Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T07:42:54.823Z Has data issue: false hasContentIssue false

Part IV - Acute Treatment of Haemorrhagic Stroke

Published online by Cambridge University Press:  15 December 2020

Jeffrey L. Saver
Affiliation:
David Geffen School of Medicine, University of Ca
Graeme J. Hankey
Affiliation:
University of Western Australia, Perth
Get access
Type
Chapter
Information
Stroke Prevention and Treatment
An Evidence-based Approach
, pp. 239 - 288
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Al-Shahi Salman, R, Frantzias, J, Lee, RJ, Lyden, PD, Battey, TWK, Ayres, AM, at al. (2018) Absolute risk and predictors of the growth of acute spontaneous intracerebral hemorrhage: a systematic review and meta-analysis of individual patient data. Lancet Neurol, 17, 885–94.CrossRefGoogle ScholarPubMed
Al-Shahi Salman, R, Labovitz, DL, Stapf, C. (2009). Spontaneous intracerebral hemorrhage. BMJ, 339, b2586.Google Scholar
Al-Shahi Salman, R, Law, ZK, Bath, PM, Steiner, T, Sprigg, N. (2018). Hemostatic therapies for acute spontaneous intracerebral hemorrhage. Cochrane Database Syst Rev, 4. CD005951. doi:10.1002/14651858.CD005951.pub4.Google Scholar
Anderson, C, Heeley, E, Huang, Y, Wang, J, Stapf, C, Delcourt, C, et al. (2013). Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med, 368(25), 2355–65.Google Scholar
Anderson, CS, Huang, Y, Wang, JG, Arima, H, Neal, B, Peng, B, et al. (2008). Intensive blood pressure reduction in acute cerebral hemorrhage trial (INTERACT): a randomised pilot trial. Lancet Neurol, 7(5), 391–9.Google Scholar
Anderson, CS, Arima, H, Lavados, P, Billot, L, Hackett, ML, Olavarria, VV, et al. (2017a). Cluster-randomized, crossover trial of head positioning in acute stroke. New Engl J Med, 376(25), 2437–47.CrossRefGoogle ScholarPubMed
Anderson, CS, Selim, MH, Molina, CA, Qureshi, AI. (2017b). Intensive blood pressure lowering in intracerebral hemorrhage. Stroke, 48, 2034–7.Google Scholar
Arima, H, Heeley, E, Delcourt, C, Hirakawa, Y, Wang, X, Woodward, M, et al. (2015). Optimal achieved blood pressure in acute intracerebral hemorrhage: INTERACT2. Neurology, 84(5), 464–71.Google Scholar
Arima, H, Huang, Y, Wang, JG, Heeley, E, Delcourt, C, Parsons, M, et al. (2012). Earlier blood pressure-lowering and greater attenuation of hematoma growth in acute intracerebral hemorrhage: INTERACT pilot phase. Stroke, 43(8), 2236–8.Google Scholar
Asdaghi, N, Manawadu, D, Butcher, K. (2007) Therapeutic management of acute intracerebral hemorrhage. Expert Opin Pharmacother, 8, 3097–116CrossRefGoogle Scholar
AVERT Trial Collaboration Group. (2015). Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet, 386(9988), 4655.Google Scholar
Baharoglu, MI, Cordonnier, C, Al-Shahi Salman, R, de Gans, K, Koopman, MM, Brand, A, et al. (2016). Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral hemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial. Lancet, 387(10038), 2605–13.Google Scholar
Bereczki, D, Liu, M, Do Prado, GF, Fekete, I. (2008) Mannitol for acute stroke. Stroke, 39(2), 512–13.Google Scholar
Boulis, NM, Bobek, MP, Schmaier, A, Hoff, JT. (1999). Use of factor IX complex in warfarin-related intracranial hemorrhage. Neurosurgery, 45(5), 1113–19.CrossRefGoogle ScholarPubMed
Boulouis, G, Morott, A, Goldstein, JN, Charidimou, A. (2017). Intensive blood pressure lowering in patients with acute intracerebral hemorrhage: clinical outcomes and hemorrhage expansion. Systematic review and meta-analysis of randomised trials. J Neurol Neurosurg Psychiatry, 88(4), 339–45.Google Scholar
Brott, T, Broderick, J, Kothari, R, Barsan, W, Tomsick, T, Sauerbeck, L, Spilker, J, et al. (1997). Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke, 28(1), 15.CrossRefGoogle ScholarPubMed
Buletko, AB, Thacker, T, Cho, SM, Mathew, J, Thompson, NR, Organek, N, et al. (2018). Cerebral ischemia and deterioration with lower blood pressure target in intracerebral hemorrhage. Neurology, 91, e1058-e1066.Google Scholar
Butcher, KS, Jeerakathil, T, Hill, M, Demchuk, AM, Dowlatshahi, D, Coutts, SB, et al. (2013). The intracerebral hemorrhage acutely decreasing arterial pressure trial. Stroke, 44(3), 620–6.Google Scholar
Connolly, SJ, Milling, TJ Jr, Eikelboom, JW, Gibson CM, Curnutte JT, Gold A, et al. (2016). Andexanet alfa for acute major bleeding associated with factor Xa inhibitors. New Engl J Med, 375, 1131–41.Google Scholar
Davis, SM, Broderick, J, Hennerici, M, Brun, NC, Diringer, MN, Mayer, SA, et al. (2006). Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology, 66(8), 1175–81.Google Scholar
Demchuk, AM, Dowlatshahi, D, Rodriguez-Luna, D, Molina, CA, Glas, YS, Dzialowski, I, et al. (2012). Prediction of hematoma growth and outcome in patients with intracerebral hemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study. Lancet Neurol, 11(4), 307–14.CrossRefGoogle ScholarPubMed
England, TJ, Sprigg, N, Alasheev, AM, Belkin, AA, Kumar, A, Prasad, K, et al. (2016). Granulocyte-colony stimulating factor (G-CSF) for stroke: An individual patient data meta-analysis. Sci Rep, 6, 36567.CrossRefGoogle ScholarPubMed
Feigin, VL, Anderson, N, Rinkel, GJE, Algra, A, van Gijn, J, Bennett, D. (2005). Corticosteroids for aneurysmal subarachnoid hemorrhage and primary intracerebral hemorrhage. Cochrane Database Syst Rev, 3. CD004583. doi:10.1002/14651858.CD004583.pub2.Google Scholar
Feigin, VL, Krishnamurthi, RV, Parmar, P, Norrving, B, Mensah, GA, Bennett, DA, et al. (2015). Update on the global burden of ischemic and hemorrhagic stroke in 1990–2013: the GBD 2013 study. Neuroepidemiology, 45(3), 161176.Google Scholar
Feigin, VL, Lawes, CM, Bennett, DA, Barker-Collo, SL, Parag, V. (2009). Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol, 8(4), 355–69.Google Scholar
Fiorella, D, Arthur, AS, Mocco, JD. (2016). O-027 The INVEST trial: a randomized, controlled trial to investigate the safety and efficacy of image-guided minimally invasive endoscopic surgery with Apollo vs best medical management for supratentorial intracerebral hemorrhage. J NeuroInterv Surg, 8, A18Google Scholar
Fischer, U, Cooney, MT, Bull, LM, Silver, LE, Chalmers, J, Anderson, CS, et al. (2014). Acute post-stroke blood pressure relative to premorbid levels in intracerebral hemorrhage versus major ischemic stroke: A population-based study. Lancet Neurol, 13(4), 374–84.Google Scholar
Frontera, JA, Lewin, JJ Rabinstein, 3rd AA, Aisiku, IP, Alexandrov, AW, Cook, AM, et al. (2016). Guideline for reversal of antithrombotics in intracranial hemorrhage. Neurocrit Care, 24(1), 646.Google Scholar
Gao, L, Zhao, H, Liu, Q, Song, J, Xu, C, Liu, P, et al. (2012). Improvement of hematoma absorption and neurological function in patients with acute intracerebral hemorrhage treated with Xueshuantong. J Neurolog Sci, 323(1–2), 236–40.Google Scholar
Gong, S, Lin, C, Zhang, D, Kong, X, Chen, J, Wang, C, et al. (2017). Effects of intensive blood pressure reduction on acute intracerebral hemorrhage: a systematic review and meta-analysis. Sci Rep, 7(1), 10694.Google Scholar
Gu, Y, Hua, Y, Keep, RF, Morgenstern, LB, Xi, G. (2009). Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke, 40(6), 2241–3.Google Scholar
Haley, EC, Thompson, JLP, Levin, B, Davis, S, Lees, KR, Pittman, JG, et al. (2005). Gavestinel does not improve outcome after acute intracerebral hemorrhage: An analysis from the GAIN International and GAIN Americas studies. Stroke, 36(5), 1006–10.Google Scholar
Hanley, DF, Lane, K, McBee, N, Ziai, W, Tuhrim, S, Lees, KR, et al. (2017). Thrombolytic removal of intraventricular hemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet, 389(10069), 603–11.CrossRefGoogle ScholarPubMed
Hanley, DF, Thompson, RE, Rosenblum, M, Yenokyan, G, Lane, K, McBee, N, et al. (2019). Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded end-point phase 3 trial. Lancet, 393(10175), 1021–32.Google Scholar
Hemphill, JC, Greenberg, SM, Anderson, CS, Becker, K, Bendok, BR, Cushman, M, et al. (2015). Guidelines for the management of spontaneous intracerebral hemorrhage. Stroke, 46(7), 2032–60.Google Scholar
Herrick, DB, Ullman, N, Nekoovaght-Tak, S, Hanley, DF, Awad, I, LeDroux, S, et al. (2014). Determinants of external ventricular drain placement and associated outcomes in patients with spontaneous intraventricular hemorrhage. Neurocrit Care, 21(3), 426–34.Google Scholar
Iranmanesh, F, Vakilian, A. (2008). Efficiency of citicoline in increasing muscular strength of patients with nontraumatic cerebral hemorrhage: a double-blind randomized clinical trial. J Stroke Cerebrovasc Dis, 17(3), 153–5.Google Scholar
Jeffrey, S. (2017). No benefit of hemostatic therapy in patients with “spot sign” ICH. Medscape Neurology (news article). https://www.medscape.com/viewarticle/877707#vp_2 (accessed Dec 2018).Google Scholar
Khan, NR, Tsivgoulis, G, Lee, SL, Jones, GM, Green, CS, Katsanos, AH, et al. (2014). Fibrinolysis for intraventricular hemorrhage: an updated meta-analysis and systematic review of the literature. Stroke, 45(9), 2662–9.Google Scholar
Khan, U, Porteous, L, Hassan, A, Markus, HS. (2007). Risk factor profile of cerebral small vessel disease and its subtypes. J Neurol Neurosurg Psychiatry, 78(7), 702–6.Google Scholar
Koch, S, Romano, JG, Forteza, AM, Otero, CM, Rabinstein, AA. (2008) Rapid blood pressure reduction in acute intracerebral hemorrhage: feasibility and safety. Neurocrit Care, 8(3), 316–21.Google Scholar
Koenig, MA, Bryan, M, Lewin, JL 3rd, Mirski, MA, Geocadin, RG, Stevens, RD. (2008). Reversal of transtentorial herniation with hypertonic saline. Neurology, 70, 1023–9.Google Scholar
Kohler, E, Prentice, DA, Bates, TR, Hankey, GJ, Claxton, A, van Heerden, J, et al. (2013). Intravenous minocycline in acute stroke: a randomized, controlled pilot study and meta-analysis. Stroke, 44(9), 2493–9.Google Scholar
Krishnan, K, Scutt, P, Woodhouse, L, Adami, A, Becker, JL, Berge, E, et al. (2016). Glyceryl trinitrate for acute intracerebral hemorrhage: results from the Efficacy of Nitric Oxide in Stroke (ENOS) trial, a subgroup analysis. Stroke, 47, 4452.Google Scholar
Langhorne, P, Fearon, P, Ronning, OM, Kaste, M, Palomaki, H, Vemmos, K, et al. (2013). Stroke unit care benefits patients with intracerebral hemorrhage: Systematic review and meta-analysis. Stroke, 44(11), 3044–9.CrossRefGoogle ScholarPubMed
Lattanzi, S, Cagnetti, C, Provinciali, L, Silvestrini, M. (2017). How should we lower blood pressure after cerebral hemorrhage? A systematic review and meta-analysis. Cerebrovasc Dis, 43(5–6), 207–13.Google Scholar
Lee, SH, Park, HK, Ryu, WS, Lee, JS, Bae, HJ, Han, MK, et al. (2013). Effects of celecoxib on hematoma and edema volumes in primary intracerebral hemorrhage: a multicenter randomized controlled trial. Eur J Neurol, 20(8), 1161–9.Google Scholar
Lewis, SR, Pritchard, MW, Evans, DJ, Butler, AR, Alderson, P, Smith, AF, et al. (2018). Colloids versus crystalloids for fluid resuscitation in critically ill people. Cochrane Database Syst Rev, 8. CD000567.Google Scholar
Lodder, J, van Raa, L, Hilton, A, Hardy, E, Kessels, A; EGASIS Study Group. (2006). Diazepam to improve acute stroke outcome: results of the early GABA-Ergic activation study in stroke trial. a randomized double-blind placebo-controlled trial. Cerebrovasc Dis, 21(1–2), 120–7.Google Scholar
Lovasik, BP, McCracken, DJ, McCracken, CE, McDougal, ME, Frerich, JM, Samuels, OB, et al. (2016). The effect of external ventricular drain use in intracerebral hemorrhage. World Neurosurg, 94, 309–18.Google Scholar
Lovelock, C, Molyneux, A, Rothwell, P. (2007). Change in incidence and etiology of intracerebral hemorrhage in Oxfordshire, UK, between 1981 and 2006: a population-based study. Lancet Neurol, 6(6), 487–93.CrossRefGoogle ScholarPubMed
Lyden, PD, Shuaib, A, Lees, KR, Davalos, A, Davis, SM, Diener, HC, et al. (2007). Safety and tolerability of NXY-059 for acute intracerebral hemorrhage: the CHANT trial. Stroke, 38(8), 2262–9.CrossRefGoogle ScholarPubMed
Lyden, PD, Shuaib, A, Ng, K, Atkinson, R. (2000) The clomethiazole acute stroke study in hemorrhagic stroke (CLASS-H): final results. J Stroke Cerebrovasc Dis, 9(6), 268–75.CrossRefGoogle Scholar
Manning, LS, Robinson, TG. (2015). New insights into blood pressure control for intracerebral hemorrhage. Front Neurol Neurosci, 37, 3550.Google Scholar
Mendelow, AD, Gregson, BA, Rowan, EN, Murray, GD, Gholkar, A, Mitchell, PM; STICH II Investigators. (2013). Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral hematomas (STICH II): a randomised trial. Lancet, 382(9890), 397408.Google Scholar
Menon, RS, Burgess, RE, Wing, JJ, Gibbons, MC, Shara, NM, Fernandez, S, et al. (2012). Predictors of highly prevalent brain ischemia in intracerebral hemorrhage. Ann Neurol, 71, 199205.Google Scholar
Moussa, WMM, Khedr, W. (2017). Decompressive craniectomy and expansive duraplasty with evacuation of hypertensive intracerebral hematoma, a randomized controlled trial. Neurosurg Rev, 40(1), 115–27.Google Scholar
Nakamura, T, Keep, RF, Hua, Y, Schallert, T, Hoff, JT, Xi, G. (2004). Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg, 100(4), 672–8.Google Scholar
O’Donnell, MJ, Xavier, D, Liu, L, Zhang, H, Chin, SL, Rao-Melacini, P, et al. (2010). Risk factors for ischemic and intracerebral hemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet, 376(9735), 112–23.Google Scholar
Ong, CJ, Keyrouz, SG, Diringer, MN. (2015). The role of osmotic therapy in hemispheric stroke. Neurocrit Care, 23, 285–91.Google Scholar
Parry-Jones, AR, Paley, L, Bray, BD, Hoffman, AM, James, M, Cloud, GC, et al. (2016). Care-limiting decisions in acute stroke and association with survival: Analyses of UK national quality register data. Int J Stroke, 11(3), 321–31.Google Scholar
Pollack, CV Jr, Reilly, PA, van Ryn, J, Eikelboom, JW, Glund, S, Bernstein, RA, et al. (2017). Idarucizumab for dabigatran reversal – full cohort analysis. N Engl J Med, 377, 431–41.Google Scholar
Poon, MT, Bell, SM, Al-Shahi Salman, R. (2015). Epidemiology of intracerebral hemorrhage. Front Neurol Neurosci, 37, 112.Google Scholar
Poon, MTC, Fonville, AF, Al-Shahi Salman, R. (2014). Long-term prognosis after intracerebral hemorrhage: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry, 85(6), 660–7.Google Scholar
Prasad, K, Mendelow, AD, Gregson, B. (2008). Surgery for primary supratentorial intracerebral haemorrhage. Cochrane Database Syst Rev, 4. CD000200.Google Scholar
Qureshi, AI, Ezzeddine, MA, Nasar, A, Suri, MF, Kirmani, JF, Husseing, HM, et al. (2007). Prevalence of elevated blood pressure in 563,704 adult patients with stroke presenting to the ED in the United States. Am J Emerg Med, 25, 32–8.CrossRefGoogle Scholar
Qureshi, AI, Palesch, YY, Barsan, WG, Hanley, DF, Hsu, CY, Martin, RL, et al. (2016). Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med, 375(11), 1033–43.Google Scholar
Rapsomaniki, E, Timmis, A, George, J, Pujades-Rodriguez, M, Shah, AD, Denaxas, S, et al. (2014). Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. Lancet, 383(9932), 18991911.Google Scholar
Righetti, E, Celani, MG, Cantisani, TA, Sterzi, R, Boysen, G, Ricci, S. (2002). Glycerol for acute stroke: a Cochrane systematic review. J Neurol, 249(4), 445–51.CrossRefGoogle ScholarPubMed
Samarasekera, N, Fonville, A, Lerpiniere, C, Farrall, AJ, Wardlaw, JM, White, PM, et al. (2015). Influence of intracerebral hemorrhage location on incidence, characteristics, and outcome: population-based study. Stroke, 46(2), 361–8.Google Scholar
Saver, JL, Starkman, S, Eckstein, M, Stratton, SJ, Pratt, FD, Hamilton, S, et al. (2015). Prehospital use of magnesium sulfate as neuroprotection in acute stroke. N Engl J Med, 372(6), 528–36.CrossRefGoogle ScholarPubMed
Selim, M. (2009). Deferoxamine mesylate: A new hope for intracerebral hemorrhage: from bench to clinical trials. Stroke, 40(3 Suppl), S90–1.Google Scholar
Selim, M. (2013). iDEF: Intracerebral Hemorrhage Deferoxamine Trial. https://www.nihstrokenet.org/docs/default-source/default-document-library/idef_060314.pdf?sfvrsn=2 (accessed Dec 2018).Google Scholar
Selim, M, Foster, LD, Moy, CS, Xi, G, Hill, MD, Morgenstern, LB, et al. (2019). Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): a multicentre, randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol, 18, 428–38.Google Scholar
Sharafadinzadeh, N, Baghebanian, SM, Pipelzadeh, M, Moravej Ale Ali, A, Ghanavati, P. (2008). Effects of dexamethasone in primary intracerebral hemorrhage in the South West of Iran. Pakistan J Med Sci, 24(4), 502505.Google Scholar
Shawkat, H, Westwood, M-M, Mortimer, A. (2012). Mannitol: a review of its clinical uses. Continuing Educ Anaesth Crit Care Pain, 12(2), 82–5.Google Scholar
Shi, L, Xu, S, Zheng, J, Xu, J, Zhang, J. (2017). Blood pressure management for acute intracerebral hemorrhage: a meta-analysis. Sci Rep, 7(1), 14345.Google Scholar
Shkirkova, K, Saver, JL, Starkman, S, Wong, G, Weng, J, Hamilton, S, et al. (2018). Frequency, predictors, and outcomes of prehospital and early postarrival neurological deterioration in acute stroke: exploratory analysis of the FAST-MAG randomized clinical trial. JAMA Neurol, 75, 1364–74.Google Scholar
Specogna, AV, Turin, TC, Patten, SB, Hill, MD. (2014). Factors associated with early deterioration after spontaneous intracerebral hemorrhage: a systematic review and meta-analysis. PLoS ONE, 9(5), e96743.Google Scholar
Staykov, D, Kuramatsu, JB, Bardutzky, J, Volbers, B, Gerner, ST, Kloska, SP, et al. (2017). Efficacy and safety of combined intraventricular fibrinolysis with lumbar drainage for prevention of permanent shunt dependency after intracerebral hemorrhage with severe ventricular involvement: A randomized trial and individual patient data meta-analysis. Ann Neurol, 81(1), 93103.Google Scholar
Steiner, T, Al-Shahi Salman, R, Beer, R. Christensen, H, Cordonnier, C, Csiba, L, et al. (2014). European Stroke Organisation (ESO) guidelines for the management of spontaneous intracerebral hemorrhage. Int J Stroke, 9(7), 840–55.Google Scholar
Steiner, T, Poli, S, Griebe, M, Husing, J, Haida, J, Freiberger, A, et al. (2016) Fresh frozen plasma versus prothrombin complex concentrate in patients with intracranial hemorrhage related to vitamin K antagonists (INCH): A randomised trial. Lancet Neurol, 15(6), 566–73.Google Scholar
van Asch, CJ, Luitse, MJ, Rinkel, GJ, van der Tweel, I, Algra, A, Klijn, CJ. (2010). Incidence, case fatality, and functional outcome of intracerebral hemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol, 9(2), 167–76.Google Scholar
van Asch, CJJ, Velthuis, BK, Rinkel, GJE, Algra, A, de Kort, GA, Witkamp, TD, et al. (2015). Diagnostic yield and accuracy of CT angiography, MR angiography, and digital subtraction angiography for detection of macrovascular causes of intracerebral hemorrhage: Prospective, multicentre cohort study. BMJ, 351.Google Scholar
Vespa, P, Hanley, D, Betz, J, Hoffer, A, Engh, J, Carter, R, et al. (2016). ICES (Intraoperative Stereotactic Computed Tomography-Guided Endoscopic Surgery) for brain hemorrhage: a multicenter randomized controlled trial. Stroke, 47(11), 2749–55.Google Scholar
Wijdicks, EFM, Sheth, KN, Carter, BS, Greer, DM, Kasner, SE, Kimberly, WT, et al.; American Heart Association Stroke Council. (2014). Recommendations for the management of cerebral and cerebellar infarction with swelling. Stroke, 45, 1222–38.Google Scholar
Willmot, M, Leonardi-Bee, J, Bath, PMW. (2004). High blood pressure in acute stroke and subsequent outcome a systematic review. Hypertension, 43 (1), 1824.Google Scholar
Witsch, J, Neugebauer, H, Zweckberger, K, Jüttler, E. (2013). Primary cerebellar hemorrhage: complications, treatment and outcome. Clin Neurol Neurosurg, 115(7), 863869.CrossRefGoogle ScholarPubMed
Xi, G, Keep, RF, Hoff, JT. (2006). Mechanisms of brain injury after intracerebral hemorrhage. Lancet Neurol, 5(1), 5363.Google Scholar
Yaghi, S, Boehme, AK, Dibu, J, Leon Guerrero, CR, Ali, S, Martin-Schild, S, et al. (2015). Treatment and outcome of thrombolysis-related hemorrhage: a multicenter retrospective study. JAMA Neurol, 72, 1451–7.Google Scholar
Yang, J, Arima, H, Wu, G, Heeley, E, Delcourt, C, Zhou, J, et al. (2015). Prognostic significance of perihematomal edema in acute intracerebral hemorrhage: pooled analysis from the intensive blood pressure reduction in acute cerebral hemorrhage trial studies. Stroke, 46(4), 1009–13.Google Scholar
Yao, Z, Ma, L, You, C, He, M. (2017). Decompressive craniectomy for spontaneous intracerebral hemorrhage: a systematic review and meta-analysis. World Neurosurg, 110, 121–8.Google Scholar
Yu, Y, Zhao, W, Zhu, C, Kong, Z, Xu, Y, Liu, G, et al. (2015). The clinical effect of deferoxamine mesylate on edema after intracerebral hemorrhage. PLoS ONE, 10(4), e0122371.Google Scholar
Yu, Z, Ma, L, Zheng, J, You, C. (2017). Prognostic role of perihematomal edema in intracerebral hemorrhage: a systematic review. Turk Neurosurg, doi:10.5137/1019-5149.JTN.19659-16.0. Epub ahead of print.Google Scholar

References

Akhigbe, T, Zolnourian, A, Bulters, D. (2017). Cholesterol-reducing agents for treatment of aneurysmal subarachnoid hemorrhage: systematic review and meta-analysis of randomized controlled trials. World Neurosurg, 101, 476–85.CrossRefGoogle ScholarPubMed
Alcalá-Cerra, G, Á, Paternina-Caicedo, Díaz-Becerra, C, Moscote-Salazar, LR, Gutiérrez-Paternina, JJ, Niño-Hernández, LM; en representación del Grupo de Investigación en Ciencias de la Salud y Neurociencias (CISNEURO). (2016). External lumbar cerebrospinal fluid drainage in patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis of controlled trials. Neurologia, 31(7), 431–44.Google Scholar
Badjatia, N, Fernandez, L, Schmidt, JM, Lee, K, Claassen, J, Connolly, ES, Mayer, SA. (2010). Impact of induced normothermia on outcome after subarachnoid hemorrhage: a case-control study. Neurosurgery, 66(4), 696700.Google Scholar
Baharoglu, MI, Germans, MR, Rinkel, GJ, Algra, A, Vermeulen, M, van Gijn, J, et al. (2013). Antifibrinolytic therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev, 8. CD001245.Google Scholar
Bodily, KD, Cloft, HJ, Lanzino, G, Fiorella, DJ, White, PM, Kallmes, DF. (2011). Stent-assisted coiling in acutely ruptured intracranial aneurysms: a qualitative, systematic review of the literature. AJNR Am J Neuroradiol, 32(7), 1232–6.Google Scholar
Boulouis, G, Labeyrie, MA, Raymond, J, Rodriguez-Régent, C, Lukaszewicz, AC, Bresson, D, et al. (2017). Treatment of cerebral vasospasm following aneurysmal subarachnoid haemorrhage: a systematic review and meta-analysis. Eur Radiol, 27(8), 3333–42.Google Scholar
Bruder, N, Rabinstein, A. (2011). Cardiovascular and pulmonary complications of aneurysmal subarachnoid hemorrhage. Neurocrit Care, 15(2), 257–69.Google Scholar
Cagnazzo, F, di Carlo DT, Cappucci M, Lefevre PH, Costalat V, Perrini P. (2018). Acutely ruptured intracranial aneurysms treated with flow-diverter stents: a systematic review and meta-analysis. AJNR Am J Neuroradiol, 39(9), 1669–75.Google Scholar
Cagnazzo, F, Gambacciani, C, Morganti, R, Perrini, P. (2017). Aneurysm rebleeding after placement of external ventricular drainage: a systematic review and meta-analysis. Acta Neurochir (Wien), 159(4), 695704.Google Scholar
Chang, MM, Raval, RN, Southerland, JJ, Adewumi, DA, Bahjri, KA, Samuel, RK, et al. (2016). Beta blockade and clinical outcomes in aneurysmal subarachnoid hemorrhage. Open Neurol J, 30(10), 155–63.Google Scholar
Chen, S, Luo, J, Reis, C, Manaenko, A, Zhang, J. (2017). Hydrocephalus after subarachnoid hemorrhage: pathophysiology, diagnosis, and treatment. Biomed Res Int, 2017, 8584753.Google Scholar
Cho, WS, Kim JE Park SQ, Ko JK, Kim DW, Park JC, et al. (2018). Korean Clinical Practice Guidelines for aneurysmal subarachnoid hemorrhage. J Korean Neurosurg Soc, 61(2), 127–66.Google Scholar
Choi, W, Kwon, SC, Lee, WJ, Weon, YC, Choi, B, Lee, H, et al. (2017). Feasibility and safety of mild therapeutic hypothermia in poor-grade subarachnoid hemorrhage: prospective pilot study. J Korean Med Sci, 32(8), 1337–44.Google Scholar
Collen, JF, Jackson, JL, Shorr, AF, Moores, LK. (2008). Prevention of venous thromboembolism in neurosurgery: a metaanalysis. Chest, 134(2), 237–49.Google Scholar
Connolly, ES Jr, Rabinstein, AA, Carhuapoma JR Derdeyn CP, Dion J, Higashida RT, et al. (2012). Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 43(6), 1711–37.Google Scholar
Dewan, MC, Mocco, J. (2015). Current practice regarding seizure prophylaxis in aneurysmal subarachnoid hemorrhage across academic centers. J Neurointerv Surg, 7(2), 146–9.Google Scholar
Dhakal, LP, Hodge, DO, Nagal, J, Mayes, M, Richie, A, Ng, LK, et al. (2015). Safety and tolerability of gabapentin for aneurysmal subarachnoid hemorrhage (SAH) headache and meningismus. Neurocrit Care, 22(3), 414–21.Google Scholar
Diringer, MN, Bleck, TP, Claude Hemphill, J 3rd, Menon D, Shutter L, Vespa P, et al.; Neurocritical Care Society. (2011). Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care, 15, 211–40.Google Scholar
Doczi, T, Bende, J, Huszka, E, Kiss, J. (1981). Syndrome of inappropriate secretion of antidiuretic hormone after subarachnoid hemorrhage. Neurosurgery, 9(4), 394–7.Google Scholar
Dorai, Z, Hynan, LS, Kopitnik, TA, Samson, D. (2003). Factors related to hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery, 52(4), 763–9; discussion 769771.Google Scholar
Dorhout Mees, SM, Rinkel, GJ, Feigin, VL, Algra, A, van den Bergh, WM, Vermeulen, M, et al. (2007a). Calcium antagonists for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev, 3. CD000277.Google Scholar
Dorhout Mees, SM, van den Bergh, WM, Algra, A, Rinkel, GJ. (2007b). Antiplatelet therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev, 4. CD006184.Google Scholar
Dupont, S, Rabinstein, AA. (2013). Extent of acute hydrocephalus after subarachnoid hemorrhage as a risk factor for poor functional outcome. Neurol Res, 35(2), 107110.Google Scholar
Dupont, SA, Wijdicks, EF, Manno, EM, Rabinstein, AA. (2008). Thunderclap headache and normal computed tomographic results: value of cerebrospinal fluid analysis. Mayo Clin Proc, 83(12), 1326–31.Google Scholar
Feigin, VF, Rinkel, GJE, Algra, A, Vermeulen, M, van Gijn, J. (1998). Calcium antagonists in patients with aneurysmal subarachnoid hemorrhage: a systematic review. Neurology, 50, 876–83.Google Scholar
Festic, E, Rabinstein, AA, Freeman, WD, Mauricio, EA, Robinson, MT, Mandrekar, J,et al. (2013). Blood transfusion is an important predictor of hospital mortality among patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care, 18(2), 209–15.Google Scholar
Fiorella, D, Arthur, AS, Chiacchierini, R, Emery, E, Molyneux, A, Pierot, L. (2017). How safe and effective are existing treatments for wide-necked bifurcation aneurysms? Literature-based objective performance criteria for safety and effectiveness. Neurointerv Surg, 9(12), 11971201.Google Scholar
Gathier, CS, van den Bergh, WM, van der Jagt, M, Verweij, BH, Dankbaar, JW, Müller, MC, et al.; HIMALAIA Study Group. (2018). Induced hypertension for delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a randomized clinical trial. Stroke, 49(1), 7683.Google Scholar
Ghodsi, SM, Mohebbi, N, Naderi, S, Anbarloie, M, Aoude, A, Habibi Pasdar, SS. (2015). Comparative efficacy of meloxicam and placebo in vasospasm of patients with subarachnoid hemorrhage. Iran J Pharm Res, 14(1), 125–30.Google Scholar
Gomis, P, Graftieaux, JP, Sercombe, R, Hettler, D, Scherpereel, B, Rousseaux, P. (2010). Randomized, double-blind, placebo-controlled, pilot trial of high-dose methylprednisolone in aneurysmal subarachnoid hemorrhage. J Neurosurg, 112(3), 681–8.Google Scholar
Haley, EC, Kassell, NF, Torner, JC. (1992). The International Cooperative Study on the Timing of Aneurysm Surgery. The North American experience. Stroke, 23(2), 205–14.Google Scholar
Hasan, D, Wijdicks, EF, Vermeulen, M. (1990). Hyponatremia is associated with cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage. Ann Neurol, 27(1), 106–08.Google Scholar
Hayashi, K, Hirao, T, Sakai, N, Nagata, I; JR-NET2 Study Group. (2014). Current status of endovascular treatment for vasospasm following subarachnoid hemorrhage: analysis of JR-NET2. Neurol Med Chir (Tokyo), 54(2), 107–12.Google Scholar
Hijdra, A, Vermeulen, M, van Gijn, J, van Crevel, H. (1987). Rerupture of intracranial aneurysms: a clinicoanatomic study. J Neurosurg, 67(1), 2933.Google Scholar
Hillman, J, Fridriksson, S, Nilsson, O, Yu, Z, Saveland, H, Jakobsson, KE. (2002). Immediate administration of tranexamic acid and reduced incidence of early rebleeding after aneurysmal subarachnoid hemorrhage: a prospective randomized study. J Neurosurg, 97(4), 771–8.CrossRefGoogle ScholarPubMed
Human, T, Diringer, MN, Allen, M, Zipfel, GJ, Chicoine, M, Dacey, R, et al. (2018). Randomized trial of brief versus extended seizure prophylaxis after aneurysmal subarachnoid hemorrhage. Neurocrit Care, 28, 169–74.Google Scholar
Ibrahim, GM, Morgan, BR, Macdonald, RL. (2014). Patient phenotypes associated with outcomes after aneurysmal subarachnoid hemorrhage: a principal component analysis. Stroke, 45(3):, 670–6.Google Scholar
Inzitari, D, Poggesi, A. (2005). Calcium channel blockers and stroke. Aging Clin Exp Res, 17(4 Suppl), 1630.Google Scholar
Kassell, NF, Torner, JC, Haley, EC, Adams, HP. (1990). The International Cooperative Study on the Timing of Aneurysm Surgery. Part 2: surgical results. J Neurosurg, 73(1), 3747.Google Scholar
Kirkpatrick, PJ, Turner, CL, Smith, C, Hutchinson, PJ, Murray, GD; Collaborators, STASH. (2014). Simvastatin in aneurysmal subarachnoid haemorrhage (STASH): a multicentre randomised phase 3 trial. Lancet Neurol, 13(7), 666–75.Google Scholar
Kissoon, NR., Mandrekar, JN, Fugate, JE, Lanzino, G, Wijdicks, EF, Rabinstein, AA. (2015). Positive fluid balance is associated with poor outcomes in subarachnoid hemorrhage. J Stroke and Cerebrovasc Dis, 24(10), 2245–51. Epub 8/19/2015.Google Scholar
Klopfenstein, JD, Kim, LJ, Feiz-Erfan, I, Hott, JS, Goslar, P, Zabramski, JM, et al. (2004). Comparison of rapid and gradual weaning from external ventricular drainage in patients with aneurysmal subarachnoid hemorrhage: a prospective randomized trial. J Neurosurg, 100(2), 225–9.Google Scholar
Kramer, AH, Gurka, MJ, Nathan, B, Dumont, AS, Kassell, NF, Bleck, TP. (2008). Complications associated with anemia and blood transfusion in patients with aneurysmal subarachnoid hemorrhage. Crit Care Med, 36(7), 2070–5.Google Scholar
Kramer, CL, Pegoli, M, Mandrekar, J, Lanzino, G, Rabinstein, AA. (2017). Refining the association of fever with functional outcome in aneurysmal subarachnoid hemorrhage. Neurocrit Care, 26(1), 41–7. doi:10.1007/s12028–016–0281–7.Google Scholar
Kshettry, VR, Rosenbaum, BP, Seicean, A, Kelly, ML, Schiltz, NK, Weil, RJ. (2014). Incidence and risk factors associated with in-hospital venous thromboembolism after aneurysmal subarachnoid hemorrhage. J Clin Neurosci., 21(2), 282–6.Google Scholar
Le Roux, PD. (2011). Anemia and transfusion after subarachnoid hemorrhage. Neurocrit Care, 15(2), 342–53.Google Scholar
Lennihan, L, Mayer, SA, Fink, ME, Beckford, A, Paik, MC, Zhang, H, et al. (2000). Effect of hypervolemic therapy on cerebral blood flow after subarachnoid hemorrhage: a randomized controlled trial. Stroke, 31(2), 383–91.Google Scholar
Levine, J, Kofke, A, Cen, L, Chen, Z, Faerber, J, Elliott, JP, et al. (2010). Red blood cell transfusion is associated with infection and extracerebral complications after subarachnoid hemorrhage. Neurosurgery, 66(2), 312–18; discussion 318.Google Scholar
Lindgren, A, Vergouwen, MD, van der Schaaf, I, Algra, A, Wermer, M, Clarke, MJ, Rinkel, GJ. (2018). Endovascular coiling versus neurosurgical clipping for people with aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev, 8. CD003085. doi:10.1002/14651858.CD003085.pub3.Google Scholar
Mack, WJ, Ducruet, AF, Hickman, ZL, Kalyvas, JT, Cleveland, JR, Mocco, J, et al. (2008). Doppler ultrasonography screening of poor-grade subarachnoid hemorrhage patients increases the diagnosis of deep venous thrombosis. Neurol Res, 30(9), 889–92.Google Scholar
Madden, LK, Hill, M, May, TL, Human, T, Guanci, MM, Jacobi, J, et al. (2017).The implementation of targeted temperature management: an evidence-based guideline from the Neurocritical Care Society. Neurocrit Care, 27(3), 468–87. doi:10.1007/s12028–017–0469–5.Google Scholar
Malik, AN, Gross, BA, Rosalind Lai, PM, Moses, ZB, Du, R. (2015). Neurogenic stress cardiomyopathy after aneurysmal subarachnoid hemorrhage. World Neurosurg, 83(6), 880–5Google Scholar
Martini, RP, Deem, S, Brown, M, Souter, MJ, Yanez, ND, Daniel, S, et al. (2012). The association between fluid balance and outcomes after subarachnoid hemorrhage. NeurocritCare, 17(2), 191–8.Google Scholar
Matsuda, M, Watanabe, K, Saito, A, Matsumura, K, Ichikawa, M. (2007). Circumstances, activities, and events precipitating aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis, 16(1), 25–9.Google Scholar
Matsuda, N, Naraoka, M, Ohkuma, H, Shimamura, N, Ito, K, Asano, K, et al. (2016). Effect of cilostazol on cerebral vasospasm and outcome in patients with aneurysmal subarachnoid hemorrhage: a randomized, double-blind, placebo-controlled trial. Cerebrovasc Dis, 42(1–2), 97105.Google Scholar
McDougall, CG, Spetzler, RF, Zabramski, JM, Partovi, S, Hills, NK, Nakaji, P, et al. (2012). The Barrow Ruptured Aneurysm Trial. J Neurosurg, 116(1), 135–44.Google Scholar
Molyneux, AJ, Birks, J, Clarke, A, Sneade, M, Kerr, RSC. (2015). The durability of endovascular coiling versus neurosurgical clipping of ruptured cerebral aneurysms: 18 year follow-up of the UK cohort of the International Subarachnoid Aneurysm Trial (ISAT). Lancet, 385(9969), 691–7.Google Scholar
Molyneux, A, Kerr, R, Stratton, I, Sandercock, P, Clarke, M, Shrimpton, J, Holman, R; International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group. (2002). International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet, 360, 1267–74.Google Scholar
Naidech, AM, Kreiter, KT., Janjua, N, Ostapkovich, N, Parra, A, Commichau, C, et al. (2005). Phenytoin exposure is associated with functional and cognitive disability after subarachnoid hemorrhage. Stroke, 36(3), 583–7.CrossRefGoogle ScholarPubMed
Naidech, AM, Shaibani, A, Garg, RK, Duran, IM, Liebling, SM, Bassin, SL, et al. (2010). Prospective, randomized trial of higher goal hemoglobin after subarachnoid hemorrhage. Neurocritl Care, 13(3), 313–20.Google Scholar
Neil-Dwyer, G, Walter, P, Cruickshank, JM. (1985). Beta-blockade benefits patients following a subarachnoid haemorrhage. Eur J Clin Pharmacol, 28 Suppl., 2529.Google Scholar
Neil-Dwyer, G, Walter, P, Cruickshank, JM, Doshi, B, O’Gorman, P. (1978). Effect of propranolol and phentolamine on myocardial necrosis after subarachnoid haemorrhage. Br Med J, 2(6143), 990–2.Google Scholar
Nieuwkamp, DJ, Setz, LE, Algra, A, Linn, FH, de Rooij, NK, Rinkel, GJ. (2009). Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol, 8(7), 635–42.Google Scholar
Nyquist, P, Bautista, C, Jichici, D, Burns, J, Chhangani, S, DeFilippis, M, et al. (2016). Prophylaxis of venous thrombosis in neurocritical care patients: an evidence-based guideline: a statement for healthcare professionals from the Neurocritical Care Society. Neurocrit Care, 24(1), 4760.Google Scholar
O’Connor, KL, Westover, MB, Phillips, MT, Iftimia, NA, Buckley, DA, Ogilvy, CS, et al. (2014). High risk for seizures following subarachnoid hemorrhage regardless of referral bias. Neurocrit Care, 21, 476–82.Google Scholar
O’Kelly, CJ, Kulkarni, AV, Austin, PC, Urbach, D, Wallace, MC. (2009). Shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage: incidence, predictors, and revision rates. Clinical article. J Neurosurg, 111(5), 1029–35.Google Scholar
Tsurutani, Ohkuma H. H, Suzuki S. (2001). Incidence and significance of early aneurysmal rebleeding before neurosurgical or neurological management. Stroke, 32(5), 1176–80.Google Scholar
Ohman, J, Heiskanen, O. (1989). Timing of operation for ruptured supratentorial aneurysms: a prospective randomized study. J Neurosurg, 70(1), 5560.Google Scholar
Oliveira-Filho, J, Ezzeddine, MA, Segal, AZ, Buonanno, FS, Chang, Y, Ogilvy, CS, et al. (2001). Fever in subarachnoid hemorrhage: relationship to vasospasm and outcome. Neurology, 56(10), 12991304.Google Scholar
Olson, DM, Zomorodi, M, Britz, GW, Zomorodi, AR, Amato, A, Graffagnino, C. (2013). Continuous cerebral spinal fluid drainage associated with complications in patients admitted with subarachnoid hemorrhage. J Neurosurg, 119(4), 974–80.Google Scholar
Panczykowski, D, Pease, M, Zhao, Y, Weiner, G, Ares, W, Crago, E, et al. (2016). Prophylactic antiepileptics and seizure incidence following subarachnoid hemorrhage: a propensity score-matched analysis. Stroke, 47, 1754–60.Google Scholar
Panni, P, Fugate, JE, Rabinstein, AA, Lanzino, G. (2017). Lumbar drainage and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a systematic review. J Neurosurg Sci, 61(6), 665–72.Google Scholar
Pegoli, M, Mandrekar, J, Rabinstein, AA, Lanzino, G. (2015). Predictors of excellent functional outcome in aneurysmal subarachnoid hemorrhage. J Neurosurg, 122(2), 414–18.Google Scholar
Perry, JJ, Alyahya, B, Sivilotti, ML, Bullard, MJ, Emond, M, Sutherland, J, et al. (2015). Differentiation between traumatic tap and aneurysmal subarachnoid hemorrhage: prospective cohort study. BMJ, 350, h568.Google Scholar
Perry, JJ, Stiell, IG, Sivilotti, ML, Bullard, MJ, Symington, C, Worster, A, et al. (2011). Sensitivity of computed tomography performed within six hours of onset of headache for diagnosis of subarachnoid haemorrhage: prospective cohort study. BMJ, 343, d4277.Google Scholar
Perry, JJ, Stiell, IG, Sivilotti, ML, Bullard, MJ, Hohl, CM, Sutherland, J, et al. (2013). Clinical decision rules to rule out subarachnoid hemorrhage for acute headache. JAMA, 310(12), 1248–55.Google Scholar
Rabinstein, AA, Bruder, N. (2011). Management of hyponatremia and volume contraction. Neurocrit Care, 15(2), 354–60.Google Scholar
Rabinstein, AA, Sandhu, K. (2007). Non-infectious fever in the neurological intensive care unit: incidence, causes and predictors. J Neurol Neurosurg Psychiatry, 78(11), 1278–80.Google Scholar
Rawal, S, Alcaide-Leon, P, Macdonald, RL, Rinkel, GJ, Victor, JC, Krings, T, et al. (2017). Meta-analysis of timing of endovascular aneurysm treatment in subarachnoid haemorrhage: inconsistent results of early treatment within 1 day. J Neurol Neurosurg Psychiatry, 88(3), 241–8.Google Scholar
Ray, WZ, Strom, RG, Blackburn, SL, Ashley, WW, Sicard, GA, Rich, KM. (2009). Incidence of deep venous thrombosis after subarachnoid hemorrhage. J Neurosurg, 110(5), 1010–14.Google Scholar
Raya, AK, Diringer, MN. (2014). Treatment of subarachnoid hemorrhage. Crit Care Clin, 30(4), 719–33.Google Scholar
Reddy, D, Fallah, A, Petropoulos, JA, Farrokhyar, F, Macdonald, RL, Jichici, D. (2014). Prophylactic magnesium sulfate for aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Neurocrit Care, 21(2), 356–64.Google Scholar
Rinkel, GJ, Feigin, VL, Algra, A, van Gijn, J. (2004). Circulatory volume expansion therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev, 4. CD000483.Google Scholar
Saber, H, Desai, A, Palla, M, Mohamed, W, Seraji-Bozorgzad, N, Ibrahim, M (2018). Efficacy of cilostazol in prevention of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a meta-analysis. J Stroke Cerebrovasc Dis, 27(11), 2979–85.Google Scholar
Senbokuya, N, Kinouchi, H, Kanemaru, K, Ohashi, Y, Fukamachi, A, Yagi, S, et al. (2013). Effects of cilostazol on cerebral vasospasm after aneurysmal subarachnoid hemorrhage: a multicenter prospective, randomized, open-label blinded end point trial. J Neurosurg, 118(1), 121–30.Google Scholar
Smith, MJ, Le Roux, PD, Elliott, JP, Winn, HR. (2004). Blood transfusion and increased risk for vasospasm and poor outcome after subarachnoid hemorrhage. J Eurosurg, 101(1), 17.Google Scholar
Stein, M., Brokmeier, L., Herrmann, J., Scharbrodt, W, Schreiber, V, Bender, M, et al. (2015). Mean hemoglobin concentration after acute subarachnoid hemorrhage and the relation to outcome, mortality, vasospasm, and brain infarction. J Clin Neurosci, 22(3), 530–4.Google Scholar
Suarez, JI, Martin, RH, Calvillo, E, Bershad, EM, Venkatasubba Rao, CP. (2015). Effect of human albumin on TCD vasospasm, DCI, and cerebral infarction in subarachnoid hemorrhage: the ALISAH study. Acta Neurochir. Suppl, 120, 287–90.Google Scholar
Suarez, JI, Martin, RH, Calvillo, E, Dillon, C, Bershad, EM, Macdonald, RL, et al. (2012). The Albumin in Subarachnoid Hemorrhage (ALISAH) multicenter pilot clinical trial: safety and neurologic outcomes. Stroke, 43(3), 683–90.Google Scholar
Suzuki, S, Sayama, T, Nakamura, T, Nishimura, H, Ohta, M, Inoue, T, et al. (2011). Cilostazol improves outcome after subarachnoid hemorrhage: a preliminary report. Cerebrovasc Dis, 32(1), 8993.Google Scholar
Tam, AK, Ilodigwe, D, Mocco, J, Mayer, S, Kassell, N, Ruefenacht, D, et al. (2010). Impact of systemic inflammatory response syndrome on vasospasm, cerebral infarction, and outcome after subarachnoid hemorrhage: exploratory analysis of CONSCIOUS-1 database. Neurocrit Care, 13(2), 182–9.Google Scholar
Tartara, A, Galimberti, CA, Manni, R, Parietti, L, Zucca, C, Baasch, H, et al. (1991). Differential effects of valproic acid and enzyme-inducing anticonvulsants on nimodipine pharmacokinetics in epileptic patients. Br J Clin Pharmacol, 32(3), 335–40.Google Scholar
Togashi, K, Joffe, AM, Sekhar, L, Kim, L, Lam, A, Yanez, D, et al. (2015). Randomized pilot trial of intensive management of blood pressure or volume expansion in subarachnoid hemorrhage (IMPROVES). Neurosurgery, 76(2), 125–34; discussion 134–125; quiz 135.Google Scholar
Torner, JC, Nibbelink, DW, Burmeister, LF. (1981). Statistical comparison of end results of a randomised treatment study. In Sahs, AL, Nibbelink, DW, Torner, JC, eds., Aneurysmal Subarachnoid Haemorrhage. Report of the Cooperative Study. Baltimore: Urban & Schwarzenberg, pp. 249–75.Google Scholar
Tso, MK, Ibrahim, GM, Macdonald, RL. (2016). Predictors of shunt-dependent hydrocephalus following aneurysmal subarachnoid hemorrhage. World Neurosurg, 86, 226–32.Google Scholar
Tung, P, Kopelnik, A, Banki, N, Ong, K, Ko, N, Lawton, MT, et al. (2004). Predictors of neurocardiogenic injury after subarachnoid hemorrhage. Stroke, 35(2), 548–51.Google Scholar
van der Bilt, IA, Hasan, D, Vandertop, WP, Wilde, AA, Algra, A, Visser, FC, et al. (2009). Impact of cardiac complications on outcome after aneurysmal subarachnoid hemorrhage: a meta-analysis. Neurology, 72(7), 635–42.Google Scholar
van Donkelaar, CE, Bakker, NA, Veeger, NJ, Uyttenboogaart, M, Metzemaekers, JD, Luijckx, GJ, et al. (2015). Predictive factors for rebleeding after aneurysmal subarachnoid hemorrhage: rebleeding aneurysmal subarachnoid hemorrhage study. Stroke, 46(8), 2100–06. Epub 6/13/2015.Google Scholar
Varelas, PN, Abdelhak, T, Wellwood, J, Shah, I, Hacein-Bey, L, Schultz, L, et al. (2010). Nicardipine infusion for blood pressure control in patients with subarachnoid hemorrhage. Neurocrit Care, 13(2), 190–8.Google Scholar
Venkatraman, A, Khawaja, AM, Gupta, S, Hardas, S, Deveikis, JP, Harrigan, MR, Kumar, G. (2018). Intra-arterial vasodilators for vasospasm following aneurysmal subarachnoid hemorrhage: a meta-analysis. J Neurointerv Surg, 10(4), 380–7.Google Scholar
Vergouwen, MD, Algra, A, Rinkel, GJ. (2012). Endothelin receptor antagonists for aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis update. Stroke, 43(10), 2671–6.Google Scholar
Verma, RK, Kottke, R, Andereggen, L, Weisstanner, C, Zubler, C, Gralla, J, et al. (2013). Detecting subarachnoid hemorrhage: comparison of combined FLAIR/SWI versus CT. Eur J Radiol, 82 1539–45.Google Scholar
Wartenberg, KE, Schmidt, JM, Claassen, J, Temes, RE, Frontera, JA, Ostapkovich, N, et al. (2006). Impact of medical complications on outcome after subarachnoid hemorrhage. Crit Care Med, 34(3), 617–23; quiz 624.Google Scholar
Whitfield, PC, Kirkpatrick, PJ. (2001). Timing of surgery for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev, 2. CD001697.Google Scholar
Wijdicks, EF, Vermeulen, M, ten Haaf, JA, Hijdra, A, Bakker, Wh, van Gijn, J. (1985). Volume depletion and natriuresis in patients with a ruptured intracranial aneurysm. Ann Neurol, 18(2): 211–16.Google Scholar
Yamada, S, Ishikawa, M, Yamamoto, K, Ino, T, Kimura, T, Kobayashi, S. (2015). Aneurysm location and clipping versus coiling for development of secondary normal-pressure hydrocephalus after aneurysmal subarachnoid hemorrhage: Japanese Stroke DataBank. J Neurosurg, 123(6), 1555–61.Google Scholar
Yoneda, H, Shirao, S, Nakagawara, J, Ogasawara, K, Tominaga, T, Suzuki, M. (2014). A prospective, multicenter, randomized study of the efficacy of eicosapentaenoic acid for cerebral vasospasm: the EVAS study. World Neurosurg, 81(2), 309–15.Google Scholar
Zhang, S, Wang, L, Liu, M, Wu, B. (2010). Tirilazad for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev, 2. CD006778.Google Scholar
Zwienenberg-Lee, M, Hartman, J, Rudisill, N, Madden, LK, Smith, K, Eskridge, J, et al. (2008). Effect of prophylactic transluminal balloon angioplasty on cerebral vasospasm and outcome in patients with Fisher grade III subarachnoid hemorrhage: results of a phase II multicenter, randomized, clinical trial. Stroke, 39(6): 1759–65.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×