Book contents
- Frontmatter
- Contents
- Preface
- 1 Basic Concepts in Probability and Statistics
- 2 Hypothesis Tests
- 3 Confidence Intervals
- 4 Statistical Tests Based on Ranks
- 5 Introduction to Stochastic Processes
- 6 The Power Spectrum
- 7 Introduction to Multivariate Methods
- 8 Linear Regression: Least Squares Estimation
- 9 Linear Regression: Inference
- 10 Model Selection
- 11 Screening: A Pitfall in Statistics
- 12 Principal Component Analysis
- 13 Field Significance
- 14 Multivariate Linear Regression
- 15 Canonical Correlation Analysis
- 16 Covariance Discriminant Analysis
- 17 Analysis of Variance and Predictability
- 18 Predictable Component Analysis
- 19 Extreme Value Theory
- 20 Data Assimilation
- 21 Ensemble Square Root Filters
- Appendix
- References
- Index
5 - Introduction to Stochastic Processes
Published online by Cambridge University Press: 03 February 2022
- Frontmatter
- Contents
- Preface
- 1 Basic Concepts in Probability and Statistics
- 2 Hypothesis Tests
- 3 Confidence Intervals
- 4 Statistical Tests Based on Ranks
- 5 Introduction to Stochastic Processes
- 6 The Power Spectrum
- 7 Introduction to Multivariate Methods
- 8 Linear Regression: Least Squares Estimation
- 9 Linear Regression: Inference
- 10 Model Selection
- 11 Screening: A Pitfall in Statistics
- 12 Principal Component Analysis
- 13 Field Significance
- 14 Multivariate Linear Regression
- 15 Canonical Correlation Analysis
- 16 Covariance Discriminant Analysis
- 17 Analysis of Variance and Predictability
- 18 Predictable Component Analysis
- 19 Extreme Value Theory
- 20 Data Assimilation
- 21 Ensemble Square Root Filters
- Appendix
- References
- Index
Summary
Climate data are correlated over short spatial and temporal scales. For instance, today’s weather tends to be correlated with tomorrow’s weather, and weather in one city tends to be correlated with weather in a neighboring city. Such correlations imply that weather events are not independent. This chapter discusses an approach to accounting for spatial and temporal dependencies based on stochastic processes. A stochastic process is a collection of random variables indexed by a parameter, such as time or space. A stochastic process is described by the moments at a single time (e.g., mean and variance), and also by the degree of dependence between two times, often measured by the autocorrelation function. This chapter presents these concepts and discusses common mathematical models for generating stochastic processes, especially autoregressive models. The focus of this chapter is on developing the language for describing stochastic processes. Challenges in estimating parameters and testing hypotheses about stochastic processes are discussed.
Keywords
- Type
- Chapter
- Information
- Statistical Methods for Climate Scientists , pp. 94 - 125Publisher: Cambridge University PressPrint publication year: 2022
- 1
- Cited by