Book contents
- Frontmatter
- Contents
- Preface
- 1 Basic Concepts in Probability and Statistics
- 2 Hypothesis Tests
- 3 Confidence Intervals
- 4 Statistical Tests Based on Ranks
- 5 Introduction to Stochastic Processes
- 6 The Power Spectrum
- 7 Introduction to Multivariate Methods
- 8 Linear Regression: Least Squares Estimation
- 9 Linear Regression: Inference
- 10 Model Selection
- 11 Screening: A Pitfall in Statistics
- 12 Principal Component Analysis
- 13 Field Significance
- 14 Multivariate Linear Regression
- 15 Canonical Correlation Analysis
- 16 Covariance Discriminant Analysis
- 17 Analysis of Variance and Predictability
- 18 Predictable Component Analysis
- 19 Extreme Value Theory
- 20 Data Assimilation
- 21 Ensemble Square Root Filters
- Appendix
- References
- Index
12 - Principal Component Analysis
Published online by Cambridge University Press: 03 February 2022
- Frontmatter
- Contents
- Preface
- 1 Basic Concepts in Probability and Statistics
- 2 Hypothesis Tests
- 3 Confidence Intervals
- 4 Statistical Tests Based on Ranks
- 5 Introduction to Stochastic Processes
- 6 The Power Spectrum
- 7 Introduction to Multivariate Methods
- 8 Linear Regression: Least Squares Estimation
- 9 Linear Regression: Inference
- 10 Model Selection
- 11 Screening: A Pitfall in Statistics
- 12 Principal Component Analysis
- 13 Field Significance
- 14 Multivariate Linear Regression
- 15 Canonical Correlation Analysis
- 16 Covariance Discriminant Analysis
- 17 Analysis of Variance and Predictability
- 18 Predictable Component Analysis
- 19 Extreme Value Theory
- 20 Data Assimilation
- 21 Ensemble Square Root Filters
- Appendix
- References
- Index
Summary
Large data sets are difficult to grasp. To make progress, we often seek a few quantities that capture as much of the information in the data as possible. In this chapter, we discuss a procedure called Principal Component Analysis (PCA), also called Empirical Orthogonal Function (EOF) analysis, which finds the components that minimizes the sum square difference between the components and the data. The components are ordered such that the first approximates the data the best (in a least squares sense), the second approximates the data the best among all components orthogonal to the first, and so on. In typical climate applications, a principal component consists of two parts: (1) a fixed spatial structure, called an Empirical Orthogonal Function (EOF), and (2) its time-dependent amplitude, called a PC time series. The EOFs are orthogonal and the PC time series are uncorrelated. Principal components often are used as input to other analyses, such as linear regression, canonical correlation analysis, predictable components analysis, or discriminant analysis. The procedure for performing area-weighted PCA is discussed in detail in this chapter.
Keywords
- Type
- Chapter
- Information
- Statistical Methods for Climate Scientists , pp. 273 - 297Publisher: Cambridge University PressPrint publication year: 2022