Book contents
- Frontmatter
- Contents
- Preface
- List of participants
- An evolution equation for the intersection local times of superprocesses
- The Continuum random tree II: an overview
- Harmonic morphisms and the resurrection of Markov processes
- Statistics of local time and excursions for the Ornstein–Uhlenbeck process
- LP-Chen forms on loop spaces
- Convex geometry and nonconfluent Γ-martingales I: tightness and strict convexity
- Some caricatures of multiple contact diffusion-limited aggregation and the η-model
- Limits on random measures and stochastic difference equations related to mixing array of random variables
- Characterizing the weak convergence of stochastic integrals
- Stochastic differential equations involving positive noise
- Feeling the shape of a manifold with Brownian motion — the last word in 1990
- Decomposition of Dirichlet processes on Hilbert space
- A supersymmetric Feynman-Kac formula
- On long excursions of Brownian motion among Poissonian obstacles
Some caricatures of multiple contact diffusion-limited aggregation and the η-model
Published online by Cambridge University Press: 31 March 2010
- Frontmatter
- Contents
- Preface
- List of participants
- An evolution equation for the intersection local times of superprocesses
- The Continuum random tree II: an overview
- Harmonic morphisms and the resurrection of Markov processes
- Statistics of local time and excursions for the Ornstein–Uhlenbeck process
- LP-Chen forms on loop spaces
- Convex geometry and nonconfluent Γ-martingales I: tightness and strict convexity
- Some caricatures of multiple contact diffusion-limited aggregation and the η-model
- Limits on random measures and stochastic difference equations related to mixing array of random variables
- Characterizing the weak convergence of stochastic integrals
- Stochastic differential equations involving positive noise
- Feeling the shape of a manifold with Brownian motion — the last word in 1990
- Decomposition of Dirichlet processes on Hilbert space
- A supersymmetric Feynman-Kac formula
- On long excursions of Brownian motion among Poissonian obstacles
Summary
Abstract. We consider some variants of DLA which shift the distribution of the place where a new particle is added in a very strong way to the points of maximal harmonic measure. As a consequence these variants can grow like “generalized plus signs”, with the aggregate containing only points on the coordinate axes at all times.
Introduction and statement of results.
We construct connected lattice sets An, n = 1, 2, …, by two procedures, both of which are variants of common procedures in DLA (Diffusion Limited Aggregation). The original DLA model was introduced by Witten and Sander [22]; see also [13] and [21, Sect. 6] for a general introduction to DLA. We only consider lattice models, so that An is a connected subset of ℤd. We always take A1 = {0} and An will contain exactly n sites. The site added to An to make An+1 is denoted by yn, so that An+1 = An ∪ {yn}. yn is chosen from ∂An, the boundary of An, which is the collection of sites adjacent to <An, but not in An. To describe the distribution of yn we introduce some notation. Let Sk, K ≥ 0, be a simple symmetric nearest neighbor random walk on ℤd.
- Type
- Chapter
- Information
- Stochastic AnalysisProceedings of the Durham Symposium on Stochastic Analysis, 1990, pp. 179 - 228Publisher: Cambridge University PressPrint publication year: 1991
- 6
- Cited by