Book contents
- Frontmatter
- Contents
- Preface
- Frequently used notation
- 1 Basic notions
- 2 Brownian motion
- 3 Martingales
- 4 Markov properties of Brownian motion
- 5 The Poisson process
- 6 Construction of Brownian motion
- 7 Path properties of Brownian motion
- 8 The continuity of paths
- 9 Continuous semimartingales
- 10 Stochastic integrals
- 11 Itô's formula
- 12 Some applications of Itô's formula
- 13 The Girsanov theorem
- 14 Local times
- 15 Skorokhod embedding
- 16 The general theory of processes
- 17 Processes with jumps
- 18 Poisson point processes
- 19 Framework for Markov processes
- 20 Markov properties
- 21 Applications of the Markov properties
- 22 Transformations of Markov processes
- 23 Optimal stopping
- 24 Stochastic differential equations
- 25 Weak solutions of SDEs
- 26 The Ray–Knight theorems
- 27 Brownian excursions
- 28 Financial mathematics
- 29 Filtering
- 30 Convergence of probability measures
- 31 Skorokhod representation
- 32 The space C[0, 1]
- 33 Gaussian processes
- 34 The space D[0, 1]
- 35 Applications of weak convergence
- 36 Semigroups
- 37 Infinitesimal generators
- 38 Dirichlet forms
- 39 Markov processes and SDEs
- 40 Solving partial differential equations
- 41 One-dimensional diffusions
- 42 Lévy processes
- Appendices
- References
- Index
2 - Brownian motion
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- Frequently used notation
- 1 Basic notions
- 2 Brownian motion
- 3 Martingales
- 4 Markov properties of Brownian motion
- 5 The Poisson process
- 6 Construction of Brownian motion
- 7 Path properties of Brownian motion
- 8 The continuity of paths
- 9 Continuous semimartingales
- 10 Stochastic integrals
- 11 Itô's formula
- 12 Some applications of Itô's formula
- 13 The Girsanov theorem
- 14 Local times
- 15 Skorokhod embedding
- 16 The general theory of processes
- 17 Processes with jumps
- 18 Poisson point processes
- 19 Framework for Markov processes
- 20 Markov properties
- 21 Applications of the Markov properties
- 22 Transformations of Markov processes
- 23 Optimal stopping
- 24 Stochastic differential equations
- 25 Weak solutions of SDEs
- 26 The Ray–Knight theorems
- 27 Brownian excursions
- 28 Financial mathematics
- 29 Filtering
- 30 Convergence of probability measures
- 31 Skorokhod representation
- 32 The space C[0, 1]
- 33 Gaussian processes
- 34 The space D[0, 1]
- 35 Applications of weak convergence
- 36 Semigroups
- 37 Infinitesimal generators
- 38 Dirichlet forms
- 39 Markov processes and SDEs
- 40 Solving partial differential equations
- 41 One-dimensional diffusions
- 42 Lévy processes
- Appendices
- References
- Index
Summary
Brownian motion is by far the most important stochastic process. It is the archetype of Gaussian processes, of continuous time martingales, and of Markov processes. It is basic to the study of stochastic differential equations, financial mathematics, and filtering, to name only a few of its applications.
In this chapter we define Brownian motion and consider some of its elementary aspects. Later chapters will take up the construction of Brownian motion and properties of Brownian motion paths.
Definition and basic properties
Let (Ω, ℱ, ℙ) be a probability space and let {ℱt} be a filtration, not necessarily satisfying the usual conditions.
Definition 2.1Wt = Wt(ω) is a one-dimensional Brownian motion with respect to {ℱt} and the probability measure ℙ, started at 0, if
(1)Wt is ℱt measurable for each t ≥ 0.
(2)W0 = 0, a.s.
(3)Wt − Ws is a normal random variable with mean 0 and variance t − s whenever s < t.
(4)Wt − Ws is independent of ℱs whenever s < t.
(5)Wt has continuous paths.
If instead of (2) we have W0 = x, we say we have a Brownian motion started at x. Definition 2.1(4) is referred to as the independent increments property of Brownian motion. The fact that Wt1 – Ws has the same law as Wt–s, which follows from Definition 2.1(3), is called the stationary increments property. When no filtration is specified, we assume the filtration is the filtration generated by W, i.e., ℱt = σ (Ws; s ≤ t). Sometimes a one-dimensional Brownian motion started at 0 is called a standard Brownian motion.
- Type
- Chapter
- Information
- Stochastic Processes , pp. 6 - 12Publisher: Cambridge University PressPrint publication year: 2011