Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T01:57:26.887Z Has data issue: false hasContentIssue false

7 - The late-type stars

Published online by Cambridge University Press:  15 August 2009

Jean-Louis Tassoul
Affiliation:
Université de Montréal
Get access

Summary

Introduction

On the main sequence, it has long been known that large mean rotational velocities are common among the early-type stars and that these velocities decline steeply in the F-star region, from 150 km s−1 to less than 10 km s−1 in the cooler stars (see Figure 1.6). As was shown in Section 6.3.2, the observed projected velocities indicate that the mean value of the total angular momentum 〈J〉 closely follows the simple power law 〈J〉 α M2 for stars earlier than spectral type F0, which corresponds to about 1.5M (see Figure 6.7). The difficulty is not to account for such a relation, which probably reflects the initial distribution of angular momentum, but to explain why it does not apply throughout the main sequence. It has been suggested that the break in the mean rotational velocities beginning at about spectral type F0 might be due to the systematic occurrence of planets around the low-mass stars (M ≲ 1.5M), with most of the initial angular momentum being then transferred to the planets. Although this explanation has retained its attractiveness well into the 1960s, there is now ample evidence that it is not the most likely cause of the remarkable decline of rotation in the F-star region along the main sequence. Indeed, following Schatzman's (1962) original suggestion, there is now widespread agreement that this break in the rotation curve can be attributed to angular momentum loss through magnetized winds and/or sporadic mass ejections from stars with deep surface convection zones.

Type
Chapter
Information
Stellar Rotation , pp. 190 - 206
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×