Published online by Cambridge University Press: 04 August 2010
Abstract
A path integral representation is obtained for the optimal probability density function of the system state, conditional on the measurements. For certain non-linear systems the optimal density can be evaluated recursively using only a finite number of statistics. These systems extend the class found by Beneš, in that the drift need not be the gradient of a scalar potential.
In the one dimensional case the trajectories of the deterministic system underlying the Beneš filter fall into five classes according to their behaviour as t → ∞. It is shown that an arbitrary deterministic trajectory can be approximated at small times to an accuracy of O(t5) by a trajectory for which the Benes filter is appropriate.
Introduction
The Kalman-Bucy filter and its many variations are widely used throughout science and engineering for estimating the state of time varying systems. Applications to computer vision in particular are described in. A typical filter contains a model of the system dynamics and of the measurement process. It is given a sequence of measurements obtained over an extended time, and produces from this sequence an estimate of the probability density function for the system state, conditional on the measurements. If the filter is optimal, then the estimated density is the exact conditional density. The best known optimal filter is the Kalman-Bucy filter.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.