Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T16:49:53.388Z Has data issue: false hasContentIssue false

20 - Data Assimilation

Published online by Cambridge University Press:  03 February 2022

Timothy DelSole
Affiliation:
George Mason University, Virginia
Michael Tippett
Affiliation:
Columbia University, New York
Get access

Summary

Data assimilation is a procedure for combining observations and forecasts of a system into a single, improved description of the system state. Because observations and forecasts are uncertain, they are each best described by probability distributions. The problem of combining these two distributions into a new, updated distribution that summarizes all our knowledge is solved by Bayes theorem. If the distributions are Gaussian, then the parameters of the updated distribution can be written as an explicit function of the parameters of the observation and forecast distributions. The assumption of Gaussian distributions is tantamount to assuming linear models for observations and state dynamics. The purpose of this chapter is to provide an introduction to the essence of data assimilation. Accordingly, this chapter discusses the data assimilation problem for Gaussian distributions in which the solution from Bayes theorem can be derived analytically. Practical data assimilation usually requires modifications of this assimilation procedure, a special case of which is discussed in the next chapter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Data Assimilation
  • Timothy DelSole, George Mason University, Virginia, Michael Tippett, Columbia University, New York
  • Book: Statistical Methods for Climate Scientists
  • Online publication: 03 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781108659055.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Data Assimilation
  • Timothy DelSole, George Mason University, Virginia, Michael Tippett, Columbia University, New York
  • Book: Statistical Methods for Climate Scientists
  • Online publication: 03 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781108659055.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Data Assimilation
  • Timothy DelSole, George Mason University, Virginia, Michael Tippett, Columbia University, New York
  • Book: Statistical Methods for Climate Scientists
  • Online publication: 03 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781108659055.021
Available formats
×