Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T21:59:52.580Z Has data issue: false hasContentIssue false

4 - Development of Large-Volume Diamond Anvil Cell for Neutron Diffraction: The Neutron Diamond Anvil Cell Project at ORNL

Published online by Cambridge University Press:  03 August 2023

Yingwei Fei
Affiliation:
Carnegie Institution of Washington, Washington DC
Michael J. Walter
Affiliation:
Carnegie Institution of Washington, Washington DC
Get access

Summary

Ten years ago, Dave Mao, director of Energy Frontier Research in Extreme Environments (EFree), a Department of Energy (DOE) energy frontier, recognized the importance of neutron science for energy research. The subsequent establishment of a neutron group within EFree lead to the formation of an Instrument Development Team for SNAP, the dedicated high-pressure beamline at the Spallation Neutron Source at Oak Ridge National Laboratory in Tennessee. The core concept was to develop novel high-pressure techniques to expand the pressure range for neutron diffraction. A quite ambitious goal was set to reach half megabar levels (50 GPa), which at the time was considered extremely challenging. Here we will give a brief overview of the developments during the last decade in this novel area of research. An important factor was that during this period multicarat diamond anvils have become available grown by chemical vapor deposition (CVD), making research in this pressure range and beyond rather routine. This chapter shows the latest developments in large anvil and anvil support designs, compact multiple ton diamond cells, and new neutron methodologies. Achievements are illustrated with some examples of high-quality neutron diffraction patterns collected on sample sizes much small than conventional sizes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×