control Theory, Moscow (1975). (p. 274)Google Scholar
Arslan, O. & Sin, P., Some simple modules for classical groups and p-ranks of orthogonal and Hermitian geometries , J. Algebra 327 (2011) 141–169. (pp. 67)Google Scholar
Aschbacher, M., On collineation groups of symmetric block designs , J. Combin. Th. 11 (1971) 272–281. (p. 208)Google Scholar
Aschbacher, M., 3-Transposition Groups, Cambridge Univ. Press, Cambridge, 1997. (p. 146)Google Scholar
Aschbacher, M., Flag structures on Tits geometries , Geom. Dedicata 14 (1983) 21–32. (p. 359)CrossRefGoogle Scholar
Aschbacher, M., The 27-dimensional module for E 6,I , Invent. Math. 89 (1987) 159–195. (p. 134)Google Scholar
Aschbacher, M. & Smith, S., Tits geometries over GF(2) defined by groups over GF(3) , Comm. Algebra 11 (1983) 1675–1684. (p. 126)CrossRefGoogle Scholar
jr.Assmus, E. F. & Key, J. D., Designs and their Codes, Cambridge Univ. Press, Cambridge, 1992. (p. 249)Google Scholar
jr.Assmus, E. F. & jr.Mattson, H. F., New 5-designs , J. Combin. Th. 6 (1969) 122–151. (p. 364)Google Scholar
jr.Assmus, E. F., Mezzaroba, J. A. & Salwach, C. J., Planes and biplanes , pp. 205–212 in: Higher Combinatorics, Proc. NATO Advanced Study Inst. (Berlin 1976), Reidel, Dordrecht, 1977. (p. 208)Google Scholar
Azarija, J. & Marc, T., There is no (75,32,10,16) strongly regular graph , Lin. Alg. Appl. 557 (2018) 62–83. (pp. 16, 210, 230, 401)Google Scholar
Azarija, J. & Marc, T., There is no (95,40,12,20) strongly regular graph , J. Combin. Designs 28 (2020) 294–306. (pp. 16, 210, 211, 230, 402)CrossRefGoogle Scholar
Babai, L., On the complexity of canonical labeling of strongly regular graphs , SIAM J. Comput. 9 (1980) 212–216. (p. 241)Google Scholar
Babai, L., On the automorphism groups of strongly regular graphs I , pp. 359–368 in: Proc. Conf. Innovations Theor. Comp. Sci. (Princeton, 2014), ACM, 2014. (p. 241)Google Scholar
Babai, L., On the automorphism groups of strongly regular graphs II , J. Algebra 421 (2015) 560–578. (p. 241)Google Scholar
Babai, L., Graph isomorphism in quasipolynomial time, arXiv:1512.03547, Jan. 2016. (p. 241)CrossRefGoogle Scholar
Babai, L., Graph isomorphism in quasipolynomial time (extended abstract), pp. 684–697 in: STOC’16—Proc. 48th ACMSIGACT Symp. Theor. Computing (Cambridge, MA, 2016), Wichs, D. & Mansour, Y. (eds.), ACM, New York, 2016. (p. 241)Google Scholar
Babai, L., Grigoryev, D. Yu. & Mount, D. M., Isomorphism of graphs with bounded eigenvalue multiplicity , pp. 310–324 in: Proc. 14th ACM Symp. Theor. Computing (San Francisco, 1982), ACM, New York, 1982. (p. 241)Google Scholar
Babai, L. & Wilmes, J., Asymptotic Delsarte cliques in distance-regular graphs , J. Alg. Combin. 43 (2016) 771–782. (p. 243)CrossRefGoogle Scholar
Bagchi, B., A regular two-graph admitting the Hall-Janko-Wales group, pp. 35–45 in: Combinatorial Mathematics and Applications (Calcutta, 1988), Sankhyā (Ser. A) 54 (1992), Special Issue. (pp. 307, 308)Google Scholar
Bagchi, B., On quasi-symmetric designs , Des. Codes Cryptogr. 2 (1992) 69–79. (pp. 211, 213)Google Scholar
Bagchi, B., On strongly regular graphs with μ ≤ 2 , Discr. Math. 306 (2006) 1502–1504. (p. 243)Google Scholar
Bagchi, S. & Bagchi, B., Designs from pairs of finite fields I. A cyclic unital U (6) and other regular Steiner 2-designs , J. Combin. Th. (A) 52 (1989) 51–61. (p. 91)Google Scholar
Bagchi, B., Brouwer, A. E. & Wilbrink, H. A., Notes on binary codes related to the O(5,q) generalized quadrangle for odd q , Geom. Dedicata 39 (1991) 339–355. (pp. 255)CrossRefGoogle Scholar
Baker, R. D., Partitioning the planes of AO2m (2) into 2-designs, Discr. Math. 15 (1976) 205–211. (p. 111)Google Scholar
Ball, S., Blokhuis, A. & Mazzocca, F., Maximal arcs in Desarguesian planes of odd order do not exist , Combinatorica 17 (1997) 31–41. (p. 179)Google Scholar
Ball, S., Govaerts, P. & Storme, L., On ovoids of parabolic quadrics , Des. Codes Cryptogr. 38 (2006) 131–145. (pp. 69, 70)Google Scholar
Balonin, N. A. & Seberry, J., A review and new symmetric conference matrices , Информационно-управляющие системы 71 (2014) 27. (p. 200)Google Scholar
Bamberg, J., De Beule, J. & Ihringer, F., New non-existence proofs for ovoids of Hermitian polar spaces and hyperbolic quadrics, Ann. Comb. 21 (2017) 25–42. (p. 74)Google Scholar
Bamberg, J. & De Clerck, F., A geometric construction of Mathon’s perp-system from four lines of PG(5, 3) , J. Combin. Designs 18 (2010) 450–461. (p. 217)CrossRefGoogle Scholar
Bamberg, J., Giudici, M. & Royle, G. F., Every flock generalized quadrangle has a hemisystem , Bull. London Math. Soc. 42 (2010) 795–810. (p. 224)Google Scholar
Bamberg, J., Giudici, M. & Royle, G. F., Hemisystems of small flock generalized quadrangles , Des. Codes Cryptogr. 67 (2013) 137–157. (p. 224)Google Scholar
Bamberg, J., Kelly, S., Law, M. & Penttila, T., Tight sets and m-ovoids of finite polar spaces , J. Combin. Th. (A) 114 (2007) 1293–1314. (pp. 42, 61, 72, 75, 76, 282)Google Scholar
Bamberg, J., Law, M. & Penttila, T., Tight sets and m-ovoids of generalised quadrangles , Combinatorica 29 (2009) 1–17. (pp. 61, 62, 282)Google Scholar
Bamberg, J., Lee, M., Momihara, K. & Xiang, Q., A new infinite family of hemisystems of the Hermitian surface , Combinatorica 38 (2018) 43–66. (pp. 187, 224)Google Scholar
Bannai, E., Maximal subgroups of low rank of finite symmetric and alternating groups , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971/72) 475–486. (pp. 382, 384)Google Scholar
Bannai, Eiichi & Bannai, Etsuko, A survey on spherical designs and algebraic combinatorics on spheres , Europ. J. Combin. 30 (2009) 1392–1425. (pp. 237, 239)CrossRefGoogle Scholar
Bannai, E. & Damerell, R. M., Tight spherical designs, I , J. Math. Soc. Japan 31 (1979) 199–207. (p. 238)Google Scholar
Bannai, E. & Damerell, R. M., Tight spherical designs, II , J. London Math. Soc. (2) 21 (1980) 13–30. (p. 238)Google Scholar
Bannai, E., Munemasa, A. &Venkov, B., The nonexistence of certain tight spherical designs , Алгебра и анализ (Algebra i Analiz) 16 (2004) 123. English translation: St. Petersburg Math. J. 16 (2005) 609–625. (pp. 17, 238)Google Scholar
Bannai, E. & Sloane, N. J. A., Uniqueness of certain spherical codes , Canad. J. Math. 33 (1981) 437–449. (p. 238)Google Scholar
Barwick, S. G. & Ebert, G. L., Unitals in Projective Planes, Springer, New York, 2008. (p. 91)Google Scholar
Barwick, S. G., Jackson, Wen-Ai & Penttila, T., New families of strongly regular graphs , Australas. J. Combin. 67 (2017) 486–507. (p. 235)Google Scholar
Batten, L. & Dover, J. M., Some sets of type (m, n) in cubic order planes , Des. Codes Cryptogr. 16 (1999) 211–213. (pp. 175, 183)Google Scholar
Baumert, L. D., Mills, W. H. & Ward, R. L., Uniform cyclotomy , J. Number Th. 14 (1982) 67–82. (p. 186)Google Scholar
Behbahani, M. &Lam, C., Strongly regular graphs with non-trivial automorphisms , Discr. Math. 311 (2011) 132–144. (pp. 17, 400)Google Scholar
Behbahani, M., Lam, C. & , P. R. J. Östergård, On triple systems and strongly regular graphs , J. Combin. Th. (A) 119 (2012) 1414–1426. (p. 218)Google Scholar
Belevitch, V., Conference networks and Hadamard matrices , Ann. Soc. Sci. Bruxelles Sér. I 82 (1968) 13–32. (p. 200)Google Scholar
Benson, C. T. & Losey, N. E., On a graph of Hoffman and Singleton , J. Combin. Th. 11 (1971) 67–79. (p. 287)Google Scholar
Berlekamp, E. R., van Lint, J. H. & Seidel, J. J., A strongly regular graph derived from the perfect ternary Golay code , pp. 25–30 in: A Survey of Combinatorial Theory, Symp. Colorado State Univ., 1971, Srivastava, J. N. et al. (eds.), North Holland, Amsterdam, 1973. (p. 333)Google Scholar
Bernasconi, A. & Codenotti, B., Spectral analysis of Boolean functions as a graph eigenvalue problem , IEEE Trans. Computers 48 (1999) 345–351. (p. 196)CrossRefGoogle Scholar
Bernasconi, A., Codenotti, B. & VanderKam, J. M., A characterization of bent functions in terms of strongly regular graphs , IEEE Trans. Computers 50 (2001) 984–985. (p. 196)Google Scholar
Berndt, B. C., Evans, R. J. & Williams, K. S., Gauss and Jacobi Sums, Wiley, New York etc., 1998. (p. 187)Google Scholar
Beukemann, L. & Metsch, K., Small tight sets of hyperbolic quadrics , Des. Codes Cryptogr. 68 (2013) 11–24. (p. 76)Google Scholar
Beukers, F., On the generalized Ramanujan-Nagell equation I , Acta Arith. 38 (1981) 389–410. (p. 180)Google Scholar
Beutelspacher, A., On parallelisms in finite projective spaces , Geom. Dedicata 3 (1974) 35–40. (p. 111)Google Scholar
Beutelspacher, A., Partial spreads in finite projective spaces and partial designs , Math. Z. 145 (1975) 211–229. (p. 111)Google Scholar
Biggs, N., Algebraic Graph Theory, Cambridge Univ. Press, Cambridge, 1974. (p. 18)Google Scholar
Bishnoi, A. & De Bruyn, B., Characterizations of the Suzuki tower near polygons , Des. Codes Cryptogr. 84 (2017) 115–133. (p. 347)Google Scholar
Blass, A., Exoo, G. & Harary, F., Paley graphs satisfy all first-order adjacency axioms , J. Graph Theory 5 (1981) 435–439. (p. 193)Google Scholar
van der Blij, F. & Springer, T. A., Octaves and triality , Nieuw Arch. Wisk. 8 (1960) 158–169. (p. 132)Google Scholar
Bloemen, I., Thas, J. A. & Van Maldeghem, H., Translation ovoids of generalized quadrangles and hexagons , Geom. Dedicata 72 (1998) 19–62. (p. 76)Google Scholar
Blokhuis, A., On subsets of GF(q2) with square differences , Indag. Math. 46 (1984) 369–372. (p. 192)Google Scholar
Blokhuis, A. & Brouwer, A. E., Uniqueness of a Zara graph on 126 points and non-existence of a completely regular two-graph on 288 points, pp. 6–19 in: Papers dedicated to Seidel, J. J., de Doelder, P. J., de Graaf, J. & van Lint, J. H. (eds.), Eindhoven Univ. of Technology Report 84-WSK-03, Aug. 1984. (pp. 226, 231)Google Scholar
Blokhuis, A. & Brouwer, A. E., Locally 4-by-4 grid graphs , J. Graph Theory 13 (1989) 229–244. (pp. 150, 231)Google Scholar
Blokhuis, A. & Brouwer, A. E., Locally K3,3 or Petersen graphs , Discr. Math. 106 /107 (1992) 53–60. (p. 148)Google Scholar
Blokhuis, A. & Brouwer, A. E., Determination of the distance-regular graphs without 3-claws , Discr. Math. 163 (1997) 225–227. (p. 273)Google Scholar
Blokhuis, A., Brouwer, A. E., Buset, D. & Cohen, A. M., The locally icosahedral graphs, pp. 19–22 in: Finite Geometries (Conf. Winnipeg 1984), Marcel Dekker, New York, 1985. (p. 260)Google Scholar
Blokhuis, A. & Calderbank, A. R., Quasi-symmetric designs and the Smith normal form , Des. Codes Cryptogr. 2 (1992) 189–206. (pp. 211, 213)Google Scholar
Blokhuis, A., Brouwer, A. E. & Haemers, W. H., The graph with spectrum 141 240 (−4)10 (−6)9 , Des. Codes Cryptogr. 65 (2012) 71–75. (p. 300)Google Scholar
Blokhuis, A. & Haemers, W. H., An infinite family of quasi-symmetric designs , J. Stat. Plann. Infer. 95 (2001) 117–119. (p. 211)Google Scholar
Blokhuis, A., Kloks, T. & Wilbrink, H., A class of graphs containing the polar spaces , Europ. J. Combin. 7 (1986) 105–114. (pp. 225)CrossRefGoogle Scholar
Blokhuis, A. & Moorhouse, G. E., Some p-ranks related to orthogonal spaces , J. Alg. Combin. 4 (1995) 295–316. (pp. 67, 81)Google Scholar
Blokhuis, A. & Wilbrink, H., Characterization theorems for Zara graphs , Europ. J. Combin. 10 (1989) 57–68. (pp. 226, 231)Google Scholar
Bollob, B.ás & Thomason, A., Graphs which contain all small graphs , Europ. J. Combin. 2 (1981) 13–15. (p. 193)Google Scholar
van Bon, J., On locally Hoffman-Singleton graphs , J. Combin. Th. (B) 63 (1995) 159–161. (p. 289)Google Scholar
van Bon, J., Finite primitive distance-transitive graphs , Europ. J. Combin. 28 (2007) 517–532. (p. 19)Google Scholar
Bondarenko, A. V., On Borsuk’s conjecture for two-distance sets , Discr. Comput. Geom. 51 (2014) 509–515. (p. 348)Google Scholar
Bondarenko, A. V., Mellit, A., Prymak, A., Radchenko, D. & Viazovska, M., There is no strongly regular graph with parameters (460,153,32,60), pp. 131–134 in: Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan, Springer, Cham, 2018. (Also arXiv:1509.06286, Sep. 2015.) (pp. 17, 26, 239, 421)Google Scholar
Bondarenko, A. V., Prymak, A. & Radchenko, D., Non-existence of (76,30,8,14) strongly regular graph and some structural tools , Lin. Alg. Appl. 527 (2017) 53–72. (pp. 16, 210, 239, 401)Google Scholar
Bondarenko, A. V. & Radchenko, D. V., On a family of strongly regular graphs with λ = 1 , J. Combin. Th. (B) 103 (2013) 521–531. (pp. 17, 354, 411)Google Scholar
Borsuk, K., Drei Sätze über die n-dimensionale euklidische Sphäre , Fund. Math. 20 (1933) 177–190. (p. 348)Google Scholar
Bose, R. C., Strongly regular graphs, partial geometries and partially balanced designs , Pacif. J. Math. 13 (1963) 389–419. (pp. 1, 2, 216, 218, 219)Google Scholar
Bose, R. C. & Dowling, T. A., A generalization of Moore graphs of diameter two , J. Combin. Th. 11 (1971) 213–226. (pp. 227, 245)Google Scholar
Bose, R. C. & Laskar, R., A characterization of tetrahedral graphs , J. Combin. Th. 3 (1967) 366–385. (p. 219)Google Scholar
Bose, R. C. & Mesner, D. M., On linear associative algebras corresponding to association schemes of partially balanced designs , Ann. Math. Statist. 30 (1959) 21–38. (p. 22)Google Scholar
Bose, R. C. & Nair, K. R., Partially balanced incomplete block designs , Sankhyā 4 (1939) 337–372. (p. 22)Google Scholar
Bose, R. C. & Shimamoto, T., Classification and analysis of partially balanced incomplete block designs with two associate classes , J. Amer. Stat. Assoc. 47 (1952) 151–184. (pp. 1, 22, 31)Google Scholar
Bose, R. C. & Shrikhande, S. S., On the falsity of Euler’s conjecture about the nonexistence of two orthogonal Latin squares of order 4t +2 , Proc. Nat. Acad. Sci. U.S.A. 45 (1959) 734–737. (p. 203)Google Scholar
Bose, R. C. & Shrikhande, S. S., Graphs in which each pair of vertices is adjacent to the same number d of other vertices , Studia Sci. Math. Hungar. 5 (1970) 181–195. (p. 199)Google Scholar
Bose, R. C. & Shrikhande, S. S., Some further constructions for G2 (d) graphs , Studia Sci. Math. Hungar. 6 (1971) 127–132. (p. 198)Google Scholar
Bose, R. C., Shrikhande, S. S. & Parker, E. T., Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture , Canad. J. Math. 12 (1960) 189–203. (p. 203)Google Scholar
Bourbaki, N., Groupes et algèbres de Lie, Chap. 4, 5 et 6, Masson, Paris, 1981. (p. 119)Google Scholar
Bouyukliev, I., Fack, V., Willems, W. & Winne, J., Projective two-weight codes with small parameters and their corresponding graphs , Des. Codes Cryptogr. 41 (2006) 59–78. (pp. 177, 180, 183, 301)Google Scholar
Bouyukliev, I. & Simonis, J., Some new results on optimal codes over 𝔽5, Des. Codes Cryptogr. 30 (2003) 97–111. (p. 181)Google Scholar
Bracken, C., McGuire, G. & Ward, H., New quasi-symmetric designs constructed using mutually orthogonal Latin squares and Hadamard matrices , Des. Codes Cryptogr. 41 (2006) 195–198. (pp. 211)Google Scholar
Bremner, A. & Morton, P., The integer points on three related elliptic curves , Math. Comp. 39 (1982) 235–238. (p. 180)Google Scholar
Bremner, A., Calderbank, R., Hanlon, P., Morton, P. & Wolfskill, J., Two-weight ternary codes and the equation y2 = 4 × 3a + 13 , J. Number Th. 16 (1983) 212–234. (p. 180)Google Scholar
Bridges, W. G. & Mena, R. A., Rational circulants with rational spectra and cyclic strongly regular graphs , Ars. Combin. 8 (1979) 143–161. (p. 192)Google Scholar
Bridges, W. G. & Mena, R. A., Rational O-matrices with rational eigenvalues , J. Combin. Th. (A) 32 (1982) 264–280. (p. 192)Google Scholar
Brouwer, A. E., Polarities of G. Higman’s symmetric design and a strongly regular graph on 176 vertices , Aequationes Math. 25 (1982) 77–82. (p. 330)Google Scholar
Brouwer, A. E., The uniqueness of the strongly regular graph on 77 points , J. Graph Theory 7 (1983) 455–461. (pp. 16, 298, 401)Google Scholar
Brouwer, A. E., Some new two-weight codes and strongly regular graphs , Discr. Appl. Math. 10 (1985) 111–114. (pp. 175, 179, 182, 401, 410)Google Scholar
Brouwer, A. E., Uniqueness and nonexistence of some graphs related to M22 , Graphs Combin. 2 (1986) 21–29. (p. 332)Google Scholar
Brouwer, A. E., The complement of a geometric hyperplane in a generalized polygon is usually connected , pp. 53–57 in: Finite Geometry and Combinatorics, Proc. Deinze 1992, De Clerck, F. et al. (eds.), LMS Lecture Note Ser. 191, Cambridge Univ. Press, 1993. (p. 115)Google Scholar
Brouwer, A. E., On the uniqueness of a regular thin near octagon on 288 vertices (or the semibiplane belonging to the Mathieu group M12) , Discr. Math. 126 (1994) 13–27. (p. 326)Google Scholar
Brouwer, A. E., Block designs , pp. 693–745 in: Handbook of Combinatorics, Graham, R., Groetschel, M., Lovász, L. (eds.), Elsevier, Amsterdam, 1995. (p. 164)Google Scholar
Brouwer, A. E., Variations on a theme by Weetman , Discr. Math. 138 (1995) 137–145. (p. 245)Google Scholar
Brouwer, A. E., Toughness and spectrum of a graph , Lin. Alg. Appl. 226 –228 (1995) 267271. (p. 242)CrossRefGoogle Scholar
Brouwer, A. E., Locally Paley graphs , Des. Codes Cryptogr. 21 (2000) 69–76. (p. 193)Google Scholar
Brouwer, A. E. & Calderbank, A. R., An Erdős-Ko-Rado theorem for regular intersecting families of octads , Graphs Combin. 2 (1986) 309–316. (p. 210)Google Scholar
Brouwer, A. E., Cohen, A. M., Hall, J. I. & Wilbrink, H. A., Near polygons and Fischer spaces , Geom. Dedicata 49 (1994) 349–368. (pp. 166, 359)Google Scholar
Brouwer, A. E., Cohen, A. M. & Neumaier, A., Distance-Regular Graphs, Springer, 1989. (pp. 3, 6, 7, 19, 21, 25, 29, 42, 84, 90, 98, 107, 108, 109, 115, 150, 175, 193, 227, 232, 233, 288, 289, 319, 323, 327, 347, 371)Google Scholar
Brouwer, A. E. & Cohen, A. M. (with an appendix by Tits, J.), Some remarks on Tits geometries , Indag. Math. 45 (1983) 393–402 = Proc. KNAW A 86 (1983) 393–402. (p. 126)Google Scholar
Brouwer, A. E., Ducey, J. E. & Sin, P., The elementary divisors of the incidence matrix of skew lines in PG(3, q) , Proc. Amer. Math. Soc. 140 (2012) 2561–2573. (p. 259)Google Scholar
Brouwer, A. E. & van Eijl, C. A., On the p-rank of the adjacency matrices of strongly regular graphs , J. Alg. Combin. 1 (1992) 329–346. (pp. 250, 251, 252, 254, 257, 258, 265, 273)Google Scholar
Brouwer, A. E. &van Eupen, M., The correspondence between projective codes and 2-weight codes , Des. Codes Cryptogr. 11 (1997) 261–266. (p. 175)Google Scholar
Brouwer, A. E., Fon-der-Flaass, D. G. & Shpectorov, S. V., Locally co-Heawood graphs , pp. 59–68 in: Finite Geometry and Combinatorics—Proc. Deinze 1992, De Clerck, F. et al. (eds.), LMS Lecture Note Ser. 191, Cambridge Univ. Press, 1993. (p. 277)Google Scholar
Brouwer, A. E. & Güven, Ç., The generating rank of the space of short vectors in the Leech lattice mod 2 , Des. Codes Cryptogr. 65 (2012) 107–113. (p. 173)Google Scholar
Brouwer, A. E. & Haemers, W. H., Structure and uniqueness of the (81,20,1,6) strongly regular graph , Discr. Math. 106 /107 (1992) 77–82. (pp. 16, 299)Google Scholar
Brouwer, A. E. & Haemers, W. H., The Gewirtz graph—an exercise in the theory of graph spectra , Europ. J. Combin. 14 (1993) 397–407. (p. 290)Google Scholar
Brouwer, A. E. & Haemers, W. H., Spectra of Graphs, Springer, New York etc., 2012. (pp. 7, 9, 11, 15, 21, 29, 214, 231, 235, 236, 239, 241, 243, 250, 256, 262, 273, 285)Google Scholar
Brouwer, A. E., Horiguchi, N., Kitazume, M. & Nakasora, H., A construction of the sporadic Suzuki graph from U3(4) , J. Combin. Th. (A) 116 (2009) 1056–1062. (pp. 360, 361)Google Scholar
Brouwer, A. E., Ivanov, A. V. & Klin, M. H., Some new strongly regular graphs , Combinatorica 9 (1989) 339–344. (pp. 178, 240)Google Scholar
Brouwer, A. E., Koolen, J. H. &Klin, M. H., A root graph that is locally the line graph of the Petersen graph , Discr. Math. 264 (2003) 13–24. (pp. 402)Google Scholar
Brouwer, A. E., Koolen, J. H. & Riebeek, R. J., A new distance-regular graph associated to the Mathieu group M10 , J. Alg. Combin. 8 (1998) 153–156. (p. 333)Google Scholar
Brouwer, A. E. & van Lint, J. H., Strongly regular graphs and partial geometries, pp. 85–122 in: Enumeration and Design (Waterloo, Ont., 1982), Academic Press, Toronto, 1984. (pp. 87, 89, 198, 199, 323)Google Scholar
Brouwer, A. E. & Mesner, D. M., The connectivity of strongly regular graphs , Europ. J. Combin. 6 (1985) 215–216. (p. 14)Google Scholar
Brouwer, A. E. & Neumaier, A., A remark on partial linear spaces of girth 5 with an application to strongly regular graphs , Combinatorica 8 (1988) 5761. (p. 243)Google Scholar
Brouwer, A. E. & Pasechnik, D. V., Two distance-regular graphs , J. Alg. Combin. 36 (2012) 403–407. (p. 97)Google Scholar
Brouwer, A. E. & Polak, S. C., Uniqueness of codes using semidefinite programming , Des. Codes Cryptogr. 87 (2019) 1881–1895. (pp. 160, 164)Google Scholar
Brouwer, A. E. & Shult, E. E., Graphs with odd cocliques , Europ. J. Combin. 11 (1990) 99–104. (pp. 112, 148, 280)Google Scholar
Brouwer, A. E. & Wilbrink, H. A., The structure of near polygons with quads , Geom. Dedicata 14 (1983) 145–176. (p. 166)Google Scholar
Brouwer, A. E. & Wilbrink, H. A., Ovoids and fans in the generalized quadrangle GQ(4, 2) , Geom. Dedicata 36 (1990) 121–124. (pp. 81, 138, 272)Google Scholar
Brouwer, A. E. &Wilbrink, H. A., Block Designs , pp. 349–382 in: Handbook of Incidence Geometry, Buekenhout, F. (ed.), North-Holland, Amsterdam, 1995. (p. 249)Google Scholar
Brouwer, A. E., Wilson, R. M. & Xiang, Qing, Cyclotomy and strongly regular graphs , J. Alg. Combin. 10 (1999) 25–28. (p. 186)Google Scholar
Brown, K. S., Buildings, Springer, New York, 1989. (p. 123)Google Scholar
Bruck, R. H., Finite Nets II. Uniqueness and Inbedding , Pacif. J. Math. 13 (1963) 421–457. (pp. 218, 219)Google Scholar
Bruck, R. H., A survey of Binary Systems, Springer, Heidelberg, 1968 (p. 147)Google Scholar
Bruck, R. H. & Ryser, H. J., The nonexistence of certain finite projective planes , Canad. J. Math. 1 (1949) 88–93. (p. 201)Google Scholar
Bruen, A. A. & Drudge, K., The construction of Cameron-Liebler line classes in PG(3,q) , Finite Fields Appl. 5 (1999) 35–45. (p. 77)Google Scholar
Bruen, A. A. & Hirschfeld, J. W. P., Intersections in projective space. II. Pencils of quadrics , Europ. J. Combin. 9 (1988) 255–270. (p. 302)Google Scholar
Buczak, J. M. J., Finite group theory, Ph. D. Thesis, Oxford, 1980. (p. 240)Google Scholar
Buekenhout, F., La géométrie des groupes de Fischer, unpublished, 1974. (p. 141)Google Scholar
Buekenhout, F., Diagrams for geometries and groups , J. Combin. Th. (A) 27 (1979) 121–151. (p. 117)Google Scholar
Buekenhout, F. & Hubaut, X., Locally polar spaces and related rank 3 groups , J. Algebra 45 (1977) 391–434. (pp. 150, 272, 280)Google Scholar
Buekenhout, F. & Lef, C.èvre, Generalized quadrangles in projective spaces , Arch. Math. (Basel) 25 (1974) 540–552. (p. 46)Google Scholar
Buekenhout, F. & Shult, E., On the foundations of polar geometry , Geom. Dedicata 3 (1974) 155–170. (p. 33)Google Scholar
Buekenhout, F. & Van Maldeghem, H., A characterization of some rank 2 incidence geometries by their automorphism group , Mitt. Math. Sem. Giessen 218 (1994), i+70 pp. (p. 389)Google Scholar
Buset, D., Quelques conditions locales et extrémales en théorie des graphes, Ph. D. Thesis, Université Libre de Bruxelles, December 1997. (p. 193)Google Scholar
Bussemaker, F. C., Mathon, R. A. & Seidel, J. J., Tables of two-graphs , Technische Hogeschool Eindhoven, report 79-WSK-05, Eindhoven, Oct. 1979, 101 pp. (pp. 230, 274)Google Scholar
Bussemaker, F. C., Haemers, W. H., Mathon, R. & Wilbrink, H. A., A (49, 16, 3, 6) strongly regular graph does not exist , Europ. J. Combin. 10 (1989) 413–418. (pp. 16, 400)Google Scholar
Bussemaker, F. C., Haemers, W. H. & Spence, E., The search for pseudo orthogonal Latin squares of order six , Des. Codes Cryptogr. 21 (2000) 77–82. (p. 244)Google Scholar
Calderbank, A. R., On uniformly packed [n, n − k,4] codes over GF(q) and a class of caps in PG(k − 1,q) , J. London Math. Soc. 26 (1982) 365–385. (p. 180)Google Scholar
Calderbank, A. R., The application of invariant theory to the existence of quasi-symmetric designs , J. Combin. Th. (A) 44 (1987) 94–109. (pp. 210, 211, 212, 213)CrossRefGoogle Scholar
Calderbank, A. R., Geometric invariants for quasi-symmetric designs , J. Combin. Th. (A) 47 (1988) 101–110. (pp. 210, 211, 212, 213)Google Scholar
Calderbank, A. R., Inequalities for quasi-symmetric designs , J. Combin. Th. (A) 48 (1988) 53–64. (pp. 206, 207)Google Scholar
Calderbank, A. R. & Frankl, P., Binary codes and quasi-symmetric designs , Discr. Math. 83 (1990) 201–204. (pp. 211, 213)Google Scholar
Calderbank, A. R. & Kantor, W. M., The geometry of two-weight codes , Bull. London Math. Soc. 18 (1986) 97–122. (pp. 175, 354)Google Scholar
Cameron, P. J., On groups with several doubly-transitive permutation representations , Math. Z. 128 (1972) 1–14. (p. 244)Google Scholar
Cameron, P. J., Partial quadrangles , Quart. J. Math. Oxford (2) 26 (1975) 61–73. (p. 222)Google Scholar
Cameron, P. J., 6-Transitive graphs , J. Combin. Th. (B) 28 (1980) 168–179. (p. 240)Google Scholar
Cameron, P. J., Finite permutation groups and finite simple groups , Bull. London Math. Soc. 13 (1981) 1–22. (p. 383)Google Scholar
Cameron, P. J., Dual polar spaces , Geom. Dedicata 12 (1982) 75–85. (p. 166)Google Scholar
Cameron, P. J., Covers of graphs and EGQs , Discr. Math. 97 (1991) 83–92. (p. 150)Google Scholar
Cameron, P. J., Random strongly regular graphs , Discr. Math. 273 (2003) 103–114. (p. 17)Google Scholar
Cameron, P. J., Delsarte, P. & Goethals, J.-M., Hemisystems, orthogonal configurations, and dissipative conference matrices , Philips J. Res. 34 (1979) 147–162. (p. 83)Google Scholar
Cameron, P. J., Goethals, J. M. & Seidel, J. J., Strongly regular graphs having strongly regular subconstituents , J. Algebra 55 (1978) 257–280. (pp. 15, 16, 26, 27, 216, 310, 328, 332, 403, 405)Google Scholar
Cameron, P. J., Goethals, J.-M., Seidel, J. J. & Shult, E. E., Line graphs, root systems, and elliptic geometry , J. Algebra 43 (1976) 305–327. (p. 7)Google Scholar
Cameron, P. J. & Liebler, R. A., Tactical decompositions and orbits of projective groups , Lin. Alg. Appl. 46 (1982) 91–102. (p. 77)Google Scholar
Cameron, P. J. & van Lint, J. H., On the partial geometry pg(6, 6, 2) , J. Combin. Th. (A) 32 (1982) 252–255. (pp. 217, 301)Google Scholar
Cameron, P. J. & van Lint, J. H., Designs, Graphs, Codes and their Links, London Math. Soc. Student texts 22, Cambridge Univ. Press, 1991. (pp. 207, 240)Google Scholar
Cameron, P. J. & Rudvalis, A., A design and a geometry for the group Fi22 , Des. Codes Cryptogr. 44 (2007) 11–14. (p. 376)Google Scholar
Cameron, P. J. & Stark, D., A prolific construction of strongly regular graphs with the n-e.c. property , Electr. J. Combin. 9 (2002) #R31. (p. 17)Google Scholar
Cardinali, I. & De Bruyn, B., Spin-embeddings, two-intersection sets and two-weight codes , Ars. Combin. 109 (2013) 309–319. (p. 76)Google Scholar
Carlitz, L., A theorem on permutations in a finite field , Proc. Amer. Math. Soc. 11 (1960) 456–459. (pp. 5, 192)Google Scholar
Carmichael, R. D., Tactical configurations of rank two , Amer. J. Math. 53 (1931) 217–240. (p. 161)Google Scholar
Cayley, A., On the triple tangent planes of surfaces of the third order , Cambridge and Dublin Math. J. 4 (1849) 118–132. (p. 271)Google Scholar
Chakravarti, I. M., Some properties and applications of Hermitian varieties in a finite projective space PG(N,q2) in the construction of strongly regular graphs (two-class association schemes) and block designs , J. Combin. Th. 11 (1971) 268–283. (p. 91)Google Scholar
Chandler, D. B., Sin, P. & Xiang, Q., The Smith and critical groups of Paley graphs , J. Alg. Combin. 41 (2015) 1013–1022. (p. 258)Google Scholar
Chang, L. C., The uniqueness and nonuniqueness of the triangular association scheme , Sci. Record 3 (1959) 604–613. (pp. 5, 17, 273)Google Scholar
Chang, L. C., Association schemes of partially balanced block designs with parameters v = 28, n 1 = 12, n 2 = 15 and p 11 2 = 4, Sci. Record 4 (1960) 12–18. (pp. 5, 17, 273)Google Scholar
Charnes, C. & Dempwolff, U., The translation planes of order 49 and their automorphism groups , Math. Comp. 67 (1998) 1207–1224. (p. 368)Google Scholar
Yip, Chi Hoi, On the clique number of Paley graphs of prime power order, arXiv:2004.01175, May 2020. (p. 192)Google Scholar
Chowla, S. & Ryser, H. J., Combinatorial problems , Canad. J. Math. 2 (1960) 93–99 (p. 201)Google Scholar
Chung, F. R. K., Graham, R. L. & , R. M. Wilson, Quasi-random graphs , Combinatorica 9 (1989) 345–362. (pp. 193, 241)Google Scholar
Cimráková, M. & Fack, V., Searching for maximal partial ovoids and spreads in generalized quadrangles , Bull. Belg. Math. Soc. Simon Stevin 12 (2005) 697–705. (p. 60)Google Scholar
Cioab, S. M.ă, Kim, Kijung & Koolen, J. H., On a conjecture of Brouwer involving the connectivity of strongly regular graphs , J. Combin. Th. (A) 119 (2012) 904–922. (pp. 14, 274)Google Scholar
Cioab, S. M.ă, Koolen, J. H. & Li, Weiqiang, Disconnecting strongly regular graphs , Europ. J. Combin. 38 (2014) 1–11. (p. 14)Google Scholar
Cioab, S. M.ă, Guo, Krystal & Haemers, W. H., The chromatic index of strongly regular graphs, Ars Mathematica Contemporanea, to appear. Also arXiv:1810.06660, Oct. 2018. (p. 245)Google Scholar
Clebsch, A., Ueber de Flächen vierter Ordnung, welche eine Doppelcurve zweiten Grades besitzen , J. Reine Angew. Math. 69 (1868) 142–184. (p. 267)Google Scholar
Cohen, A. M., Geometries originating from certain distance-regular graphs, pp. 81–87 in: Finite Geometries and Designs (Proc. Chelwood Gate, 1980), LMS Lecture Note Ser. 49, Cambridge Univ. Press, 1981. (p. 347)Google Scholar
Cohen, A. M., A new partial geometry with parameters (s, t, α) = (7, 8, 4), J. Geom. 16 (1981) 181–186. (p. 217)Google Scholar
Cohen, A. M., Point-line geometries related to buildings, pp. 647–737 in: Handbook of Incidence Geometry, Buildings and Foundations (ed. Buekenhout, F.), Chapter 9, North-Holland, Amsterdam, 1995. (pp. 134, 138)Google Scholar
Cohen, A. M. & Tits, J., On generalized hexagons and a near octagon whose lines have three points , Europ. J. Combin. 6 (1985) 13–27. (pp. 115, 347)Google Scholar
Cohen, A. M. & Zantema, H., A computation concerning doubly transitive permutation groups , J. Reine Angew. Math. 347 (1984) 196–211. (p. 383)Google Scholar
Cohen, G., Honkala, I., Litsyn, S. & Lobstein, A., Covering Codes, Elsevier, Amsterdam, 1997. (p. 156)Google Scholar
Cohen, N. & Pasechnik, D. V., Implementing Brouwer’s database of strongly regular graphs , Des. Codes Cryptogr. 84 (2017) 223–235. (pp. 199)Google Scholar
Cohen, S. D., Clique numbers of Paley graphs , Quaestiones Math. 11 (1988) 225–231. (p. 192)Google Scholar
Collins, B. V. C., Strongly regular square-free graphs with μ = 2, Europ. J. Combin. 18 (1997) 267–279. (p. 227)Google Scholar
Connor, W. S., The uniqueness of the triangular association scheme , Ann. Math. Statist. 29 (1958) 262–266. (p. 17)Google Scholar
Conway, J. H., A characterization of Leech’s lattice , Invent. Math. 7 (1969) 137–142. (Also [217], Ch. 12.) (p. 172)Google Scholar
Conway, J. H., Three lectures on exceptional groups, pp. 215–247 in: Finite Simple Groups, Powell, M. B. & Higman, G. (eds.), Academic Press, London, 1971. (Also [217], Ch. 10.) (p. 159)Google Scholar
Conway, J. H., Five $1,000 problems, http://oeis.org/A248380/a248380.pdf, (p. 17)Google Scholar
Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. & Wilson, R. A., Atlas of finite groups, Oxford Univ. Press, 1985. (pp. 50, 51, 52, 386)Google Scholar
Conway, J. H., Kleidman, P. B. & Wilson, R. A., New families of ovoids in O 8 + , Geom. Dedicata 26 (1988) 157–170. (pp. 67, 72)Google Scholar
Conway, J. H. & Sloane, N. J. A., Sphere Packings, Lattices and Groups, Springer, New York etc., 1988. (pp. 172, 173, 432)Google Scholar
Conway, J. H. & Wales, D. B., Construction of the Rudvalis group of order 145 926 144 000 , J. Algebra 27 (1973) 538–548. (p. 372)Google Scholar
Conwell, G. M., The 3-space PG(3, 2) and its group , Math. Ann. 51 (1899) 417–444. (p. 165)Google Scholar
Coolsaet, K., A construction of the simple group of Rudvalis from the group U 3 (5) : 2, J. Group Th. 1 (1998) 143–163. (p. 372)Google Scholar
Coolsaet, K., The uniqueness of the strongly regular graph srg(105,32,4,12) , Bull. Belg. Math. Soc. Simon Stevin 12 (2005) 707–718. (pp. 16, 309, 402)Google Scholar
Coolsaet, K. & Degraer, J., Using algebraic properties of minimal idempotents for exhaustive computer generation of association schemes , Electr. J. Combin. 15 (2008) #R30. (pp. 16, 230, 323, 404)Google Scholar
Coolsaet, K., Degraer, J. & Spence, E., The strongly regular (45,12,3,3) graphs , Electr. J. Combin. 13 (2006) #R32. (pp. 16, 283, 400)Google Scholar
Coolsaet, K. & Juri, A.šić, Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs , J. Combin. Th. (A) 115 (2008) 1086–1095. (p. 26)Google Scholar
Cooperstein, B. N., On a connection between ovoids on the hyperbolic quadric O+ (10,q) and the Lie incidence geometry E6,1 (q) , pp. 55–64 in: Groups and Geometries (Proc. Conf. Siena 1996), di Martino, L. et al. (eds.), Birkhäuser Verlag, Basel, 1998. (p. 135)Google Scholar
Corneil, D. G. & Mathon, R. A., Algorithmic techniques for the generation and analysis of strongly regular graphs and other combinatorial configurations , Ann. Discr. Math. 2 (1978) 1–32. (p. 269)Google Scholar
Cossidente, A., Culbert, C., Ebert, G. L. & Marino, G., On m-ovoids of W3 (q), Finite Fields Appl. 14 (2008) 76–84. (pp. 61, 282)Google Scholar
Cossidente, A., Durante, N., Marino, G., Penttila, T. & Siciliano, A., The geometry of some two-character sets , Des. Codes Cryptogr. 46 (2008) 231–241. (pp. 175, 182)Google Scholar
Cossidente, A. & King, O. H., Some two-character sets , Des. Codes Cryptogr. 56 (2010) 105–113. (p. 175)Google Scholar
Cossidente, A. & Marino, G., Veronese embedding and two-character sets , Des. Codes Cryptogr. 42 (2007) 103–107. (p. 175)Google Scholar
Cossidente, A. & Pavese, F., On intriguing sets of finite symplectic spaces , Des. Codes Cryptogr. 86 (2018) 1161–1174. (p. 62)Google Scholar
Cossidente, A. & Pavese, F., New Cameron–Liebler line classes with parameter (q2 + 1)/2 , J. Alg. Combin. 49 (2019) 193–208. (p. 77)Google Scholar
Cossidente, A. & Penttila, T., Hemisystems on the Hermitian surface , J. London Math. Soc. 72 (2005) 731–741. (pp. 75, 223, 400, 417)Google Scholar
Cossidente, A. & Penttila, T., Segre’s hemisystem and McLaughlin’s graph , J. Combin. Th. (A) 115 (2008) 686–692. (p. 338)Google Scholar
Cossidente, A. & Van Maldeghem, H., The exceptional simple group O2 (q), q even and two-character sets , J. Combin. Th. (A) 114 (2007) 964–969. (p. 175)Google Scholar
Coster, M. J. & Haemers, W. H., Quasi-symmetric designs related to the triangular graph , Des. Codes Cryptogr. 5 (1995) 27–42. (p. 207)Google Scholar
Coxeter, H. S. M., The complete enumeration of finite groups of the form ri2 = (rir i ) ki�� = 1 , J. London Math. Soc. 1 (1935) 21–25. (p. 118)Google Scholar
Coxeter, H. S. M., Regular Polytopes, 2nd ed., MacMillan, New York, 1963. (p. 271)Google Scholar
Craigen, R. & Kharaghani, H., Hadamard matrices and Hadamard designs, Chapter V.1., pp. 273– 280 in: Handbook of Combinatorial Designs, 2nd ed., Colbourn, C. J & Dinitz, J. H. (eds.), Chapman & Hall/CRC, Boca Raton, 2007. (p. 199)Google Scholar
Crnkovi, D.ć & Maksimovi, M.ć, Construction of strongly regular graphs having an automorphism group of composite order , Contrib. Discr. Math. 15 (2020) 22–41. (pp. 17, 400)Google Scholar
Crnkovi, D.ć & Mikuli, V.ć, Block designs and strongly regular graphs constructed from the group U (3, 4) , Glasnik Matematički 41 (2006) 189–194. (p. 347)Google Scholar
Crnkovi, D.ć, Pavese, F. & , A. Švob, On the PSU (4, 2)-invariant vertex-transitive strongly regular (216, 40, 4, 8) graph , Graphs Combin. 36 (2020) 503–513. (p. 283)Google Scholar
Crnkovi, D.ć, Rukavina, S. & Švob,, A. New strongly regular graphs from orthogonal groups O + (6, 2) and O (6, 2), Discr. Math. 341 (2018) 2723–2728. (pp. 283, 350, 407)Google Scholar
Crnkovi, D.ć, Rukavina, S. & Švob,, A. On some distance-regular graphs with many vertices , J. Alg. Combin. 51 (2020) 641–652. (p. 379)Google Scholar
Crnkovi, D. ć,, A. Švob& Tonchev, V. D., New strongly regular graphs with parameters (81, 30, 9, 12) and a partial geometry pg(5, 5, 2), arXiv:2009.09544, 20 Sep. 2020 = Strongly regular graphs with parameters (81, 30, 9, 12) and a new partial geometry , J. Alg. Combin. 53 (2021) 253–261. (p. 301)Google Scholar
Curtis, R. T., A new combinatorial approach to M 24 , Math. Proc. Cambridge Philos. Soc. 79 (1976) 25–42. (p. 158)Google Scholar
Cuypers, H., Extended near hexagons and line systems , Adv. Geom. 4 (2004) 181–214. (pp. 363, 366)Google Scholar
Cuypers, H. & Hall, J. I., The 3-transposition groups with trivial center , J. Algebra 178 (1995) 149–193. (p. 144)Google Scholar
Cvetkovi, D.ć, Rowlinson, P. & Simi, S.ć, Spectral generalizations of line graphs. On graphs with least eigenvalue −2 , LMS Lecture Note Ser. 314, Cambridge Univ. Press, 2004. (p. 7)Google Scholar
van Dam, E. R., Three-class association schemes , J. Alg. Combin. 10 (1999) 69–107. (p. 244)Google Scholar
van Dam, E. R. & Koolen, J. H., A new family of distance-regular graphs with unbounded diameter , Invent. Math. 162 (2005) 189–193. (p. 20)Google Scholar
van Dam, E. R., Koolen, J. H. & Tanaka, H., Distance-regular graphs , Electr. J. Combin. (2016) #DS22. (p. 19)Google Scholar
van Dam, E. R. & Muzychuk, M., Some implications on amorphic association schemes , J. Combin. Th. (A) 117 (2010) 111–127. (p. 187)Google Scholar
De Beule, J., Govaerts, P., Hallez, A. & Storme, L., Tight sets, weighted m-covers, weighted m-ovoids, and minihypers , Des. Codes Cryptogr. 50 (2009) 187–201. (p. 61)Google Scholar
De Beule, J., Klein, A., Metsch, K. & Storme, L., Partial ovoids and partial spreads in symplectic and orthogonal polar spaces , Europ. J. Combin. 29 (2008) 1280–1297. (pp. 60, 71)Google Scholar
De Beule, J., Klein, A., Metsch, K. & Storme, L., Partial ovoids and partial spreads in hermitian polar spaces , Des. Codes Cryptogr. 47 (2008) 21–34. (pp. 68, 81)Google Scholar
De Beule, J., Demeyer, J., Metsch, K. & Rodgers, M., A new family of tight sets in O+ (5,q) , Des. Codes Cryptogr. 78 (2016) 655–678. (p. 77)Google Scholar
De Beule, J. & Metsch, K., The Hermitian variety H (5, 4) has no ovoid , Bull. Belg. Math. Soc. Simon Stevin 12 (2006) 727–733. (p. 80)Google Scholar
De Beule, J. & Metsch, K., On the smallest non-trivial tight sets in Hermitian polar spaces , Electr. J. Combin. 24 (2017), no. 1, Paper No. 1.62, 13 pp. (pp. 82)Google Scholar
De Bruyn, B., Near Polygons, Birkhäuser Verlag, Basel, 2006. (p. 166)Google Scholar
De Bruyn, B., On hyperovals of polar spaces , Des. Codes Cryptogr. 56 (2010) 183–195. (p. 371)Google Scholar
De Bruyn, B., On some 2-tight sets of polar spaces , Ars. Combin. 133 (2017) 115–131. (p. 75)Google Scholar
De Bruyn, B. & Suzuki, H., Intriguing sets of vertices of regular graphs , Graphs Combin. 26 (2010) 629–646. (p. 10)Google Scholar
de Caen, D., The spectra of complementary subgraphs in a strongly regular graph , Europ. J. Combin. 19 (1998) 559–565. (p. 15)Google Scholar
De Clerck, F., Partial geometries, Ph. D. Thesis, Ghent University, 1978. (p. 217)Google Scholar
De Clerck, F. & Delanote, M., Partial geometries and the triality quadric , J. Geom. 68 (2000) 34–47. (pp. 217, 403, 404)Google Scholar
De Clerck, F., Delanote, M., Hamilton, N. & Mathon, R., Perp-systems and partial geometries , Adv. Geom. 2 (2002) 1–12. (p. 217)Google Scholar
De Clerck, F., Dye, R. H. & Thas, J. A., An infinite class of partial geometries associated with the hyperbolic quadric in PG(4n − 1, 2) , Europ. J. Combin. 1 (1980) 323–326. (p. 216)Google Scholar
De Clerck, F., Gevaert, H. & Thas, J. A., Flocks of a quadratic cone in PG(3,q), q ≤ 8, Geom. Dedicata 26 (1988) 215–230. (p. 328)Google Scholar
De Clerck, F. & Thas, J. A., The embedding of (0, α)-geometries in PG(n, q ), Ann. Discr. Math. 18 (1983) 229–240. (p. 222)Google Scholar
De Clerck, F. & Van Maldeghem, H., Some classes of rank 2 geometries, pp. 433–475 in: Handbook of Incidence Geometry, Buekenhout, F., ed., North Holland, Amsterdam, 1995. (p. 224)Google Scholar
Debroey, I. & Thas, J. A., On semipartial geometries , J. Combin. Th. (A) 25 (1978) 242–250. (pp. 222, 224)Google Scholar
Degraer, J., Isomorph-free exhaustive generation algorithms for association schemes, Ph. D. Thesis, Ghent University, 2007. (pp. 16, 402)Google Scholar
Degraer, J. & Coolsaet, K., Classification of some strongly regular subgraphs of the McLaughlin graph , Discr. Math. 308 (2008) 395–400. (pp. 16, 315, 331, 403)Google Scholar
Delsarte, Ph., Weights of linear codes and strongly regular normed spaces , Discr. Math. 3 (1972) 47–64. (p. 175)Google Scholar
Delsarte, Ph., An algebraic approach to the association schemes of coding theory , Philips Res. Rep. Suppl. 10 (1973). (pp. 25, 31, 175)Google Scholar
Delsarte, Ph. & Goethals, J. M., Unrestricted codes with the Golay parameters are unique , Discr. Math. 12 (1975) 211–224. (p. 159)Google Scholar
Delsarte, Ph., Goethals, J. M. & Seidel, J. J., Spherical codes and designs , Geom. Dedicata 6 (1977) 363–388. (pp. 237, 238)Google Scholar
Delsarte, Ph., Goethals, J. M. & Seidel, J. J., Bounds for systems of lines, and Jacobi polynomials , Philips Research Reports 30 (1975) 91–105. (p. 235)Google Scholar
Dempwolff, U., Primitive rank 3 groups on symmetric designs , Des. Codes Cryptogr. 22 (2001) 191–207. (p. 376)Google Scholar
Denniston, R. H. F., Some maximal arcs in finite projective planes , J. Combin. Th. 6 (1969) 317–319. (pp. 179, 216)Google Scholar
Denniston, R. H. F., Some packings of projective spaces , Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 52 (1972) 36–40. (p. 111)Google Scholar
de Resmini, M. J., A 35-set of type (2,5) in PG(2, 9) , J. Combin. Th. (A) 45 (1987) 303–305. (pp. 175, 183)Google Scholar
de Resmini, M. J. & Migliori, G., A 78-set of type (2,6) in PG(2, 16) , Ars. Combin. 22 (196) 73–75. (pp. 175, 182)Google Scholar
De Schepper, A., Sastry, N. S. N., Van Maldeghem, H., Split buildings of type F4 in buildings of type E6 , Abh. Math. Sem. Univ. Hamburg 88 (2018) 97–160. (pp. 135, 136)Google Scholar
De Wispelaere, A., Huizinga, J., Van Maldeghem, H., Ovoids and spreads of the generalized hexagon H(3) , Discr. Math. 305 (2005) 299–311. (p. 76)Google Scholar
De Wispelaere, A. & Van Maldeghem, H., Codes from generalized hexagons , Des. Codes Cryptogr. 37 (2005) 435–448. (pp. 175, 182)Google Scholar
De Wispelaere, A. & Van Maldeghem, H., Some new two-character sets in PG(5,q 2) and a distance-2 ovoid in the generalized hexagon H (4) , Discr. Math. 308 (2008) 2976–2983. (pp. 76, 175)Google Scholar
De Wispelaere, A. & Van Maldeghem, H., On the Hall-Janko graph with 100 vertices and the near-octagon of order (2,4) , Contrib. Discr. Math. 4 (2009) 37–58 (pp. 306, 348)Google Scholar
Di Benedetto, D., Solymosi, J. & White, E. P., On the directions determined by a Cartesian product in an affine Galois plane, arXiv:2001.06994, Jun. 2020. (p. 192)Google Scholar
Dickson, L. E., The alternating group on eight letters and the quaternary linear congruence group modulo two , Math. Ann. 54 (1901) 564–569. (p. 165)Google Scholar
Dissett, L. A., Combinatorial and computational aspects of finite geometries, Ph. D. Thesis, Toronto, 2000. (pp. 182, 183)Google Scholar
Dixmier, S. & Zara, F., Etude d’un quadrangle généralisé autour de deux de ses points non liés, preprint, 1976. (p. 310)Google Scholar
Dixmier, S. & Zara, F., Essai d’une méthode d’étude de certains graphes liés aux groupes classiques , C. R. Acad. Sci. Paris (A) 282 (1976) 259–262. (pp. 310, 404)Google Scholar
Drudge, K., On a conjecture of Cameron and Liebler , Europ. J. Combin. 20 (1999) 263–269. (p. 77)Google Scholar
Ducey, J. E. & Sin, P., The Smith group and the critical group of the Grassmann graph of lines in finite projective space and of its complement , Bull. Inst. Math. Acad. Sin. (N.S.) 13 (2018) 411–442. (p. 259)Google Scholar
Ducey, J. E., Hill, I. & Sin, P., The critical group of the Kneser graph on 2-subsets of an n-element set , Lin. Alg. Appl. 546 (2018) 154–168. (p. 258)Google Scholar
Duval, A. M., A directed graph version of strongly regular graphs , J. Combin. Th. (A) 47 (1988) 71–100. (pp. 246, 248)Google Scholar
Dyck, Walther, Über Aufstellung und Untersuchung von Gruppe und Irrationalität regulärer Riemann’scher Flächen , Math. Ann. 17 (1880) 473–509. (p. 265)Google Scholar
Dye, R. H., Partitions and their stabilizers for line complexes and quadrics , Ann. Mat. Pura Appl. 114 (1977) 173–194. (p. 61)Google Scholar
Dye, R. H., Maximal sets of nonpolar points of quadrics and symplectic polarities over GF(2) , Geom. Dedicata 44 (1992) 281–293. (p. 60)Google Scholar
Ebert, G. L., Partitioning projective geometries into caps , Canad. J. Math. 37 (1985) 1163–1175. (p. 302)Google Scholar
Ebert, G. L. & Hirschfeld, J. W. P., Complete systems of lines on a hermitian surface over a finite field , Des. Codes Cryptogr. 17 (1999) 253–268. (p. 68)Google Scholar
Edge, W. L., The geometry of the linear fractional group LF(4, 2) Proc. London Math. Soc. (3) 4 (1954) 317–342. (p. 165)Google Scholar
Egawa, Y., Association schemes of quadratic forms , J. Combin. Th. (A) 38 (1985) 1–14. (p. 109)Google Scholar
Emms, D., Hancock, E. R., Severini, S. & Wilson, R. C., A matrix representation of graphs and its spectrum as a graph invariant , Electr. J. Combin. 13 (2006) #R34. (p. 241)Google Scholar
Enright, G. M., A description of the Fischer group F22 , J. Algebra 46 (1977) 334–343. (p. 372)Google Scholar
Etzion, T. & Vardy, A., Automorphisms of codes in the Grassmann scheme, arXiv:1210.5724, Oct. 2012. (p. 111)Google Scholar
Euler, L., Recherches sur une nouvelle espèce de quarrés magiques , Verh. Zeeuwsch Genoot. Wetensch. Vlissingen 9 (1782) 85–239. Reprinted in Opera Omnia, Ser. I, Vol. VII, Teubner 1923, pp. 291–392. (p. 203)Google Scholar
van Eupen, M., Some new results for ternary linear codes of dimension 5 and 6 , IEEE Trans. Inf. Th. 41 (1995) 2048–2051. (p. 182)Google Scholar
van Eupen, M. & Hill, R., An optimal ternary [69, 5, 45] code and related codes , Des. Codes Cryptogr. 4 (1994) 271–282. (p. 301)Google Scholar
van Eupen, M. & Tonchev, V. D., Linear codes and the existence of a reversible Hadamard difference set in Z2 × Z2 × Z4 5 , J. Combin. Th. (A) 79 (1997) 161–167. (p. 181)Google Scholar
Exoo, G., Clique numbers for small Paley graphs, http://cs.indstate.edu/ge/Paley/cliques.html. (p. 192)Google Scholar
Exoo, G. & Jajcay, R., Dynamic cage survey , Electr. J. Combin. (2013) #DS16. (p. 288)Google Scholar
Farad, I. A.žev, Klin, M. H. & Muzichuk, M. E., Cellular rings and groups of automorphisms of graphs , pp. 1–152 in: Investigations in Algebraic Theory of Combinatorial Objects, Faradžev, I. A. et al. (eds.), Kluwer, Dordrecht, 1994. (pp. 325, 351)Google Scholar
Feit, W. & Higman, G., The nonexistence of certain generalized polygons , J. Algebra 1 (1964) 114–131. (p. 125)Google Scholar
Fellegara, G., Gli ovaloidi di uno spazio tridimensionale di Galois di ordine 8 , Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 32 (1962) 170#x2013;176. (p. 60)Google Scholar
Feng, T., Momihara, K. & Xiang, Q., Cameron-Liebler line classes with parameter x = q 2−1/2, J. Combin. Th. (A) 133 (2015) 307–338. (p. 77)Google Scholar
Feng, T., Momihara, K. & Xiang, Q., A family of m-ovoids of parabolic quadrics , J. Combin. Th. (A) 140 (2016) 97–111. (p. 72)Google Scholar
Feng, Tao & Tao, Ran, An infinite family of m-ovoids of Q(4,q) , Finite Fields Appl. 63 (2020) 101644. (p. 72)Google Scholar
Feng, Tao, Wang, Ye & Xiang, Qing, On m–ovoids of symplectic polar spaces , J. Combin. Th. (A) 175 (2020) 105279. (p. 61)Google Scholar
Feng, Tao & Xiang, Qing, Strongly regular graphs from unions of cyclotomic classes , J. Combin. Th. (B) 102 (2012) 982–995. (p. 186)Google Scholar
Fiala, N. C. & Haemers, W. H., 5-Chromatic strongly regular graphs , Discr. Math. 306 (2006) 3083–3096. (pp. 243, 244)Google Scholar
Fickus, M., Jasper, J., Mixon, D. G., Peterson, J. D. & Watson, C. E., Equiangular tight frames with centroidal symmetry , Appl. Comput. Harmon. Anal. 44 (2018) 476–496. (pp. 236, 403, 404, 410, 418)Google Scholar
Fickus, M., Jasper, J., Mixon, D. G. & Peterson, J., Tremain equiangular tight frames , J. Combin. Th. (A) 153 (2018) 54–66. (pp. 236, 404)Google Scholar
Fiedler, F. & Klin, M., A strongly regular graph with the parameters (v, k,l,λ, μ) = (512, 73, 438, 12, 10) and its dual graph, Preprint MATH-AL-7-1998, Technische Universität Dresden, July 1998, 23 pp. (pp. 182, 424)Google Scholar
Fischer, B., Finite groups generated by 3-transpositions. I , Invent. Math. 13 (1971) 232–246. (pp. 143, 146)Google Scholar
Fon-Der-Flaass, D. G., New prolific constructions of strongly regular graphs , Adv. Geom. 2 (2002) 301–306. (p. 17)Google Scholar
Foulser, D. A., Solvable primitive permutation groups of low rank , Trans. Amer. Math. Soc. 143 (1969) 1–54. (pp. 387, 389)Google Scholar
Foulser, D. A. & Kallaher, M. J., Solvable, flag-transitive, rank 3 collineation groups , Geom. Dedicata 7 (1978) 111–130. (pp. 187, 188, 387, 389)Google Scholar
Fujisaki, T., A four-class association scheme derived from a hyperbolic quadric in PG(3,q) , Adv. Geom. 4 (2004) 105–117. (p. 233)Google Scholar
Games, R. A., The packing problem for finite projective geometries, Ph. D. Thesis, Ohio State Univ., 1980. (pp. 180, 354)Google Scholar
The GAP Group, GAP – Groups, Algorithms, and Programming, https:www.gap-system.org. (p. 260)Google Scholar
Gavrilyuk, A. L., On tight sets of hyperbolic quadrics, arXiv:1911.04130v1, Nov. 2019. (p. 77)Google Scholar
Gavrilyuk, A. L. & Koolen, J. H., A characterization of the graphs of bilinear (d × d)-forms over F2 , Combinatorica 39 (2019) 289–321. (p. 150)Google Scholar
Gavrilyuk, A. L. & Makhnev, A. A., О графах Крейна без треугольников, Dokl. Akad. Nauk 403 (2005) 727–730 (Russian) / On Krein graphs without triangles , Dokl. Math. 72 (2005) 591–594 (English). (pp. 17, 413)Google Scholar
Gavrilyuk, A. L. & Makhnev, A. A., On distance-regular graphs in which the neighborhood of each vertex is isomorphic to the Hoffman-Singleton graph , Dokl. Akad. Nauk 428 (2009) 157–160 (Russian) / Dokl. Math. 80 (2009) 665#x2013;668. (p. 289)Google Scholar
Gavrilyuk, A. L. & Matkin, I., Cameron-Liebler line classes in PG(3, 5) , J. Combin. Designs 26 (2018) 563–580. (p. 77)Google Scholar
Gavrilyuk, A. L. & Metsch, K., A modular equality for Cameron-Liebler line classes , J. Combin. Th. (A) 127 (2014) 224–242. (p. 77)Google Scholar
Ge, Gennian, Xiang, Qing & Yuan, Tao, Constructions of strongly regular Cayley graphs using index four Gauss sums , J. Alg. Combin. 37 (2013) 313–329. (pp. 184, 186)Google Scholar
Gewirtz, A., Graphs with maximal even girth , Canad. J. Math. 21 (1969) 915–934. (pp. 16, 303)Google Scholar
Gewirtz, A., The uniqueness of g(2, 2, 10, 56) , Trans. New York Acad. Sci. 31 (1969) 656–675. (pp. 16, 290)Google Scholar
Gleason, A. M., Weight polynomials of self-dual codes and the MacWilliams identities, pp. 211–215 in: Actes Congrès Intern. des Mathématiciens (Nice, 1970), Vol. 3, Gauthier-Villars, Paris, 1971. (p. 212)Google Scholar
Gijswijt, D. C., Mittelmann, H. D. & Schrijver, A., Semidefinite code bounds based on quadruple distances , IEEE Trans. Inf. Th. 58 (2012) 2697–2705. (p. 160)Google Scholar
Godsil, C. D., Krein covers of complete graphs , Australas. J. Combin. 6 (1992) 245–255. (pp. 232, 400, 403, 414, 424)Google Scholar
Godsil, C. D., Algebraic Combinatorics, Chapman and Hall, 1993. (p. 239)Google Scholar
Godsil, C. D., Guo, K. & Myklebust, T. G. J., Quantum walks on generalized quadrangles , Electr. J. Combin. 24 (2017) #P4.16. (p. 241)Google Scholar
Godsil, C. D. & McKay, B. D., Constructing cospectral graphs , Aequationes Math. 25 (1982) 257–268. (p. 235)Google Scholar
Godsil, C. D. & Meagher, K., Erdős-Ko-Rado Theorems: Algebraic Approaches, Cambridge Univ. Press, 2015. (p. 341)Google Scholar
Godsil, C. D. &Newman, M. W., Independent sets in association schemes , Combinatorica 26 (2006) 431–443. (p. 341)Google Scholar
Godsil, C. D. & Royle, G. F., Chromatic number and the 2-rank of a graph , J. Combin. Th. (B) 81 (2001) 142–149. (p. 254)Google Scholar
J.-Goethals, M. & Delsarte, P., On a class of majority logic decodable cyclic codes , IEEE Trans. Inf. Th. 14 (1968) 182–188. (p. 249)Google Scholar
J.-Goethals, M. & Seidel, J. J., Orthogonal matrices with zero diagonal , Canad. J. Math. 19 (1967) 1001–1010. (p. 200)Google Scholar
J.-Goethals, M. & Seidel, J. J., Quasisymmetric block designs, pp. 111–116 in: Combinatorial Structures and their Applications (Proc. Calgary 1969), Gordon and Breach, New York, 1970. (pp. 206, 315)Google Scholar
J.-Goethals, M. & Seidel, J. J., Strongly regular graphs derived from combinatorial designs , Canad. J. Math. 22 (1970) 597–614. (pp. 182, 198, 199, 206, 236, 309, 363, 399, 400, 401, 403, 404, 410, 418, 423)Google Scholar
J.-Goethals, M. & Seidel, J. J., The regular two-graph on 276 vertices , Discr. Math. 12 (1975) 143–158. (pp. 16, 229, 231, 337, 340)Google Scholar
Golay, M. J. E., Notes on digital coding , Proc. IRE 37 (1949) 657. (p. 156)Google Scholar
Golemac, A., Mandi, J.ć & Vu, T.čičić, New regular partial difference sets and strongly regular graphs with parameters (96, 20, 4, 4) and (96, 19, 2, 4) , Electr. J. Combin. 13 (2006) R88. (pp. 402)Google Scholar
Govaert, E. & Van Maldeghem, H., Distance-preserving maps in generalized polygons , Part II: Maps on points and/or lines , Beitr. Alg. Geom. 43 (2002) 303–324. (p. 133)Google Scholar
Govaerts, P. & Penttila, T., Cameron-Liebler line classes in PG(3, 4) , Bull. Belg. Math. Soc. Simon Stevin 12 (2005) 793–804. (p. 77)Google Scholar
Govaerts, P. & Storme, L., On a particular class of minihypers and its applications. I. The result for general q , Des. Codes Cryptogr. 28 (2003) 51–63. (p. 182)Google Scholar
Graham, S.&Ringrose, C., Lower bounds for least quadratic non-residues , pp. 269–309 in: Analytic Number Theory (Proc. Allerton Park 1989), Berndt, B. C et al. (eds.), Birkhäuser, 1990. (p. 192)Google Scholar
Greaves, G. R. W., Koolen, J. H. & Park, Jongyook, Augmenting the Delsarte bound: A forbidden interval for the order of maximal cliques in strongly regular graphs , Europ. J. Combin. 97 (2021) 103384. (p. 13)Google Scholar
Greaves, G. R. W. & Soicher, L. H., On the clique number of a strongly regular graph , Electr. J. Combin. 25 (2018) #P4.15. (p. 12)Google Scholar
Greenwood, R. E. & Gleason, A. M., Combinatorial relations and chromatic graphs , Canad. J. Math. 7 (1955) 1–7. (p. 266)Google Scholar
Gritsenko, O., On strongly regular graph with parameters (65, 32, 15, 16), arXiv:2102.05432, Feb. 2021. (pp. 200, 401)Google Scholar
Grundh, T.öfer, Stroppel, M. J. & Van Maldeghem, H., Unitals admitting all translations , J. Combin. Designs 21 (2013) 419–431. (p. 91)Google Scholar
Grundh, T.öfer, Stroppel, M. J. & Van Maldeghem, H., A non-classical unital of order four with many translations , Discr. Math. 339 (2016) 2987–2993. (p. 332)Google Scholar
Gulliver, T. A., Two new optimal ternary two-weight codes and strongly regular graphs , Discr. Math. 149 (1996) 83–92. (pp. 182)Google Scholar
Gulliver, T. A., A new two-weight code and strongly regular graph , Appl. Math. Letters 9 (1996) 17–20. (p. 182)Google Scholar
Gunawardena, A. & Moorhouse, G. E., The non-existence of ovoids in O 9 (q), Europ. J. Combin. 18 (1997) 171–173. (p. 70)Google Scholar
Guo, I., Koolen, J. H., Markowsky, G. & Park, J., On the nonexistence of pseudo-generalized quadrangles , Europ. J. Combin. 89 (2020) #103128. (p. 219)Google Scholar
Haemers, W. H., Sterke grafen en block designs, Afstudeerverslag (M. Sc. Thesis), Technische Hogeschool Eindhoven, Oct. 1975. (p. 264)Google Scholar
Haemers, W. H., An upper bound for the Shannon capacity of a graph , pp. 267–272 in: Algebraic Methods in Graph Theory (Szeged, 1978), Colloq. Math. Soc. János Bolyai Vol 25, North-Holland, Amsterdam, 1981. (p. 273)Google Scholar
Haemers, W. H., On some problems of Lovász concerning the Shannon capacity of graphs , IEEE Trans. Inf. Th. 25 (1979) 231–232. (p. 273)Google Scholar
Haemers, W. H., Eigenvalue techniques in design and graph theory , Ph. D. Thesis, Eindhoven Univ. of Technology, 1979. Also Math. Centre Tracts 121, Amsterdam, 1980. (pp. 13, 214, 244, 402)Google Scholar
Haemers, W. H., A new partial geometry constructed from the Hoffman-Singleton graph, pp. 119– 127 in: Finite Geometries and Designs (Proc. Chelwood Gate, 1980), LMS Lecture Note Ser. 49, Cambridge Univ. Press, 1981. (p. 217)Google Scholar
Haemers, W. H., There exists no (76,21,2,7) strongly regular graph, pp. 175–176 in: Finite Geometry and Combinatorics, De Clerck, F. et al. (eds.), LMS Lecture Note Ser. 191, Cambridge Univ. Press, 1993. (pp. 16, 211, 401)Google Scholar
Haemers, W. H., Strongly regular graphs with maximal energy , Lin. Alg. Appl. 429 (2008) 2719– 2723. (pp. 198, 199)Google Scholar
Haemers, W. H. & Kuijken, E., The Hermitian two-graph and its code , Lin. Alg. Appl. 356 (2002) 79–93. (pp. 229, 323) Google Scholar
Haemers, W. H. & Higman, D. G., Strongly regular graphs with strongly regular decomposition , Lin. Alg. Appl. 114 /115 (1989) 379–398. (p. 15)Google Scholar
Haemers, W. H. & van Lint, J. H., A partial geometry pg(9, 8, 4) , Ann. Discr. Math. 15 (1982) 205–212. (p. 217)Google Scholar
Haemers, W. H., Peeters, M. J. P. & van Rijckevorsel, J. M., Binary codes of strongly regular graphs , Des. Codes Cryptogr. 17 (1999) 187–209. (p. 255)Google Scholar
Haemers, W. H. & Spence, E., The pseudo-geometric graphs for generalised quadrangles of order (3,t) , Europ. J. Combin. 22 (2001) 839–845. (pp. 16, 294, 401)Google Scholar
Haemers, W. H. & Tonchev, V. D., Spreads in strongly regular graphs , Des. Codes Cryptogr. 8 (1996) 145–157. (pp. 244, 339)Google Scholar
Haemers, W. H. & Xiang, Qing, Strongly regular graphs with parameters (4m4, 2m4 + m2, m4 + m2, m4 + m2) exist for all m>1, Europ. J. Combin. 31 (2010) 1553–1559. (pp. 199)Google Scholar
Hall, J. I., On identifying PG(3, 2) and the complete 3-design on seven points , Ann. Discr. Math. 7 (1980) 131–141. (p. 165)Google Scholar
Hall, J. I., Locally Petersen graphs , J. Graph Theory 4 (1980) 173–187. (pp. 148, 262)Google Scholar
Hall, J. I., On the order of Hall triple systems , J. Combin. Th. (A) 29 (1980) 261–262. (p. 147)Google Scholar
Hall, J. I., Classifying copolar spaces and graphs , Quart. J. Math. Oxford (2) 33 (1982) 421–449. (p. 151)Google Scholar
Hall, J. I., Graphs with constant link and small degree and order , J. Graph Theory 8 (1985) 419–444. (p. 4)Google Scholar
Hall, J. I., Graphs, geometry, 3-transpositions, and symplectic F 2-transvection groups , Proc. London Math. Soc. (3) 58 (1989) 89–111. (pp. 148, 149)Google Scholar
Hall, J. I., Some 3-transposition groups with normal 2-subgroups , Proc. London Math. Soc. (3) 58 (1989) 112–136. (pp. 148, 149)Google Scholar
Hall, J. I., Local indecomposability of certain geometric graphs , Discr. Math. 106 /107 (1992) 243–254. (p. 148)Google Scholar
Hall, J. I. & Shult, E. E., Locally cotriangular graphs , Geom. Dedicata 18 (1985) 113–159. (pp. 148, 313)Google Scholar
Hall, M., jr., Automorphisms of Steiner triple systems , pp. 47–66 in: 1960 Institute on Finite Groups, Proc. Sympos. Pure Math. Vol. VI, Amer. Math. Soc., Providence, R.I., 1962. Also, IBM J. Res. Develop. 4 (1960) 460–472. (p. 147)Google Scholar
Hall, M., jr., Group theory and block designs, pp. 115–144 in: Proc. Canberra, 1965, Kov, L. G.ács & Neumann, B. H. (eds.), Gordon and Breach, New York, 1967. (p. 148)Google Scholar
Hall, M., jr., Combinatorial Theory, 2nd ed., Wiley, New York, 1986. (p. 201)Google Scholar
Hall, M., jr. &Connor, W. S., An embedding theorem for balanced incomplete block designs , Canad. J. Math. 6 (1953) 35–41. (p. 208)Google Scholar
jr.Hall, M. Lane, R. & Wales, D., Designs derived from permutation groups , J. Combin. Th. 8 (1970) 12–22. (p. 291)Google Scholar
Hall, M., jr. & Wales, D., The Simple Group of Order 604,800 , J. Algebra 9 (1968) 417–450. (p. 305)Google Scholar
Hamada, N., The rank of the incidence matrix of points and d-flats in finite geometries , J. Sci. Hiroshima Univ. Ser. A-I Math. 32 (1968) 381–396. (p. 249)Google Scholar
Hamada, N., On the p-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its applications to error correcting codes , Hiroshima Math. J. 3 (1973) 153–226. (p. 249)Google Scholar
Hamada, N., Characterization resp. nonexistence of certain q-ary linear codes attaining the Griesmer bound , Bull. Osaka Women’s Univ. 22 (1985) 1–47. (p. 182)Google Scholar
Hamada, N., Characterization of min·hypers in a finite projective geometry and its applications to error-correcting codes , Designs and finite geometries (Kyoto, 1986), RIMS Kōkyūroku No. 607 (1987) 52–69. (p. 182)Google Scholar
Hamada, N. & Helleseth, T., A characterization of some q-ary codes (q > (ℎ − 1)2 , ℎ ≥ 3) meeting the Griesmer bound , Math. Japon. 38 (1993) 925–939. (p. 182)Google Scholar
Hamada, N. & Maekawa, T., A characterization of some q-ary codes (q >(ℎ − 1) 2 , ℎ ≥ 3) meeting the Griesmer bound: Part 2 , Math. Japon. 46 (1997) 241–252. (p. 182)Google Scholar
Hamada, N. & Helleseth, T., A characterization of some {3v 2 + v 3 , 3v 1 + v2; 3, 3}-minihypers and some [15, 4, 9; 3]-codes with b 2 = 0, J . Stat. Plann. Infer. 56 (1996) 129–146. (p. 301)Google Scholar
Hämäläinen, H. & Rankinen, S., Upper bounds for football pool problems and mixed covering codes , J. Combin. Th. (A) 56 (1991) 84–95. (p. 156)Google Scholar
Hamilton, N., Strongly regular graphs from differences of quadrics, Discr . Math. 256 (2002) 465–469. (p. 179)Google Scholar
Hamilton, N. & Mathon, R., Existence and non-existence of m-systems of polar spaces , Europ. J. Combin. 22 (2001) 51–61. (p. 41)Google Scholar
Hammersley, J. M., The friendship theorem and the love problem , pp. 31–54 in: Surveys in Combinatorics (Keith Lloyd, E., ed.), LMS Lecture Note Ser. 82, Cambridge Univ. Press 1983. (p. 246)Google Scholar
Hanson, B. & Petridis, G., Refined estimates concerning sumsets contained in the roots of unity , Proc. London Math. Soc. (3) 122 (2021) 353–358. (p. 192)Google Scholar
Harada, M., Munemasa, A. & Tonchev, V. D., A characterization of designs related to an extremal doubly-even self-dual code of length 48 , Ann. Comb. 9 (2005) 189–198. (p. 210)Google Scholar
Harada, M., Munemasa, A. & Tonchev, V. D., Self-dual codes and the nonexistence of a quasi-symmetric 2-(37,9,8) design with intersection numbers 1 and 3 , J. Combin. Designs 25 (2017) 469–476. (p. 210)Google Scholar
Helfgott, H. A., Isomorphismes de graphes en temps quasi-polynomial [d’après Babai et Luks, Weisfeiler-Leman, …] , Séminaire Bourbaki. Vol. 2016/2017. Exposé 1125, Astérisque 407 (2019) 135–182. (p. 241)Google Scholar
Hering, C., Transitive linear groups and linear groups which contain irreducible subgroups of prime order , Geom. Dedicata 2 (1974) 425–460. (p. 383)Google Scholar
Hering, C., Transitive linear groups and linear groups which contain irreducible subgroups of prime order, II , J. Algebra 93 (1985) 151164. (pp. 383, 387)Google Scholar
Hestenes, M. D. & Higman, D. G., Rank 3 groups and strongly regular graphs , pp. 141–159 in: Computers in Algebra and Number Theory (Proc. New York Symp., 1970), Birkhoff, G. & jr.Hall, M. (eds.), SIAM-AMS Proc., Vol IV, Providence, RI, 1971. (pp. 2, 6, 239)Google Scholar
Higman, D. G., Finite permutation groups of rank 3 , Math. Z. 86 (1964) 145–156. (p. 4)Google Scholar
Higman, D. G., Partial geometries, generalized quadrangles and strongly regular graphs , pp. 263– 293 in: Atti del Convegno di Geometria Combinatoria e sue Applicazioni (Perugia, 1970), Univ. of Perugia, 1971. (p. 240)Google Scholar
Higman, D. G., Invariant relations, coherent configurations and generalized polygons , pp. 27–43 in: Combinatorics (Proc. NATO Advanced Study Inst., Breukelen, 1974), Part 3: Combinatorial group theory, Math. Centre Tracts 57, Math. Centrum, Amsterdam, 1974. (p. 26)Google Scholar
Higman, D. G., Coherent configurations, Part I , Geom. Dedicata 4 (1975) 1–32. Part II, Geom. Dedicata 5 (1976) 413–424. (p. 30)Google Scholar
Higman, D. G., Coherent algebras , Lin. Alg. Appl. 93 (1987) 209–239. (p. 30)Google Scholar
Higman, D. G. & Sims, C. C., A simple group of order 44,352,000 , Math. Z. 105 (1968) 110113. (p. 303)Google Scholar
Higman, G., On the simple group of D. G. Higman and C. C. Sims , Illinois J. Math. 13 (1969) 7480. (p. 330)Google Scholar
Hill, R., On the largest size of cap in S 5,3 , Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 54 (1973) 378384. (pp. 180, 182, 354)Google Scholar
Hill, R., Caps and groups, pp. 389–394 in: Proc. Rome 1973, Atti dei Convegni Lincei, 1976. (pp. 180, 182, 186)Google Scholar
Hill, R., Caps and codes , Discr. Math. 22 (1978) 111137. (p. 354)Google Scholar
Hobart, S. A., Krein conditions for coherent configurations, Lin. Alg. Appl. 226–228 (1995) 499– 508. (p. 207)Google Scholar
Hobart, S. A., Bounds on subsets of coherent configurations , Michigan Math. J. 58 (2009) 231239. (p. 31)Google Scholar
Hoffman, A. J., On the uniqueness of the triangular association scheme , Ann. Math. Statist. 31 (1960) 492497. (p.17)Google Scholar
Hoffman, A. J., −1− 2?, pp. 173–176 in: Combinatorial Structures and their Applications, Proc. Conf. Calgary 1969, HGuy, R., HHanani, H., HSauer, N. & HSchönheim, J. (eds.), Gordon and Breach, New York, 1970. (p. 29)Google Scholar
Hoffman, A. J., On eigenvalues and colorings of graphs , pp. 79–91 in: Graph Theory and its Applications (Harris, B., ed.), Acad. Press, New York, 1970. (p. 243)Google Scholar
Hoffman, A. J., Eigenvalues of graphs, pp. 225–245 in: Studies in Graph Theory, part II, D.R. Fulkerson (ed.), Math. Assoc. Amer., 1975. (p. 29)Google Scholar
Hoffman, A. J. & Singleton, R. R., On Moore graphs with diameters 2 and 3 , IBM J. Res. Develop. 4 (1960) 497504. (pp. 16, 285)Google Scholar
Hoggar, S. G., Two quaternionic 4-polytopes , pp. 219–230 in: The Geometric Vein, The Coxeter Festschrift, Davis, C. et al. (eds.), Springer, Berlin, 1981. (p. 236)Google Scholar
Hoggar, S. G., 64 Lines from a quaternionic polytope , Geom. Dedicata 69 (1998) 287289. (p. 236)Google Scholar
Hollmann, H. D. L., Association schemes, M. Sc. Thesis, Eindhoven Univ. of Technology, 1982. (pp. 233)Google Scholar
Hollmann, H. D. L., Pseudocyclic 3-class association schemes of 28 points , Discr. Math. 52 (1984) 209224. (p. 233)Google Scholar
Hollmann, H. D. L. & Xiang, Qing, Pseudocyclic association schemes arising from the actions of PGL(2, 2 m ) and PΓL(2, 2 m ), J. Combin. Th. (A) 113 (2006) 10081018. (p. 233)Google Scholar
Horiguchi, Naoyuki, Kitazume, Masaaki & Nakasora, Hiroyuki, On the maximum cocliques of the rank 3 graph of 211:M 24 , J. Combin. Designs 17 (2009) 323332. (p. 364)Google Scholar
Houghten, S. K., Thiel, L. H., Janssen, J. & Lam, C. W. H., There is no (46, 6, 1) block design , J. Combin. Designs 9 (2001) 6071. (p. 401)Google Scholar
Huang, T., Huang, L. & Lin, M.-I., On a class of strongly regular designs and quasi-semisymmetric designs , pp. 129–153 in: Recent Developments in Algebra and Related Areas (Proc. Beijing 2007), Dong, Chongying et al. (eds.), Adv. Lect. Math. (ALM) 8, Higher Education Press and Int. Press, Beijing-Boston, 2009. (p. 205)Google Scholar
Huffman, W. C. & Tonchev, V. D., The existence of extremal self-dual [50, 25, 10] codes and quasi-symmetric 2-(49, 9, 6) designs , Des. Codes Cryptogr. 6 (1995) 97106. (pp. 210, 406)Google Scholar
Hughes, D. R. & Piper, F. C., On resolutions and Bose’s theorem , Geom. Dedicata 5 (1976) 129133. (p. 208)Google Scholar
Hui, A. M. W. & Rodrigues, B. G., Switched graphs of some strongly regular graphs related to the symplectic graph , Des. Codes Cryptogr. 86 (2018) 179194. (p. 235)Google Scholar
Humphreys, J. E., Reflection groups and Coxeter groups, Cambridge Univ. Press, Cambridge, 1990. (p. 119)Google Scholar
Hurkens, C. A. J. & Seidel, J. J., Conference matrices from projective planes of order 9 , Europ. J. Combin. 6 (1985) 49–57. (p. 302)Google Scholar
Husain, Q. M., On the totality of the solutions for the symmetrical incomplete block designs: λ = 2, k = 5 or 6, Sankhyā 7 (1945) 204208. (pp. 208, 264)Google Scholar
Ihringer, F., Switching for small strongly regular graphs, arXiv:2012.08390, Dec. 2020. (pp. 292, 296, 297, 301)Google Scholar
Ihringer, F. & Munemasa, A., New strongly regular graphs from finite geometries via switching , Lin. Alg. Appl. 580 (2019) 464474. (p. 235)Google Scholar
Ikuta, T. & Munemasa, A., A new example of non-amorphous association schemes , Contrib. Discr. Math. 3 (2008) 3136. (p. 186)Google Scholar
Ikuta, T. & Munemasa, A., Pseudocyclic association schemes and strongly regular graphs , Europ. J. Combin. 31 (2010) 15131519. (p. 186)Google Scholar
Inoue, K., A construction of the McLaughlin graphs from the Hoffman-Singleton graph , Australas. J. Combin. 52 (2012) 197204. (p. 338)Google Scholar
Ionin, Yu. J. & Shrikhande, M. S., Combinatorics of Symmetric Designs, Cambridge Univ. Press, Cambridge, 2006. (pp. 199)Google Scholar
А. А. Иванов, М. Х. Клин & И. А. Фараджев (A. A. Ivanov, M. Kh. Klin & I. A. Faradžev), Примитивные представления неабелевых простых групп порядка меньше 106 (Primitive representations of nonabelian simple groups of order less than 106 ) (Russian), Part I: 40 pp (1982), Part II: 76 pp (1984), preprint, Institute for System Studies, Moscow. (pp. 307, 340)Google Scholar
Ivanov, A. A. & Shpectorov, S. V., A characterization of the association schemes of Hermitian forms , J. Math. Soc. Japan 43 (1991) 2548. (pp. 109, 299)Google Scholar
Ivanov, A. V., Non rank 3 strongly regular graphs with the 5-vertex condition , Combinatorica 9 (1989) 255260 (p. 240)Google Scholar
Ivanov, A. V., Two families of strongly regular graphs with the 4-vertex condition , Discr. Math. 127 (1994) 221242. (p. 240)Google Scholar
Iwasawa, K., Über die Einfachheit der speziellen projectiven Gruppen , Proc. Imp. Acad. Tokyo 17 (1941) 5759. (p. 143)Google Scholar
Jaeger, F., Strongly regular graphs and spin models for the Kauffman model , Geom. Dedicata 44 (1992) 2352. (p. 304)Google Scholar
Jenrich, T., New strongly regular graphs derived from the O 2 (4) graph, arXiv:1409.3520, Sep. 2014. (p. 347)Google Scholar
Jenrich, T. & Brouwer, A. E., A 64-dimensional counterexample to Borsuk’s conjecture , Electr. J. Combin. 21 (2014) P4.29. (p. 348)Google Scholar
Jiang, Zilin, Tidor, Jonathan, Yao, Yuan, Zhang, Shentong & Zhao, Yufei, Equiangular lines with a fixed angle, arXiv:1907.12466v3, Jun. 2020. (p. 236)Google Scholar
Johnson, D. M., Dulmage, A. L. & Mendelsohn, N. S., Orthomorphisms of groups of orthogonal Latin squares, I , Canad. J. Math. 13 (1961) 356372. (p. 203)Google Scholar
Jones, G. A., Paley and the Paley graphs , pp. 155–183 in: Isomorphisms, Symmetry and Computations in Algebraic Graph Theory (Proc. Pilsen, 2016), Jones, G. A., Ponomarenko, I. & Širáň, J. (eds.), Springer 2020. (p. 193)Google Scholar
Jones, V. F. R., On knot invariants related to some statistical mechanical models , Pacif. J. Math. 137 (1989) 311334. (p. 304)Google Scholar
Jordan, C., Traité des substitutions et des équations algébriques, Paris, 1870. (p. 165)Google Scholar
Jørgensen, L. K., Directed strongly regular graphs with μ = λ , Discr. Math. 231 (2001) 289293. (p. 248)Google Scholar
Jørgensen, L. K. & Klin, M., Switching of edges in strongly regular graphs. I. A family of partial difference sets on 100 vertices , Electr. J. Combin. 10 (2003) R17. (pp. 199, 308, 402)Google Scholar
Jungnickel, D. & Tonchev, V. D., Maximal arcs and quasi-symmetric designs , Des. Codes Cryptogr. 77 (2015) 365374. (p. 211)Google Scholar
Jurišić, A. & Koolen, J., Classification of the family AT4(qs, q, q) of antipodal tight graphs , J. Combin. Th. (A) 118 (2011) 842852. (p. 323)Google Scholar
Kageyama, S., Saha, G. M. &Das, A. D., Reduction of the number of association classes of hypercubic association schemes , Ann. Inst. Stat. Math. 30 (1978) 115123. (p. 98)Google Scholar
Kahn, J. & Kalai, G., A counterexample to Borsuk’s conjecture , Bull. Amer. Math. Soc. (New Series) 29 (1993) 6062. (p. 348)Google Scholar
Kantor, W. M., 2-Transitive designs , pp. 44–97 in: Combinatorics (Proc. NATO Advanced Study Inst., Breukelen, 1974), Part 3: Combinatorial group theory, Math. Centre Tracts 57, Math. Centrum, Amsterdam, 1974. (p. 383)Google Scholar
Kantor, W. M., Symplectic groups, symmetric designs, and line ovals , J. Algebra 33 (1975) 4358. (p. 209)Google Scholar
Kantor, W. M., Ovoids and translation planes , Canad. J. Math. 34 (1982) 11951207. (p. 67)Google Scholar
Kantor, W. M., Strongly regular graphs defined by spreads , Israel J. Math. 41 (1982) 298312. (p. 217)Google Scholar
Kantor, W. M., Spreads, translation planes and Kerdock sets, I , SIAM J. Alg. Disc. Meth. 3 (1982) 151165. (p. 73)Google Scholar
Kantor, W. M. & Liebler, R. A., The rank 3 permutation representations of the finite classical groups , Trans. Amer. Math. Soc. 271 (1982) 171. (pp. 382, 384, 385)Google Scholar
Kaski, P. & Östergård, P. R. J., The Steiner triple systems of order 19 , Math. Comp. 73 (2004) 20752092. (p. 161)Google Scholar
Kaski, P. & Östergård, P. R. J., There are exactly five biplanes with k = 11, J. Combin. Designs 16 (2008) 117127. (pp. 17, 208, 291, 413)Google Scholar
Kaski, P. & Östergård, P. R. J., Classification of resolvable balanced incomplete block designs—the unitals on 28 points , Math. Slovaca 59 (2009) 121136. (p. 294)Google Scholar
Kaski, P., Khatirinejad, M. & Östergård, P. R. J., Steiner triple systems satisfying the 4-vertex condition , Des. Codes Cryptogr. 62 (2012) 323330. (p. 240)Google Scholar
Kauffman, L. H., An invariant of regular isotopy , Trans. Amer. Math. Soc. 318 (1990) 417471. (p. 304)Google Scholar
Keesvash, P., The existence of designs, arXiv:1401.3665, Jan. 2014; v3, Aug. 2019. (p. 161)Google Scholar
Keevash, P., Counting Steiner triple systems, pp. 459–481 in: Europ. Congress of Mathematics, Europ. Math. Soc., Zürich, 2018. (p. 161)Google Scholar
Kelly, J. B., A characteristic property of quadratic residues , Proc. Amer. Math. Soc. 5 (1954) 3846. (p. 192)Google Scholar
King, R. B., Novel highly symmetric trivalent graphs which lead to negative curvature carbon and boron nitride chemical structures , Discr. Math. 244 (2002) 203210. (p. 265)Google Scholar
Klein, A., Partial ovoids in classical finite polar spaces , Des. Codes Cryptogr. 31 (2004) 221226. (p. 68)Google Scholar
Klin, M., Meszka, M., Reichard, S. & Rosa, A., The smallest non-rank 3 strongly regular graphs which satisfy the 4-vertex condition , Bayreuther Mathematische Schriften 74 (2005) 145205. (p. 279)Google Scholar
Klin, M., Munemasa, A., Muzychuk, M. & Zieschang, P.-H., Directed strongly regular graphs from coherent algebras , Lin. Alg. Appl. 377 (2004) 83109. (pp. 248)Google Scholar
Klin, M. H., Pech, C., Reichard, S., Woldar, A. & Zvi-Av, M., Examples of computer experimentation in algebraic combinatorics , Ars Mathematica Contemporanea 3 (2010) 237258. (pp. 332, 407)Google Scholar
Kodalen, B. D., Linked systems of symmetric designs , Alg. Combin. 2 (2019) 119147. (p. 244)Google Scholar
Kohnert, A., Constructing two-weight codes with prescribed groups of automorphisms , Discr. Appl. Math. 155 (2007) 14511457. (pp. 182, 183)Google Scholar
Koolen, J. H. & Moulton, V., Maximal energy graphs , Adv. Appl. Math. 26 (2001) 4752. (p. 198)Google Scholar
Krčadinac, Vedran, Steiner 2-designs S(2, 5, 28) with nontrivial automorphisms , Glasnik Matematički 37 ( 57 ) (2002) 259268. (p. 294)Google Scholar
Krčadinac, V., A new partial geometry pg(5, 5, 2), J. Combin. Th. (A) 183 (2021) 105493. Also arXiv:2009.07946, 16 Sep. 2020. (p. 301)Google Scholar
Krčadinac, V., Nakić, A. & Pavčević, M. O., The Kramer-Mesner method with tactical decompositions: some new unitals on 65 points , J. Combin. Designs 19 (2011) 290303. (p. 332)Google Scholar
Krčadinac, V. & Vlahović, R., New quasi-symmetric designs by the Kramer-Mesner method , Discr. Math. 339 (2016) 28842890. (p. 211)Google Scholar
М. Г. Крейн (M. G. Kreĭn), Эрмитово-положительные ядра на однородных пространствах. I, II (Hermitian-positive kernels in homogeneous spaces. I, II) (Russian), Ukrain. mat. Žurnal 1 (1949) 64–98, 2 (1950) 10–59. Translation: Hermitian-positive kernels, I, II, in: Eleven papers on analysis, M. V. Fedorjuk, Amer. Math. Soc. Transl, Ser. 2, vol. 34, 1963, pp. 69–108, 109–164. (p. 26)Google Scholar
Krivelevich, M. & Sudakov, B., Sparse pseudo-random graphs are Hamiltonian , J. Graph Theory 42 (2003) 1733. (p. 242)Google Scholar
Krivelevich, M. & Sudakov, B., Pseudo-random graphs, pp. 199–262 in: More sets, graphs and numbers, E. Győri, G. O. H. Katona & L. Lovász (eds.), Bolyai Soc. Math. Studies 15, Springer and János Bolyai Math. Soc., 2006. (p. 241)Google Scholar
Kuijken, E., A geometric construction of partial geometries with a Hermitian point graph , Europ. J. Combin. 23 (2002) 701706. (pp. 217, 229)Google Scholar
Kunen, K., Moufang quasigroups , J. Algebra 183 (1996) 231234. (p. 147)Google Scholar
Lam, C. W. H., Thiel, L., Swiercz, S. & McKay, J., The nonexistence of ovals in a projective plane of order 10 , Discr. Math. 45 (1983) 319321. (p. 217)Google Scholar
Lander, E. S., Symmetric designs: an algebraic approach , LMS Lecture Note Ser. 74, Cambridge Univ. Press, 1983. (p. 163)Google Scholar
Lane-Harvard, L. & Penttila, T., Some new two-weight ternary and quinary codes of lengths six and twelve , Adv. in Math. Comm. 10 (2016) 847850. (pp. 183)Google Scholar
de Lange, C. L. M., Some new cyclotomic strongly regular graphs , J. Alg. Combin. 4 (1995) 329330. (pp. 182, 183, 186)Google Scholar
Langevin, P., A new class of two-weight codes , pp. 181187 in: Finite Fields and their Applications, Proc. Glasgow 1995, LMS Lecture Note Ser. 233, Cambridge Univ. Press 1996. (p. 175)Google Scholar
Langevin, P. & Leander, G., Counting all bent functions in dimension eight 9927058926593 4370305785861242880 , Des. Codes Cryptogr. 59 (2011) 193205. (p. 196)Google Scholar
Leemans, D. & Rodrigues, B. G., Binary codes of some strongly regular subgraphs of theMcLaughlin graph , Des. Codes Cryptogr. 67 (2013) 93109. (p. 255)Google Scholar
Lemmens, P. W. H. & Seidel, J. J., Equiangular lines , J. Algebra 24 (1973) 494512. (p. 235)Google Scholar
Leonard, D. A., Semi-biplanes and semi-symmetric designs, Ph. D. Thesis, Ohio State University, 1980. (p. 326)Google Scholar
Lidický, B. & Pfender, F., Semidefinite programming and Ramsey numbers, arXiv:1704.03592, Apr. 2017. (p. 296)Google Scholar
Liebeck, M. W., The affine permutation groups of rank three , Proc. London Math. Soc. (3) 54 (1987) 477516. (pp. 182, 183, 352, 374, 377, 382, 387, 389)Google Scholar
Liebeck, M. W., Praeger, C. E. & Saxl, J., On the O’Nan-Scott theorem for finite primitive permutation groups , J. Austral. Math. Soc. (A) 44 (1988) 389396. (p. 382)Google Scholar
Liebeck, M. W., Praeger, C. E. & Saxl, J., On the 2-closures of finite permutation groups , J. London Math. Soc. 37 (1988) 241252. (p. 385)Google Scholar
Liebeck, M. W. & Saxl, J., The finite primitive permutation groups of rank three , Bull. London Math. Soc. 18 (1986) 165172. (pp. 382, 385)Google Scholar
Limbos, M., Plongements et arcs projectifs, Ph. D. Thesis, Université Libre de Bruxelles, Belgium, 1981. (p. 151)Google Scholar
Lindsey II, J. H., A correlation between PSU4 (3), the Suzuki group, and the Conway group , Trans. Amer. Math. Soc. 157 (1971) 189204. (p. 173)Google Scholar
van Lint, J. H., Nonexistence theorems for perfect error-correcting codes , pp. 8995 in: Computers in Algebra and Number Theory (Proc. New York Symp., 1970), Birkhoff, G. & Hall, M. jr (eds.), SIAM-AMS Proc., Vol IV, Providence, R.I., 1971. (p. 158)Google Scholar
van Lint, J. H. & Schrijver, A., Constructions of strongly regular graphs, two-weight codes and partial geometries by finite fields , Combinatorica 1 (1981) 6373. (pp. 186, 217)Google Scholar
van Lint, J. H. & Seidel, J. J., Equilateral point sets in elliptic geometry , Kon. Nederl. Akad. Wetensch. (A) 69 (1966) 335348 = Indag. Math. 28) (1966) 335–348. (p. 200)Google Scholar
Lovász, L., On the Shannon capacity of a graph , IEEE Trans. Inf. Th. 25 (1979) 17. (p. 273)Google Scholar
Luks, E. M., Isomorphism of graphs of bounded valence can be tested in polynomial time , J. Comput. System Sci. 25 (1982) 4265. (p. 241)Google Scholar
Lüneburg, H., Some remarks concerning the Ree groups of type (O 2), J. Algebra 3 (1966) 256259. (p. 293)Google Scholar
Lüneburg, H., Transitive Erweiterungen endlicher Permutationsgruppen, Springer LNM 84, Berlin etc., 1969. (p. 168)Google Scholar
Luyckx, D., On maximal partial spreads of H (2n + 1,q 2), Discr. Math. 308 (2008) 375379. (p. 83)Google Scholar
Mačaj, M., On packings of disjoint copies of the Hoffman-Singleton graph into K 50, preprint, 2018. (p. 289)Google Scholar
Mačaj, M. & Širáň, J., Search for properties of the missing Moore graph , Lin. Alg. Appl. 432 (2010) 23812398. (p. 285)Google Scholar
MacWilliams, F. J. & Mann, H. B., On the p-rank of the design matrix of a difference set , Inform. and Control 12 (1968) 474489. (p. 249)Google Scholar
Makhnev, A. A., On the nonexistence of strongly regular graphs with parameters (486, 165, 36, 66) , Ukrainian Math. J. 54 (2002) 11371146. (pp. 17, 422)Google Scholar
Makhnev, A. A., The graph Kre(4) does not exist , Dokl. Math. 96 (2017) 348350. (p. 17)Google Scholar
Makhnev, A. A., Moore graph with parameters (3250, 57, 0, 1) does not exist, arXiv: 2010.13443v2, Nov. 2020. (p. 17)Google Scholar
Makhnëv, A. A. & Paduchikh, D. V., Locally Shrikhande graphs and their automorphisms , Siberian Math. J. 39 (1998) 936946. (p. 265)Google Scholar
Mallows, C. L. & Sloane, N. J. A., Weight enumerators of self-orthogonal codes , Discr. Math. 9 (1974) 391400. (p. 212)Google Scholar
Manin, Yu. I., Cubic Forms, North Holland, Amsterdam, 1974. (p. 148)Google Scholar
Martis, M., Bamberg, J. & Morris, S., An enumeration of certain projective ternary two-weight codes , J. Combin. Designs 24 (2016) 2135. (pp. 182)Google Scholar
Mason, G. & Ostrom, T. G., Some translation planes of order p 2 and of extra-special type , Geom. Dedicata 17 (1985) 307322. (p. 368)Google Scholar
Mason, G. & Shult, E. E., The Klein correspondence and the ubiquity of certain translation planes , Geom. Dedicata 21 (1986) 2950. (p. 368)Google Scholar
Mathon, R., 3-Class association schemes, pp. 123–155 in: Proc. Conf. Alg. Aspects Comb., Toronto 1975, Corneil, D. G. & Mendelsohn, E., eds., Congr. Numer. XIII, Utilitas, Winnipeg, 1975. (pp. 233)Google Scholar
Mathon, R., Symmetric conference matrices of order pq 2 + 1, Canad. J. Math. 30 (1978) 321331. (pp. 200, 400, 420)Google Scholar
Mathon, R., The systems of linked 2-(16,6,2) designs , Ars. Combin. 11 (1981) 131148. (p. 244)Google Scholar
Mathon, R., The partial geometries pg(5, 7, 3), Proceedings 10th Manitoba Conf. on Numerical Math. and Computing, Winnipeg 1980, Vol. II, Congr. Numer. 31 (1981) 129139. (p. 217)Google Scholar
Mathon, R., Constructions of cyclic 2-designs , Ann. Discr. Math. 34 (1987) pp. 353362. (p. 91)Google Scholar
Mathon, R., On self-complementary strongly regular graphs , Discr. Math. 69 (1988) 263281. (pp. 187, 285)Google Scholar
Mathon, R., A new family of partial geometries , Geom. Dedicata 73 (1998) 1119. (pp. 217, 229)Google Scholar
Mathon, R. & Rosa, A., A new strongly regular graph , J. Combin. Th. (A) 38 (1985) 8486. (p. 340)Google Scholar
Mathon, R. & Royle, G. F., The translation planes of order 49 , Des. Codes Cryptogr. 5 (1995) 5772. (p. 368)Google Scholar
Mathon, R. & Street, A. P., Overlarge sets and partial geometries , J. Geom. 60 (1997) 85104. (p. 217)Google Scholar
McEliece, R. J. & Rumsey, H., jr., Euler products, cyclotomy and coding , J. Number Th. 4 (1972) 302311. (p. 185)Google Scholar
McFarland, R. L., A family of difference sets in non-cyclic groups J. Combin. Th. (A) 15 (1973) 110. (p. 202)Google Scholar
McKay, B. D. & Piperno, A., Practical Graph Isomorphism, II , J. Symbolic Comput. (2013) 60 94112. (pp. 241, 260)Google Scholar
McKay, B. D. & Spence, E., Classification of regular two-graphs on 36 and 38 vertices , Australas. J. Combin. 24 (2001) 293300. (pp. 16, 230, 277, 279, 400)Google Scholar
McLaughlin, J., A simple group of order 898,128,000 , pp. 109111 in: Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Brauer, R. & Sah, C.-H. (eds.), Benjamin, New York, 1969. (p. 337)Google Scholar
Meringer, M., Fast generation of regular graphs and construction of cages , J. Graph Theory 30 (1999) 137146. (pp. 288, 289)Google Scholar
Mesner, D. M., An investigation of certain combinatorial properties of partially balanced incomplete block designs and association schemes, with a detailed study of designs of Latin square and related types, Ph. D. Thesis, Michigan State University, 1956. (pp. 17, 303)Google Scholar
Mesner, D. M., Negative Latin square designs, Institute of Statistics, UNC, NC Mimeo series 410, November 1964. (pp. 297, 299, 303, 401)Google Scholar
Meszka, M., The chromatic index of projective triple systems , J. Combin. Designs 21 (2013) 531540. (p. 111)Google Scholar
Metsch, K., Improvement of Bruck’s completion theorem , Des. Codes Cryptogr. 1 (1991) 99116. (p. 218)Google Scholar
Metsch, K., The non-existence of Cameron-Liebler line classes with parameter 2 <xq , Bull. London Math. Soc. 42 (2010) 991996. (p. 77)Google Scholar
Metsch, K., An improved bound on the existence of Cameron-Liebler line classes , J. Combin. Th. (A) 121 (2014) 8993. (p. 76)Google Scholar
Metsch, Klaus, Small tight sets in finite elliptic, parabolic and Hermitian polar spaces , Combinatorica 36 (2016) 725744. (pp. 42, 75, 76)Google Scholar
Metsch, K. & Werner, D., On the smallest non-trivial tight sets in Hermitian polar spaces H (d, q 2), d even , Discr. Math. 342 (2019) 13361342. (p. 82)Google Scholar
Metz, R., personal communication, 1976. (p. 225)Google Scholar
Momihara, K., Strongly regular Cayley graphs, skew Hadamard difference sets, and rationality of relative Gauss sums , Europ. J. Combin. 34 (2013) 706723. (pp. 186, 187)Google Scholar
Momihara, K., Construction of strongly regular Cayley graphs based on three-valued Gauss periods , Europ. J. Combin. 70 (2018) 232250. (pp. 186, 187)Google Scholar
Momihara, K. & Xiang, Q., Strongly regular Cayley graphs from partitions of sub-difference sets of the Singer difference sets , Finite Fields Appl. 50 (2018) 222250. (p. 186)Google Scholar
Moore, E. H., Concerning the general equations of the seventh and eighth degrees , Math. Ann. 54 (1899) 417444. (p. 165)Google Scholar
Moorhouse, G. E., Root lattice constructions of ovoids, pp. 269–275 in: Finite Geometry and Combinatorics, Proc. Deinze 1992, De Clerck, F. et al. (eds.), LMS Lecture Note Ser. 191, Cambridge Univ. Press, 1993. (p. 72)Google Scholar
Moorhouse, G. E., Ovoids from the E 8 root lattice , Geom. Dedicata 46 (1993) 287297. (p. 72)Google Scholar
Moorhouse, G. E., Some p-ranks related to Hermitian varieties , J. Stat. Plann. Infer. 56(2) (1996) 229241. (pp. 80, 82)Google Scholar
Moufang, R., Zur Struktur von Alternativkörpern , Math. Ann. 110 (1935) 416430. (p. 147)Google Scholar
Munemasa, A., Godsil-McKay switching and twisted Grassmann graphs , Des. Codes Cryptogr. 84 (2017) 173179. (p. 235)Google Scholar
Munemasa, A. & Tonchev, V. D., A new quasi-symmetric 2-(56,16,6) design obtained from codes , Discr. Math. 284 (2004) 231234. (p. 211)Google Scholar
Munemasa, A. & Tonchev, V. D., Ternary codes, biplanes, and the nonexistence of some quasi-symmetric and quasi-3 designs , J. Combin. Designs 28 (2020) 745752. (pp. 211)Google Scholar
Muzychuk, M. E., Subschemes of the Johnson scheme , Europ. J. Combin. 13 (1992) 187192. (p. 28)Google Scholar
Muzychuk, M. E., A generalization of Wallis-Fon-Der-Flaass construction of strongly regular graphs , J. Alg. Combin. 25 (2007) 169187. (pp. 17, 402, 417)Google Scholar
Muzychuk, M., A classification of one dimensional affine rank three graphs , Discr. Math. 344 (2021) 112400. (pp. 191, 389)Google Scholar
Muzychuk, M. & Kovács, I., A solution of a problem of A. E. Brouwer , Des. Codes Cryptogr. 34 (2005) 249264. (pp. 192, 193)Google Scholar
Muzychuk, M. & Xiang, Q., Symmetric Bush-type Hadamard matrices of order 4m 4 exist for all odd m , Proc. Amer. Math. Soc. 134 (2006) 21972204. (p. 199)Google Scholar
Nakić, A. & Storme, L., Tight sets in finite classical polar spaces , Adv. Geom. 17 (2017) 109129. (pp. 61, 82)Google Scholar
Nandi, H. K., A further note on non-isomorphic solutions of incomplete block designs Sankhyā 7 (1946) 313316. (p. 276)Google Scholar
Nebe, G. & Venkov, B., On tight spherical designs , Алгебра и анализ (Algebra i Analiz) 24 (2012) 163171. Reprinted in: St. Petersburg Math. J. 24 (2013) 485–491. (p. 238)Google Scholar
Neumaier, A., Strongly regular graphs with smallest eigenvalue −m , Arch. Math. (Basel) 33 (1979) 392400. (pp. 29, 218)Google Scholar
Neumaier, A., Quasi-residual 2-designs, 11 2 -designs, and strongly regular multigraphs , Geom. Dedicata 12 (1982) 351366. (p. 219)Google Scholar
Neumaier, A., Regular sets and quasi-symmetric 2-designs pp. 258275 in: Combinatorial Theory, Jungnickel, D. & Vedder, K. (eds.), Springer LNM 969, Berlin etc., 1982. (pp. 206, 209, 231)Google Scholar
Neumaier, A., Some sporadic geometries related to PG(3, 2), Arch. Math. (Basel) 42 (1984) 8996. (p. 126)Google Scholar
Neumann, P. M., Generosity and characters of multiply transitive permutation groups , Proc. London Math. Soc. (3) 31 (1975) 457481. (p. 31)Google Scholar
Norton, S. P., On the group Fi24 , Geom. Dedicata 25 (1988) 483501. (p. 380)Google Scholar
Nozaki, H., Geometrical approach to Seidel’s switching for strongly regular graphs, arXiv: 0909.2603v2, Jan. 2010. (pp. 230, 340)Google Scholar
O’Keefe, C. M. & Penttila, T., Ovoids of PG(3, 16) are elliptic quadrics , J. Geom. 38 (1990) 95106. Idem, II, J. Geom. 44 (1992) 140–159. (p. 60)CrossRefGoogle Scholar
O’Keefe, C. M., Penttila, T., Royle, G. F., Classification of ovoids in PG(3, 32), J. Geom. 50 (1994) 143150. (p. 60)Google Scholar
O’Keefe, C. M. & Thas, J. A., Ovoids of the quadric O(2n, q), Europ. J. Combin. 16 (1995) 8792. (p. 70)Google Scholar
O’Nan, M. E., Automorphisms of unitary block designs , J. Algebra 20 (1972) 495511. (p. 91)Google Scholar
Östergård, P. R. J. & Soicher, L. H., There is no McLaughlin geometry , J. Combin. Th. (A) 155 (2018) 2741. (pp. 217, 340, 410)Google Scholar
Pasechnik, D. V., On some locally 3-transposition graphs , pp. 319325 in: Finite Geometry and Combinatorics, Proc. Deinze 1992, De Clerck, F. et al. (eds.), LMS Lecture Note Ser. 191, Cambridge Univ. Press, 1993. (pp. 89, 322, 344, 345)Google Scholar
Pasechnik, D. V., Skew-symmetric association schemes with two classes and strongly regular graphs of type L 2n−1 (4n − 1), Acta Applicandae Mathematicae 29 (1992) 129138. (p. 234)Google Scholar
Pasechnik, D. V., Geometric characterization of graphs from the Suzuki chain , Europ. J. Combin. 14 (1993) 491499. (pp. 277, 305, 362)CrossRefGoogle Scholar
Pasechnik, D. V., Geometric characterization of the sporadic groups Fi22, Fi23, and Fi24 , J. Combin. Th. (A) 68 (1994) 100114. (pp. 371, 377, 380)Google Scholar
Pasechnik, D. V., The triangular extensions of a generalized quadrangle of order (3, 3), Bull. Belg. Math. Soc. Simon Stevin 2 (1995) 509518. (p. 281)CrossRefGoogle Scholar
Pasechnik, D. V., Extending polar spaces of rank at least 3 , J. Combin. Th. (A) 72 (1995) 232242. (p. 150)Google Scholar
Pasechnik, D. V., The extensions of the generalized quadrangle of order (3,9) , Europ. J. Combin. 17 (1996) 751755. (p. 339)Google Scholar
Paulus, A. J. L., Conference matrices and graphs of order 26, Technische Hogeschool Eindhoven, report WSK 73/06, Eindhoven, Sept. 1973, 89 pp. (pp. 16, 268, 269)Google Scholar
Payne, S., All generalized quadrangles of order 3 are known , J. Combin. Th. (A) 18 (1975) 203206. (p. 281)Google Scholar
Payne, S., Tight pointsets in finite generalized quadrangles I , Congr. Numer. 60 (1987) 243260; II, Congr. Numer. 77 (1990) 31–41. (p. 41)Google Scholar
Payne, S. & Thas, J. A., Finite Generalized Quadrangles, Pitman, New York, 1985; 2nd edition, EMS, 2009. (p. 43)Google Scholar
Peeters, M. J. P., Ranks and structure of graphs, Ph. D. Thesis, Tilburg University, 1995 (p. 269)Google Scholar
, René Peeters, , Uniqueness of strongly regular graphs having minimal p-rank, Lin. Alg. Appl. 226–228 (1995) 931. (pp. 149, 254, 277, 283, 295)Google Scholar
René, Peeters, Strongly regular graphs that are locally a disjoint union of hexagons , Europ. J. Combin. 18 (1997) 579588. (p. 244)Google Scholar
Peisert, W., All self-complementary symmetric graphs , J. Algebra 240 (2001) 209229. (p. 187)Google Scholar
Pantangi, V. R. T., Critical groups of van Lint-Schrijver cyclotomic strongly regular graphs , Finite Fields Appl. 59 (2019) 3256. (p. 259)Google Scholar
Penttila, T., Cameron-Liebler line classes in PG(3,q), Geom. Dedicata 37 (1991) 245252. (p. 77)Google Scholar
Penttila, T. & Royle, G. F., Sets of type (m, n) in the affine and projective planes of order nine , Des. Codes Cryptogr. 6 (1995) 229245. (pp. 179, 183, 294)Google Scholar
Percsy, N., On the geometry of Zara graphs , J. Combin. Th. (A) 55 (1990) 7479. (p. 226)Google Scholar
Petersen, J., Sur le théorème de Tait, L’Intermédiaire des Mathématiciens 5 (1898) 225227. (p. 261)Google Scholar
Piper, F. C., Unitary block designs , pp. 98–105 in: Graph Theory and Combinatorics (Proc. Milton Keynes, 1978), Wilson, R. J. (ed.), Res. Notes in Math. 34, Pitman, Boston, 1979. (p. 91)Google Scholar
Pless, V., Symmetry codes over GF(3) and new five-designs , J. Combin. Th. (A) 12 (1972) 119142. (p. 364)Google Scholar
Praeger, C. E. & Soicher, L. H., Low rank representations and graphs for sporadic groups, Austral. Math. Soc. Lecture Series 8, Cambridge Univ. Press, 1997. (pp. 327, 376)Google Scholar
Pyber, L., Large connected strongly regular graphs are Hamiltonian, arXiv:1409.3041, Sep. 2014. (p. 241)Google Scholar
Ray-Chaudhuri, D. K., Combinatorial characterization theorems for geometric incidence structures , pp. 87116 in: Combinatorial Surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham, 1977), Peter J. Cameron (ed.), Academic Press, London, 1977. (p. 218)Google Scholar
Reichard, S., A criterion for the t-vertex condition on graphs , J. Combin. Th. (A) 90 (2000) 304314. (pp. 240)Google Scholar
Reichard, S., Strongly regular graphs with the 7-vertex condition , J. Alg. Combin. 41 (2015) 817842. (pp. 240)Google Scholar
Robertson, N., Graphs minimal under girth, valency and connectivity constraints, Ph. D. thesis, Univ. of Waterloo, 1969. (pp. 289)Google Scholar
Rodrigues, B. G., A projective two-weight code related to the simple group Co1 of Conway , Graphs Combin. 34 (2018) 509521. (pp. 173, 175, 182)CrossRefGoogle Scholar
Ronan, M. A., Lectures on buildings, Academic Press, London, 1989. (p. 123)Google Scholar
Ronan, M. A. & Tits, J., Building buildings , Math. Ann. 278 (1987) 291306. (p. 134)Google Scholar
Roos, C., On antidesigns and designs in an association scheme , Delft Progr. Rep. 7 (1982) 98109. (p. 24)Google Scholar
Rosenberg, I. G., Regular and strongly regular self-complementary graphs , pp. 223–238 in: Theory and practice of combinatorics, Rosa, A., Sabidussi, G. & Turgeon, J. (eds.), Ann. Discr. Math. 12, North-Holland, Amsterdam, 1982. (p. 187)Google Scholar
М. З. Розенфельд (M. Z. Rozenfel’d), О построении и свойствах некоторых классов сильно регулярных графов (The construction and properties of certain classes of strongly regular graphs) (Russian), Uspehi Mat. Nauk 28 (1973), no. 3 (171), 197–198. (pp. 16, 268)Google Scholar
The Sage developers, SageMath, the Sage mathematics software system (version 9.0), www.sagemath.org. (p. 199)Google Scholar
Salmon, G., On the triple tangent planes of surfaces of the third order , Cambridge and Dublin Math. J. 4 (1849) 252260. (p. 271)Google Scholar
Saouter, Y., Linear binary codes arising from finite groups, pp. 83–87 in: 2010 6th International Symposium on Turbo Codes & Iterative Information Processing, Brest 2010. (p. 360)Google Scholar
Schläfli, L., An attempt to determine the twenty-seven lines upon a surface of the third order, and to divide such surfaces into species in reference to the reality of the lines upon the surface , Quarterly J. Pure Applied Math. 2 (1858) 110120. (p. 271)Google Scholar
Schmidt, B. & White, C., All two-weight irreducible cyclic codes? , Finite Fields Appl. 8 (2002) 1–17. (pp. 183, 184)Google Scholar
Scott jr., L. L., A condition on Higman’s parameters, Notices Amer. Math. Soc. 20 (1973), p. A-97 (701-20-45). (p. 25)Google Scholar
Scott, L. L., Some properties of character products , J. Algebra 45 (1977) 259265. (p. 25)Google Scholar
Segre, B., Forme e geometrie Hermitiane, con particolare riguardo al caso finito , Ann. Mat. Pura Appl. 70 (1965) 1201. (pp. 41, 75, 310)Google Scholar
Seidel, J. J., Strongly regular graphs of L 2 -type and of triangular type , Kon. Nederl. Akad. Wetensch. (A) 70 (1967) 188–196 = Indag. Math. 29 (1967) 188196. (p. 9)Google Scholar
Seidel, J. J., Strongly regular graphs with (−1, 1, 0) adjacency matrix having eigenvalue 3 , Lin. Alg. Appl. 1 (1968) 281298. (pp. 5, 267, 271)Google Scholar
Seidel, J. J., Graphs and two-graphs , pp. 125–143 in: Proc. 5th Southeastern Conf. on Combinatorics, Graph Theory and Computing (Boca Raton, 1974), Utilitas, Winnipeg, 1974. (pp. 262, 267)Google Scholar
Shearer, J. B., Lower bounds for small diagonal Ramsey numbers , J. Combin. Th. (A) 42 (1986) 302304. (p. 193)Google Scholar
Shearer, J. B., Independence number of Paley graphs, http://www.research.ibm.com/people/s/shearer/indpal.html. (p. 192)Google Scholar
Shin, SeungHyun, Nonexistence of certain pseudogeometric graphs , Discr. Math. 341 (2018) 11251130. (p. 17)Google Scholar
Shrikhande, M. S., Strongly regular graphs and quasi-symmetric designs , Utilitas Math. 3 (1973) 297309. (p. 214)Google Scholar
Shrikhande, S. S., On a characterization of the triangular association scheme , Ann. Math. Statist. 30 (1959) 3947. (p. 17)Google Scholar
Shrikhande, S. S., The uniqueness of the L 2 association scheme , Ann. Math. Statist. 30 (1959) 781798. (pp. 5, 17)Google Scholar
Shrikhande, S. S. & Singh, N. K., On a method of constructing symmetrical balanced incomplete block designs , Sankhyā (Ser. A) 24 (1962) 2532. (p. 199)Google Scholar
Shult, E. E., Groups, polar spaces and related structures , pp. 130–161 in: Combinatorics, Part 3, Hall jr, M.. & van Lint, J. H. (eds.), Math. Centre Tracts 57, Math. Centrum, Amsterdam, 1974. (p. 148)Google Scholar
Shult, E. E., Nonexistence of ovoids in Ω+ (10, 3), J. Combin. Th. (A) 51 (1989) 250257. (p. 67)Google Scholar
Shult, E. E. & Thas, J. A., m-Systems of polar spaces , J. Combin. Th. (A) 68 (1994) 184204. (p. 41)Google Scholar
Shult, E. E. & Thas, J. A., m-Systems and partial m-Systems of polar spaces , Des. Codes Cryptogr. 8 (1996) 229238. (p. 41)Google Scholar
Shult, E. E. & Yanushka, A., Near n-gons and line systems , Geom. Dedicata 9 (1980) 172. (p. 166)Google Scholar
Siehler, J. A., Xor-magic graphs , Recreat. Math. Mag. 11 (2019) 3544. (p. 267)Google Scholar
Sims, C. C., On graphs with rank 3 automorphism groups, unpublished, 1968. (pp. 239)Google Scholar
Sin, P., The p-rank of the incidence matrix of intersecting linear subspaces , Des. Codes Cryptogr. 31 (2004) 213220. (pp. 41, 255)Google Scholar
Sin, P., The critical groups of the Peisert graphs , J. Alg. Combin. 48 (2018) 227245. (p. 258)Google Scholar
Sinkovic, J., A graph for which the inertia bound is not tight , J. Alg. Combin. 47 (2018) 3950. (p. 268)Google Scholar
Sloane, N. J. A. et al., Online Encyclopedia of Integer Sequences, https://oeis.org/. (p. 196)Google Scholar
Smith, K. J. C., On the p-rank of the incidence matrix of points and hyperplanes in a finite projective geometry , J. Combin. Th. 7 (1969) 122129. (p. 249)Google Scholar
Smith, M. S., On the isomorphism of two simple groups of order 44,352,000 , J. Algebra 41 (1976) 172174. (p. 330)Google Scholar
Soicher, L. H., Three new distance-regular graphs , Europ. J. Combin. 14 (1993) 501505. (pp. 310, 329, 362)Google Scholar
Soicher, L. H., The uniqueness of a distance-regular graph with intersection array {32, 27, 8, 1; 1, 4, 27, 32} and related results , Des. Codes Cryptogr. 84 (2017) 101108. (p. 310)Google Scholar
Soicher, L. H., The GRAPE package for GAP, https://gap-packages.github.io/grape. (p. 260)Google Scholar
Song, Yi-yang, Zhang, Gui-jun, Xu, Ling-shan &Tao, Yuan-hong, Construction of Mutually Unbiased Bases using Mutually Orthogonal Latin Squares , Int. J. Theor. Physics 59 (2020) 17771787. (p. 203)Google Scholar
Spence, E., Is Taylor’s graph geometric? , Discr. Math. 106 /107 (1992) 449454. (p. 229)Google Scholar
Spence, E., Regular two-graphs on 36 vertices , Lin. Alg. Appl. 226 –228 (1995) 459497. (pp. 230, 274, 277)Google Scholar
Spence, E., The strongly regular (40,12,2,4) graphs , Electr. J. Combin. 7 (2000) R22. (pp. 16, 400)Google Scholar
Spielman, D. A., Faster isomorphism testing of strongly regular graphs , pp. 576–584 in: Proc. 28th STOC (Philadelphia 1996), ACM, 1996. (pp. 241, 243)Google Scholar
Stoichev, S. D. & Tonchev, V. D., Unital designs in planes of order 16 , Discr. Appl. Math. 102 (2000) 151158. (p. 332)Google Scholar
Storme, L., Weighted { δ (q + 1), δ; k − 1,q}-minihypers , Discr. Math. 308 (2008) 339354. (p. 182)Google Scholar
Szekeres, G., Tournaments and Hadamard matrices , L’Enseignement Mathématique 15 (1969) 269278. (p. 199)Google Scholar
Tallini, G., Blocking sets with respect to planes in PG(3,q) and maximal spreads of a nonsingular quadric in PG(4,q), Mitt. Math. Sem. Giessen 201 (1991) 141147. (p. 60)Google Scholar
Tarry, G., Le problème des 36 officiers , C.R. Assoc. Fr. Av. Sci. Nat. 1 (1900) 122123, part 2, ibid. 2 (1901) 170–203. (p. 203)Google Scholar
Taylor, D. E., Regular 2-graphs , Proc. London Math. Soc. (3) 35 (1977) 257274. (pp. 9, 215, 228, 231)Google Scholar
Taylor, D. E., The geometry of the classical groups, Heldermann Verlag, Berlin, 1992. (p. 143)Google Scholar
Taylor, D. E. & Levingston, R., Distance-regular graphs, pp. 313–323 in: Combinatorial Mathematics (Proc. Canberra, 1977), Holton, D. A. & Seberry, J., eds., Springer LNM 686, Berlin etc., 1978. (p. 232)Google Scholar
Temmermans, B., Thas, J. A. & Van Maldeghem, H., Domesticity in projective spaces , Innov. Incid. Geom. 12 (2011) 141149. (p. 74)Google Scholar
Terwilliger, P., Distance-regular graphs with girth 3 or 4, I , J. Combin. Th. (B) 39 (1985) 265281. (p. 226)Google Scholar
Thas, J. A., Construction of maximal arcs and partial geometries , Geom. Dedicata 3 (1974) 6164. (p. 216)Google Scholar
Thas, J. A., Ovoids and spreads of finite classical polar spaces , Geom. Dedicata 10 (1981) 135144. (pp. 67, 83)Google Scholar
Thas, J. A., Some results on quadrics and a new class of partial geometries , Simon Stevin 55 (1981) 129139. (p. 217)Google Scholar
Thas, J. A., Old and new results on spreads and ovoids of finite classical polar spaces , pp. 529544 in: Combinatorics ’90 (Gaeta, 1990), Ann. Discr. Math. 52, North-Holland, Amsterdam, 1992. (p. 60)Google Scholar
Thas, J. A., A combinatorial characterization of Hermitian curves , J. Alg. Combin. 1 (1992) 97102. (p. 47)CrossRefGoogle Scholar
Thas, J. A., Thas, K. & Van Maldeghem, H., Translation Generalized Quadrangles, World Scientific, Hackensack, NJ, 2006. (pp. 43, 69)Google Scholar
Thas, J. A. & Van Maldeghem, H., Lax embeddings of generalized quadrangles in finite projective spaces , Proc. London Math. Soc. (3) 82 (2001) 402440. (p. 151)Google Scholar
Tietäväinen, A., On the nonexistence of perfect codes over finite fields , SIAM J. Appl. Math. 24 (1973) 8896. (p. 158)Google Scholar
Tits, J., Les groupes de Lie exceptionnels et leur interprétation géométrique , Bull. Soc. Math. Belg. 8 (1956) 4881. (p. 126)Google Scholar
Tits, J., Sur la trialité et certains groupes qui s’en déduisent , Inst. Hautes Études Sci. Publ. Math. 2 (1959) 1360. (pp. 69, 115, 132)Google Scholar
Tits, J., Let groupes simples de Suzuki et de Ree , Séminaire Bourbaki 13 (1960) 118. (p. 60)Google Scholar
Tits, J., Ovoïdes et groupes de Suzuki , Arch. Math. 13 (1962) 187198. (pp. 60, 69)Google Scholar
Tits, J., Buildings of spherical type and finite BN-pairs, Springer LNM 386, Berlin etc., 1974. (pp. 34, 114, 123, 129)Google Scholar
Tits, J., Classification of buildings of spherical type and Moufang polygons: a survey , in: Colloq. Intern. Teorie Combin. (Roma 1973), Atti dei convegni Lincei 17 (1976) 229–246. (p. 125)Google Scholar
Tits, J., A local approach to buildings , pp. 519547 in: The Geometric Vein, The Coxeter Festschrift, Davis, C. et al. (eds.), Springer, Berlin, 1981. (p. 126)Google Scholar
Tits, J., personal communication. (p. 168)Google Scholar
Thomason, A., Pseudo-random graphs , pp. 307–331 in: Proceedings of Random Graphs, Poznań, 1985, Karoński, M. (ed.), Ann. Discr. Math. 33, North Holland, 1987. (p. 241)Google Scholar
Thomason, A., Random graphs, strongly regular graphs and pseudorandom graphs , pp. 173195 in: Surveys in Combinatorics (New Cross 1987), Whitehead, C. (ed.), LMS Lecture Note Ser. 123, Cambridge Univ. Press, 1987. (p. 241)Google Scholar
Todorov, D. T., Four mutually orthogonal Latin squares of order 14 , J. Combin. Designs 20 (2012) 363367. (p. 203)Google Scholar
Tonchev, V. D., The isomorphism of the Cohen, Haemers-van Lint and De Clerck-Dye-Thas partial geometries , Discr. Math. 49 (1984) 213217. (p. 217)Google Scholar
Tonchev, V. D., Quasi-symmetric designs and self-dual codes , Europ. J. Combin. 7 (1986) 6773. (p. 210)Google Scholar
Tonchev, V. D., Quasi-symmetric 2-(31, 7, 7) designs and a revision of Hamada’s Conjecture , J. Combin. Th. (A) 42 (1986) 104110. (pp. 209, 210, 408)Google Scholar
Tonchev, V. D., Embedding of the Witt-Mathieu system S(3, 6, 22) in a symmetric 2-(78, 22, 8) design , Geom. Dedicata 22 (1987) 4975. (p. 211)Google Scholar
Tzanakis, N. & Wolfskill, J., On the diophantine equation v 2 = 4q n + 4q + 1, J. Number Th. 23 (1986) 219237. (p. 180)Google Scholar
Tzanakis, N. & Wolfskill, J., The diophantine equation x 2 = 4q a/2 + 4q + 1, with an application to coding theory , J. Number Th. 26 (1987) 96116. (p. 180)Google Scholar
Uchida, Daiyu, On the subschemes of the Johnson scheme J (v, d) , Mem. Fac. Sci. Kyushu Univ. Ser. A 46 (1992) 8592. (p. 28)Google Scholar
Vanhove, F., The maximum size of a partial spread in H (4n + 1,q 2) is q 2n+1 + 1, Electr. J. Combin. 16 (2009) #N13. (p. 83)Google Scholar
Vanhove, F., The association scheme on the points off a quadric , Bull. Belg. Math. Soc. Simon Stevin 27 (2020) 153160. (p. 84)Google Scholar
Van Maldeghem, H., Generalized Polygons, Birkhäuser Verlag, Basel. 1998. (pp. 43, 76, 92, 115, 132)Google Scholar
Van Maldeghem, H., An elementary construction of the split Cayley hexagon H (2), Atti Sem. Mat. Fis. Univ. Modena 48 (2000) 463471. (p. 115)Google Scholar
Van Overberghe, S., Algorithms for computing Ramsey numbers, M. Sc. thesis, Ghent University, 2020. (p. 296)Google Scholar
Vega, G. & Wolfmann, J., New classes of 2-weight codes , Des. Codes Cryptogr. 42 (2007) 327334. (p. 184)Google Scholar
Vega, G., Two-weight cyclic codes constructed as the direct sum of two one-weight cyclic codes , Finite Fields Appl. 14 (2008) 785797. (p. 184)Google Scholar
Veldkamp, F., Polar geometry I–IV, Indag. Math. 21 (1959) 512551; Polar geometry V, Indag. Math. 22 (1960) 207–212. (pp. 34, 129)Google Scholar
Venkov, B., Réseaux et designs sphériques , pp. 1086 in: Réseaux euclidiens, designs sphériques et formes modulaires: Autour des travaux de Boris Venkov, Martinet, J. (ed.), L’Enseignement mathématique Monograph no. 37, Genève, 2001. (p. 237)Google Scholar
Wagner, A., On collineation groups of projective spaces, I , Math. Z. 76 (1961) 411426. (p. 165)Google Scholar
Wallis, W. D., Construction of strongly regular graphs using affine designs , Bull. Austral. Math. Soc. 4 (1971) 4149. Corrigenda, 5 (1971), p. 431. (pp. 17, 399, 400, 401, 402, 403, 404, 405, 410, 413, 414, 417, 418, 419, 423)Google Scholar
Seberry Wallis, J., Hadamard matrices, Part 4 in: Wallis, W. D., Street, A. P. & Seberry Wallis, J., Combinatorics: Room squares, Sum-free sets, Hadamard matrices, Springer LNM 292, Berlin etc., 1972. (pp. 198, 199)Google Scholar
Seberry Wallis, J. & Whiteman, A. L., Some classes of Hadamard matrices with constant diagonal , Bull. Austral. Math. Soc. 7 (1972) 233249. (pp. 198, 199)Google Scholar
Wang, W., Qiu, L. & Hu, Y., Cospectral graphs, GM-switching and regular rational orthogonal matrices of level p , Lin. Alg. Appl. 563 (2019) 154177. (p. 235)Google Scholar
Weetman, G. M., A construction of locally homogeneous graphs , J. London Math. Soc. 50 (1994) 6886. (p. 245)Google Scholar
Weetman, G. M., Diameter bounds for graph extensions , J. London Math. Soc. 50 (1994) 209221. (pp. 245)Google Scholar
Wegner, G., A smallest graph of girth 5 and valency 5 , J. Combin. Th. (B) 14 (1973) 203208. (p. 289)Google Scholar
Weng, Guobiao, Qiu, Weisheng, Wang, Zeying & Xiang, Qing, Pseudo-Paley graphs and skew Hadamard difference sets from presemifields , Des. Codes Cryptogr. 44 (2007) 4962. (p. 254)Google Scholar
Weisfeiler, B., On construction and identification of graphs, Springer LNM 558, Berlin etc., 1976. (p. 269)Google Scholar
Weiss, R., The structure of spherical buildings, Princeton Univ. Press, 2003. (p. 123)Google Scholar
Wettl, F., On parallelisms of odd-dimensional finite projective spaces , Proc. 2nd Intern. Math. Miniconference (Budapest, 1988), Period. Polytech. Transportation Engrg. 19 (1991) 111116. (p. 111)Google Scholar
Wielandt, H., Finite permutation groups, Academic Press, New York, 1964. (p. 31)Google Scholar
Wilbrink, H. A., A characterization of the classical unitals , pp. 445454 in: Finite Geometries (Proc. Pullman, 1981), Johnson, N. L., Kallaher, M. J. & Long, C. T. (eds.), Lecture Notes Pure Appl. Math. 82, Dekker, New York, 1983. (p. 91)Google Scholar
Wilbrink, H. A., On the (99,14,1,2) strongly regular graph, pp. 342–355 in: Papers dedicated to Seidel, J. J., de Doelder, P. J., de Graaf, J. & van Lint, J. H. (eds.), Eindhoven Univ. Techn. report 84-WSK-03, Aug 1984. (p. 17)Google Scholar
Wilbrink, H. A. & Brouwer, A. E., A (57,14,1) strongly regular graph does not exist , Indag. Math. 45 (1983) 117121. (pp. 16, 210, 400)Google Scholar
Wilbrink, H. A., personal communication. (p. 224)Google Scholar
Wilson, R. A., The complex Leech lattice and maximal subgroups of the Suzuki group , J. Algebra 84 (1983) 151188. (p. 173)Google Scholar
Wilson, R. A., The finite simple groups, Springer, 2009. (pp. 172, 173, 378)Google Scholar
Wilson, R. M., An existence theory for pairwise balanced designs , I. J. Combin. Th. (A) 13 (1972) 220245, II. J. Combin. Th. (A) 13 (1972) 246–273, III. J. Combin. Th. (A) 18 (1975) 71–79. (p. 161)Google Scholar
Wilson, R. M., A diagonal form for the incidence matrices of t-subsets vs. k-subsets , Europ. J. Combin. 11 (1990) 609615. (p. 256)Google Scholar
Wilson, R. M., Signed hypergraph designs and diagonal forms for some incidence matrices , Des. Codes Cryptogr. 17 (1999) 289297. (p. 257)Google Scholar
Wilson, R. M. & Wong, T. W. H., Diagonal forms for incidence matrices associated with t-uniform hypergraphs , Europ. J. Combin. 35 (2014) 490508. (p. 258)Google Scholar
Witt, E., Die 5-Fach transitiven Gruppen von Mathieu , Abh. Math. Sem. Univ. Hamburg 12 (1938) 256264. (p. 161)Google Scholar
Witt, E., Über Steinersche Systeme , Abh. Math. Sem. Univ. Hamburg 12 (1938) 265275. (p. 161)Google Scholar
Wolfmann, J., Are 2-weight projective cyclic codes irreducible? , IEEE Trans. Inf. Th. 51 (2005) 733727. (p. 184)Google Scholar
Wong, P.-K., Cages—A survey , J. Graph Theory 6 (1982) 122. (pp. 289)Google Scholar
Wootters, W. K. & Fields, B. D., Optimal state-determination by mutually unbiased measurements , Ann. Physics 191 (1989) 363381. (p. 203)Google Scholar
Wu, Fan, Constructions of strongly regular Cayley graphs using even index Gauss sums , J. Combin. Designs 21 (2013) 432446. (pp. 186, 187)Google Scholar
Yiu, P. Y. H., Strongly regular graphs and Hurwitz-Radon numbers , Graphs Combin. 6 (1990) 6169. (p. 112)Google Scholar
Zara, F., Graphes liés aux espaces polaires , Europ. J. Combin. 5 (1984) 255290. Erratum, Europ. J. Combin. 6 (1985) 199. (pp. 225, 226)Google Scholar
Zara, F., Graphes liés aux espaces polaires II , Europ. J. Combin. 8 (1987) 335340. (p. 226)Google Scholar
Zauner, G., Quantendesigns, Ph. D. thesis, Univ. Wien, 1999. (p. 236)Google Scholar
张成学 &杨元生 (Zhang Chengxue & Yang Yuansheng), 一个新发现的 (5.5) 笼及 (5.5) 笼 的个数 (A new (5,5) cage and the number of (5,5) cages) (Chinese), 《数学研究与评论》1989年 第4期 (J. Math. Res. Exposition 9 (1989), no. 4, 628, 632). (pp. 288, 289)Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Andries E. Brouwer, Technische Universiteit Eindhoven, The Netherlands, H. Van Maldeghem, Universiteit Gent, Belgium
  • Book: Strongly Regular Graphs
  • Online publication: 06 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781009057226.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Andries E. Brouwer, Technische Universiteit Eindhoven, The Netherlands, H. Van Maldeghem, Universiteit Gent, Belgium
  • Book: Strongly Regular Graphs
  • Online publication: 06 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781009057226.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Andries E. Brouwer, Technische Universiteit Eindhoven, The Netherlands, H. Van Maldeghem, Universiteit Gent, Belgium
  • Book: Strongly Regular Graphs
  • Online publication: 06 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781009057226.014
Available formats
×