Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T05:38:19.195Z Has data issue: false hasContentIssue false

19 - Diagnostics Cannot Have Much Power Against General Alternatives

Published online by Cambridge University Press:  05 June 2012

David Collier
Affiliation:
University of California, Berkeley
Jasjeet S. Sekhon
Affiliation:
University of California, Berkeley
Philip B. Stark
Affiliation:
University of California, Berkeley
Get access

Summary

Abstract. Model diagnostics are shown to have little power unless alternative hypotheses can be narrowly defined. For example, independence of observations cannot be tested against general forms of dependence. Thus, the basic assumptions in regression models cannot be inferred from the data. Equally, the proportionality assumption in proportional-hazards models is not testable. Specification error is a primary source of uncertainty in forecasting, and this uncertainty will be difficult to resolve without external calibration. Model-based causal inference is even more problematic.

Introduction

The object here is to sketch a demonstration that, unless additional regularity conditions are imposed, model diagnostics have power only against a circumscribed class of alternative hypotheses. The chapter is organized around the familiar requirements of statistical models. Theorems 1 and 2, for example, consider the hypothesis that distributions are continuous and have densities. According to the theorems, such hypotheses cannot be tested without additional structure.

Let us agree, then, that distributions are smooth. Can we test independence? Theorems 3 and 4 indicate the difficulty. Next, we grant independence and consider tests that distinguish between (i) independent and identically distributed random variables on the one hand, and (ii) independent but differently distributed variables on the other. Theorem 5 shows that, in general, power is lacking.

For ease of exposition, we present results for the unit interval; transformation to the positive half-line or the whole real line is easy.

Type
Chapter
Information
Statistical Models and Causal Inference
A Dialogue with the Social Sciences
, pp. 323 - 334
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×