Published online by Cambridge University Press: 31 March 2010
INTRODUCTION
Many different models of random trees have arisen in a variety of applied setting, and there is a large but scattered literature on exact and asymptotic results for particular models. For several years I have been interested in what kinds of “general theory” (as opposed to ad hoc analysis of particular models) might be useful in studying asymptotics of random trees. In this paper, aimed at theoretical probabilists, I discuss aspects of this incipient general theory which are most closely related to topics of current interest in theoretical stochastic processes. No prior knowledge of this subject is assumed: the paper is intended as an introduction and survey.
To give the really big picture in a paragraph, consider a tree on n vertices. View the vertices as points in abstract (rather than d-dimensional) space, but let the edges have length (= 1, as a default) so that there is metric structure: the distance between two vertices is the length of the path between them. Consider the average distance between pairs of vertices. As n → ∞ this average distance could stay bounded or could grow as order n, but almost all natural random trees fall into one of two categories. In the first (and larger) category, the average distance grows as order logn. This category includes supercritical branching processes, and most “Markovian growth” models such as those occurring in the analysis of algorithms. This paper is concerned with the second category, in which the average distance grows as order n½.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.