Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T15:08:20.106Z Has data issue: false hasContentIssue false

Suggested Reading and Selected References

Published online by Cambridge University Press:  19 October 2021

Stephen M. Stahl
Affiliation:
University of California, San Diego
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Stahl's Essential Psychopharmacology
Neuroscientific Basis and Practical Applications
, pp. 579 - 614
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Brunton, LL (ed.) (2018) Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 13th edition. New York, NY: McGraw Medical.Google Scholar
Schatzberg, AF, Nemeroff, CB (eds.) (2017) Textbook of Psychopharmacology, 5th edition. Washington, DC: American Psychiatric Publishing.Google Scholar

Secondary Sources

Cummings, M, Stahl, SM (2021) Management of Complex, Treatment-Resistant Psychiatric Disorders. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Goldberg, J, Stahl, SM (2021) Practical Psychopharmacology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kalali, A, Kwentus, J, Preskorn, S, Stahl, SM (eds.) (2012) Essential CNS Drug Development. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Marazzitti, D, Stahl, SM (2019) Evil, Terrorism and Psychiatry. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Moutier, C, Pisani, A, Stahl, SM (2021) Stahl’s Handbooks: Suicide Prevention Handbook. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Pappagallo, M, Smith, H, Stahl, SM (2012) Essential Pain Pharmacology: the Prescribers Guide. Cambridge: Cambridge University Press.Google Scholar
de Oliveira I, Reis, Schwartz, T, Stahl, SM. (2014) Integrating Psychotherapy and Psychopharmacology. New York, NY: Routledge Press.Google Scholar
Silberstein, SD, Marmura, MJ, Hsiangkuo, Y, Stahl, SM (2016) Essential Neuropharmacology: the Prescribers Guide, 2nd edition. Cambridge: Cambridge University Press.Google Scholar
Stahl, SM (2009) Stahl’s Illustrated: Antidepressants. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM (2009) Stahl’s Ilustrated: Mood Stabilizers. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM (2009) Stahl’s Illustrated: Chronic Pain and Fibromyalgia. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM, Mignon, L (2009) Stahl’s Illustrated: Attention Deficit Hyperactivity Disorder. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM, Mignon, L (2010) Stahl’s Illustrated: Antipsychotics, 2nd edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM, Grady, MM (2010) Stahl’s Illustrated: Anxiety and PTSD. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM (2011) Essential Psychopharmacology Case Studies. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM (2018) Stahl’s Essential Psychopharmacology: the Prescribers Guide Children and Adolescents. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM (2019) Stahl’s Self-Assessment Examination in Psychiatry: Multiple Choice Questions for Clinicians, 3rd edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM (2021) Stahl’s Essential Psychopharmacology: the Prescribers Guide, 7th edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM, Davis, RL (2011) Best Practices for Medical Educators, 2nd edition. Cambridge: Cambridge University Press.Google Scholar
Stahl, SM, Grady, MM (2012) Stahl’s Illustrated: Substance Use and Impulsive Disorders. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM, Moore, BA (eds.) (2013) Anxiety Disorders: a Concise Guide and Casebook for Psychopharmacology and Psychotherapy Integration. New York, NY: Routledge Press.CrossRefGoogle Scholar
Stahl, SM, Morrissette, DA (2014) Stahl’s Illustrated: Violence: Neural Circuits, Genetics and Treatment. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM, Morrissette, DA (2016) Stahl’s Illustrated: Sleep and Wake Disorders, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM, Morrissette, DA (2018) Stahl’s Illustrated: Dementia. Cambridge: Cambridge University Press..Google Scholar
Stahl, SM, Schwartz, T (2016) Case Studies: Stahl’s Essential Psychopharmacology, Volume 2. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stein, DJ, Lerer, B, Stahl, SM (eds.) (2012) Essential Evidence Based Psychopharmacolgy, 2nd edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Warburton, KD, Stahl, SM (2016) Violence in Psychiatry. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Warburton, KD, Stahl, SM (2021) Decriminalizing Mental Illness. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Byrne, JH, Roberts, JL (eds.) (2004) From Molecules to Networds: An Introduction to Cellular and Molecular Neuroscience. New York, NY: Elsevier.Google Scholar
Charney, DS, Buxbaum, JD, Sklar, P, Nestler, EJ (2018) Charney and Nestler’s Neurbiology of Mental Illness, 5th edition. New York, NY: Oxford University Press.Google Scholar
Iversen, LL, Iversen, SD, Bloom, FE, Roth, RH (2009) Introduction to Neuropsychopharmacology. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Meyer, JS, Quenzer, LF (2019) Psychopharmacology: Drugs, the Brain, and Behavior, 3rd edition. New York, NY: Sinauer Associates, Oxford University Press.Google Scholar
Nestler, EJ, Kenny, PJ, Russo, SJ, Schaefer, A (2020) Molecular Neuropharmacology: A Foundation for Clinical Neuroscience, 4th edition. New York, NY: McGraw Medical.Google Scholar
Purves, D, Augustine, GJ, Fitzpatrick, D, et al. (2018) Neuroscience, 6th edition. New York, NY: Sinauer Associates, Oxford University Press.Google Scholar
Squire, LR, Berg, D, Bloom, FE, et al. (eds.) (2012) Fundamental Neuroscience, 4th edition. San Diego, CA: Academic Press.Google Scholar
Alex, KD, Pehak, EA (2007) Pharmacological mechanisms of serotoninergic regulation of dopamine neurotransmission. Pharmacol Ther 113: 296320.CrossRefGoogle Scholar
Amargos-Bosch, M, Bortolozzi, A, Buig, MV, et al. (2004) Co-expression and in vivo interaction of serotonin 1A and serotonin 2A receptors in pyramidal neurons of prefrontal cortex. Cerbral Cortex 14: 281–99.Google ScholarPubMed
Baez, MV, Cercata, MC, Jerusalinsky, DA (2018) NMDA receptor subunits change after synaptic plasticity induction and learning and memory acquisition. Neural Plast, doi.org/10,1155/2018/5093048.CrossRefGoogle Scholar
Beaulier, JM, Gainetdinov, RR (2011) The physiology, signaling and pharmacology of dopamine receptors. Pharmacol Rev 63: 182217.CrossRefGoogle Scholar
Belmer, A, Quentin, E, Diaz, SL, et al. (2018) Positive regulation of raphe serotonin neurons by serotonin 2B receptors. Neuropsychopharmacology 42: 1623–32.Google Scholar
Calabresi, P, Picconi, B, Tozzi, A, Ghiglieri, V, Di Fillippo, M (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nature Neurosci 17: 102230.CrossRefGoogle ScholarPubMed
Cathala, A, Devroye, C, Drutel, G, et al. (2019) Serotonin 2B receptors in the rat dorsal raphe nucleus exert a GABA-mediated tonic inhibitor control on serotonin neurons. Exp Neurol 311: 5766.CrossRefGoogle ScholarPubMed
De Bartolomeis, A, Fiore, G, Iasevoli, F (2005) Dopamine glutamate interaction and antipsychotics mechanism of action: implication for new pharmacologic strategies in psychosis. Curr Pharmaceut Design 11: 3561–94.CrossRefGoogle ScholarPubMed
DeLong, MR, Wichmann, T (2007) Circuits and Ciruit disorders of the basal ganglia. Arch Neurol 64: 20–4.CrossRefGoogle Scholar
Fink, KB, Gothert, M (2007) 5HT receptor regulation of neurotransmitter release. Pharmacol Rev 59: 360417.CrossRefGoogle ScholarPubMed
Hansen, KB, Yi, F, Perszyk, RE, et al (2018) Structure, function and allosteric modulation of NMDA receptors. J Gen Physiol 150: 1081105.CrossRefGoogle ScholarPubMed
Homayoun, H, Moghaddam, B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27: 11496–500.CrossRefGoogle ScholarPubMed
Nicoll, RA (2017) A brief history of long-term potentiation. Neuron 93: 28199.CrossRefGoogle ScholarPubMed
Paoletti, P, Neyton, J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7: 3947.CrossRefGoogle ScholarPubMed
Scheefhals, N, MacGillavry, HD (2018) Functional organization of postsynaptic glutamate receptors. Mol Cell Neurosci 91: 8294.CrossRefGoogle ScholarPubMed
Sokoloff, P, Le Foil, B (2017) The dopamine D3 receptor: a quarter century later. Eur J Neurosci 45: 219.CrossRefGoogle ScholarPubMed
Stahl, SM (2017) Dazzled by the dominions of dopamine: clinical roles of D3, D2, and D1 receptors. CNS Spectrums 22: 305–11.CrossRefGoogle ScholarPubMed
Aghajanian, GK, Marek, GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Rev 31: 302–12.CrossRefGoogle ScholarPubMed
Bloomfield, MAP, Morgan, CJA, Egerton, A, et al. (2014) Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol Psychiatry 75: 470–8.CrossRefGoogle ScholarPubMed
Brugger, SP, Anelescu, I, Abi-Dargham, A, et al. (2020) Heterogeneity and striatal dopamine function in schizophrenia: meta analysis of variance. Biol Psychiatry 67: 215–24.Google Scholar
Bubenikova-Valesova, V, Horacek, J, Vrajova, M, et al. (2008) Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev 32: 1014–23.CrossRefGoogle ScholarPubMed
Demjaha, A, Murray, RM, McGuire, PK (2012) Dopamine synthesis capacity in patients with treatment resistant schizophrenia. Am J Psychiatry 169: 1203–10.CrossRefGoogle ScholarPubMed
Driesen, N, McCarthy, G, Bhagwagar, Z, et al (2013) The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity. Neuropsychopharmacol 38: 2613–22.CrossRefGoogle ScholarPubMed
Egerton, A, Chaddock, CA, Winton-Brown, TT, et al. (2013) Presynaptic striatal dopamine dysfunction in people at ultra high risk for psychosis: findings in a second cohort. Biol Psychiatry 74: 106–12.CrossRefGoogle ScholarPubMed
Gellings Lowe, N, Rapagnani, MP, Mattei, C, Stahl, SM (2012)The psychopharmacology of hallucinations: ironic insights into mechanisms of action. In The Neuroscience of Hallucinations, Jardri, R, Thomas, P, Cachia, A and Pins, D. (eds.), Berlin: Springer, 471–92.Google Scholar
Howes, OD, Bose, SK, Turkheimer, F, et al. (2011) Dopamine synthsis capacity before onset of psychosis: a prospective 18F-DOPA PET imaging study. Am J Psychiatry 169: 1311–17.Google Scholar
Howes, OD, Montgomery, AJ, Asselin, MC, et al. (2009) Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 66: 1320.CrossRefGoogle ScholarPubMed
Juahar, S, Nour, MM, Veronese, M, et al. (2017) A test of the transdiagnostic dopamine hypothesis of psychosis using positron emission tomographic imaging in bipolar affective disorder and schizophrenia. JAMA Psychiatry 74: 1206–13.Google Scholar
Lodge, DJ, Grace, AA (2011) Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharmacol Sci 32: 507–13.CrossRefGoogle ScholarPubMed
McCutcheon, RA, Abi-Dargham, A, Howes, OD (2019) Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci 42: 205–20.CrossRefGoogle ScholarPubMed
Mizrahi, R, Kenk, M, Suridjan, I, et al (2014) Stress induced dopamine response in subjects at clinical high risk for schizophrenia with and without concurrent cannabis use. Neuropsychopharmacology 39: 1479–89.CrossRefGoogle ScholarPubMed
Paz, RD, Tardito, S, Atzori, M (2008) Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. Eur Neuropsychopharmacol 18: 773–86.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Parkinson’s disease psychosis as a serotonin–dopamine imbalance syndrome. CNS Spectrums 21: 355–9.CrossRefGoogle ScholarPubMed
Stahl, SM (2018) Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectrums 23: 187–91.CrossRefGoogle ScholarPubMed
Weinstein, JJ, Chohan, MO, Slifstein, M, et al. (2017) Pathway-specific dopamine abnormalities in schizophrenia. Biol Psychiatry 81: 3142.CrossRefGoogle ScholarPubMed
Alphs, LD, Summerfelt, A, Lann, H, Muller, RJ (1989) The Negative Symptom Assessment: A new instrument to assess negative symptoms of schizophrenia. Psychopharmacol Bull 25: 159–63.Google ScholarPubMed
Arango, C, Rapado-Castro, M, Reig, S, et al. (2012) Progressive brain changes in children and adolescents with first-episode psychosis. Arch Gen Psychiatry 69: 1626.CrossRefGoogle ScholarPubMed
Cruz, DA, Weawver, CL, Lovallo, EM, Melchitzky, DS, Lewis, DA. (2009) Selective alterations in postsynaptic markers of chandelier cell inputs to cortical pyramidal neurons in subjects with schizophrenia. Neuropsychopharmacology 34: 2112–24.CrossRefGoogle ScholarPubMed
Dragt, S, Nieman, DH, Schultze-Lutter, F, et al. (2012) Cannabis use and age at onset of symptoms in subjects at clinical high risk for psychosis. Acta Psychiatr Scand 125: 4553.CrossRefGoogle ScholarPubMed
Eisenberg, DP, Berman, KF (2010) Executive function, neural circuitry, and genetic mechanisms in schizophrenia. Neuropsychopharmacology 35: 258–77.CrossRefGoogle ScholarPubMed
Foti, DJ, Kotov, R, Guey, LT, Bromet, EJ (2010) Cannabis use and the course of schizophrenia: 10-year follow-up after first hospitalization. Am J Psychiatry 167: 987–93.CrossRefGoogle ScholarPubMed
Fusar-Poli, P, Bonoldi, I, Yung, AR, et al. (2012) Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry 69: 220–9.CrossRefGoogle ScholarPubMed
Goff, DC, Zeng, B, Ardelani, BA, et al. (2018) Association of hippocampal atrophy with duration of untreated psychosis and molecular biomarkers during initial antipsychotic treatment of first episode psychosis. JAMA Psychiatry 75: 370–8.CrossRefGoogle ScholarPubMed
Henry, LP, Amminger, GP, Harris, MG, et al. (2010) The EPPIC follow up study of first episode psychosis: longer term clinical and functional outcome 7 years after index admission. J Clin Psychiatry 71: 716–28.CrossRefGoogle ScholarPubMed
Kane, JM, Robinson, DG, Schooler, NR, et al. (2016) Comprehensive versus usual community care for first-episode psychosis: 2-year outcomes from the NIMH RAISE early treatment program. Am J Psychiatry 173: 362–72.CrossRefGoogle ScholarPubMed
Kendler, KS, Ohlsson, H, Sundquist, J, et al. (2019) Prediction of onset of substance induced psychotic disorder and its progression to schizophrenia in a Swedish National Sample. Am J Psychiatry 176: 711–19.CrossRefGoogle Scholar
Large, M, Sharma, S, Compton, MT, Slade, T, Nielssen, O (2011) Cannabis use and earlier onset of psychosis. Arch Gen Psychiatry 68: 555–61.CrossRefGoogle ScholarPubMed
Lieberman, JA, Small, SA, Girgis, RR (2019) Early detection and preventive intervention in schizophrenia: from fantasy to reality. Am J Psychiatry 176: 794810.CrossRefGoogle ScholarPubMed
Mechelli, A, Riecher-Rossler, A, Meisenzahl, EM, et al. (2011) Neuroanatomical abnormalities that predate the onset of psychosis. Arch Gen Psychiatry 68: 489–95.CrossRefGoogle ScholarPubMed
Morrissette, DA, Stahl, SM (2014) Treating the violent patient with psychosis or impulsivity utilizing antipsychotic polypharmacy and high-dose monotherapy. CNS Spectrums 19: 439–48.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Deconstructing violence as a medical syndrome: mapping psychotic, impulsive, and predatory subtypes to malfunctioning brain circuits. CNS Spectrums 19: 357–65.CrossRefGoogle ScholarPubMed
Stahl, SM (2015) Is impulsive violence an addiction? The habit hypothesis. CNS Spectrums 20: 165–9.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA, Cummings, M (2014) California State Hospital Violence Assessment and Treatment (Cal-VAT) guidelines. CNS Spectrums 19: 44965.CrossRefGoogle ScholarPubMed
Wykes, T, Huddy, V, Cellard, C, McGurk, SR, Czobar, P (2011) A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. Am J Psychiatry 168: 472–85.CrossRefGoogle ScholarPubMed
Artukoglu, BB, Li, F, Szejko, N, et al. (2020) Pharmacologic treatment of tardive dyskinesia: a meta analysis and systematic review. J Clin Psychiatry 81: e111.CrossRefGoogle ScholarPubMed
Bhidayasin, R, Jitkretsandakul, O, Friedman, JH (2018) Updating the recommendations for treatment of tardive syndromes: a systematic review of new evidence and practical treatment algorithm. J Neurol Sci 389: 6775.CrossRefGoogle Scholar
Carbon, M, Kane, JM, Leucht, S, et al. (2018) Tardive dyskinesia risk with first- and second-generation antipsychotics in comparative randomized controlled trials: a meta analysis. World Psychiatry 173: 330–40.Google Scholar
Citrome, L (2017) Valbenazine for tardive dyskinesia: a systematic review of the efficacy and safety profile for this newly approved novel medication – what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Practice, doi.org 10.1111/ijcp.12964.CrossRefGoogle Scholar
Citrome, L (2017) Deutetrabenazine for tardive dyskinesia: a systematic review of the efficacy and safety profile for this newly approved novel medication – what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Practice, doi.org 10.1111/ijcp.13030.CrossRefGoogle Scholar
Jacobsen, FM (2015) Second generation antipsychotics and tardive syndromes in affective illness: a public health problem with neuropsychiatric consequences. Am J Public Health 105: e1016.CrossRefGoogle ScholarPubMed
Niemann, N, Jankovic, J (2018) Treatment of tardive dyskinesia: a general overview with focus on the vesicular monoamine transporter 2 inhibitors. Drugs 78: 525–41.Google ScholarPubMed
Stahl, SM (2017) Neuronal traffic signals in tardive dyskinesia: not enough “stop” in the motor striatum. CNS Spectrums 22: 427–34.CrossRefGoogle ScholarPubMed
Stahl, SM (2018) Mechanism of action of vesicular monoamine transporter 2 (VMAT2) inhibitors in tardive dyskinesia: reducing dopamine leads to less “go” and more “stop” from the motor striatum for robust therapeutic effects. CNS Spectrums 23: 16.CrossRefGoogle ScholarPubMed
Stahl, SM (2018) Comparing pharmacological mechanism of action for the vesicular monoamine transporter 2 (VMAT2) inhibitors valbenazine and deutetrabenazine in treating tardive dyskinesia: does one have advantages over the other? CNS Spectrums 23: 239–47.CrossRefGoogle ScholarPubMed
Woods, SW, Morgenstern, H, Saksa, JR, et al. (2010) Incidence of tardive dyskinesia with atypical versus conventional antipsychotic medications: a prospective cohort study. J Clin Psychiatry 71: 463–74.CrossRefGoogle ScholarPubMed
Brissos, S, Veguilla, MR, Taylor, D, et al. (2014) The role of long-acting injectable antipsychotics in schizophrenia: a critical appraisal. Ther Adv Psychopharmacol 4: 198219.CrossRefGoogle ScholarPubMed
Kishimoto, T, Nitto, M, Borenstein, M, et al. (2013) Long acting injectable versus oral antipsychotics in schizophrenia: a systematic review and meta analysis of mirror image studies. J Clin Psychiatry 74: 957–65.CrossRefGoogle ScholarPubMed
MacEwan, JP, Kamat, SA, Duffy, RA, et al. (2016) Hospital readmission rates among patients with schizophrenia treated with long acting injectables or oral antipsychotics. Psychiatr Serv 67: 1183–8.CrossRefGoogle ScholarPubMed
Meyer, JM (2013) Understanding depot antipsychotics: an illustrated guide to kinetics. CNS Spectrums 18: 5868.CrossRefGoogle ScholarPubMed
Meyer, JM (2017) Converting oral to long acting injectable antipsychotics: a guide for the perplexed. CNS Spectrums 22: 1727.CrossRefGoogle Scholar
Stahl, SM (2014) Long-acting injectable antipsychotics: shall the last be first? CNS Spectrums 19: 35.CrossRefGoogle ScholarPubMed
Tiihonen, J, Haukka, J, Taylor, M, et al. (2011) A nationwide cohort study of oral and depot antipsychotics after first hospitalization for schizophrenia. Am J Psychiatry 168: 603–9.CrossRefGoogle ScholarPubMed
Berry, MD, Gainetdinov, RR, Hoener, MC, et al. (2017) Pharmacology of human trace amine-associated receptors: therapeutic opportunities and challenges. Pharmacol Ther 180: 16180.CrossRefGoogle ScholarPubMed
Brannan, S (2020) KarXT (a new mechanism antipsychotic based on xanomeline) is superior to placebo in patients with schizophrenia: phase 2 clinical trial results. Abstract, American Society of Clinical Psychopharmacology Annual Meeting.Google Scholar
Citrome, L (2015) Brexpiprazole for schizophrenia and as adjunct for major depressive disorder: a systematic review of the efficacy and safety profile for the newly approved antipsychotic – what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Pract 69: 978–97.Google ScholarPubMed
Correll, CU, Davis, RE, Weingart, M, et al. (2020) Efficacy and safety of lumateperone for treatment of schizophrenia: a randomized clinical trial. JAMA Psychaitry 77: 349–58.Google ScholarPubMed
Dedic, N, Jones, PG, Hopkins, SC, et al. (2019) SEP363856: a novel psychotropic agent with unique non D2 receptor mechanism of actions. J Pharmacol Exp Ther 371: 114.CrossRefGoogle Scholar
Earley, W, Burgess, MV, Rekeda, L, et al. (2019) Cariprazine treatment of bipolar depression: a randomized double-blind placebo-controlled phase 3 study, Am J Psychiatry 176: 439–48.CrossRefGoogle ScholarPubMed
Gainetdinov, RR, Hoener, MC, Berry, MD (2018) Trace amines and their receptors. Pharmacol Rev 70: 549620.CrossRefGoogle ScholarPubMed
Koblan, KS, Kent, J, Hopkins, SC, Krystal, JH, et al. (2020) A non-D2-receptor-binding drug for the treatment of schizophrenia. New Engl J Med 382: 1407–506.CrossRefGoogle ScholarPubMed
Lieberman, JA, Davis, RE, Correll, CU, et al. (2016) ITI-007 for the treatment of schizophrenia: a 4-week randomized, double-blind, controlled trial. Biol Psychiatry 79: 952–6.CrossRefGoogle ScholarPubMed
Loebel, A, Cucchiaro, J, Silva, R, et al. (2014) Lurasidone monotherapy in the treatment of bipolar I depression: a randomized double-blind, placebo-controlled study. Am J Psychiatry 171: 160–8.Google ScholarPubMed
Loebel, A, Cucchiaro, J, Silva, R, et al. (2014) Lurasidone as adjunctive therapy with lithium or valproate for the treatment of bipolar I depression: a randomized, double blind, placebo-controlled study. Am J Psychiatry 171: 169–77.Google ScholarPubMed
Marder, SR, Davis, JM, Couinard, G (1997) The effects of risperidone on the five dimensions of schizophrenia derived by factor analysis: combined results of the north American trials. J Clin Psychiatry 58: 538–46.CrossRefGoogle ScholarPubMed
McIntyre, RS, Suppes, T, Early, W, Patel, M, Stahl, SM (2020) Cariprazine efficacy in bipolar I depression with and without concurrent manic symptoms: post hoc analysis of three randomized, placebo-controlled studies. CNS Spectrums 25: 502–10.CrossRefGoogle Scholar
Meyer, JM, Cummings, MA, Proctor, G, Stahl, SM (2016) Psychopharmacology of persistent violence and aggression. Psychiatr Clin N Am 39: 541–56.CrossRefGoogle ScholarPubMed
Meyer, JM, Stahl, SM (2020) Stahl’s Handbooks: the Clozapine Handbook. Cambridge: Cambridge University Press.Google Scholar
Nemeth, G, Laszlovszky, I, Czoboar, P, et al. (2017) Cariprazine versus risperidone monotherapy for treatment of predominant negative symptoms in patients with schizophrenia: a randomized double-blind controlled trial. Lancet 389: 1103–13.CrossRefGoogle Scholar
Pei, Y, Asif-Malik, A, Canales, JJ (2016) Trace amines and the trace amine-associated receptor 1: pharmacology, neurochemistry and clinical implications. Front Neurosci 10: 148.CrossRefGoogle ScholarPubMed
Perkins, DO, Gu, H, Boteva, K, Lieberman, JA (2005) Relationship between duration of untreated psychosis and outcome in first episode schizophrenia: a critical review and meta-analysis. Am J Psychiatry 162: 1785–804.CrossRefGoogle ScholarPubMed
Roth, BL. Ki determinations, receptor binding profiles, agonist and/or antagonist functional data, HERG data, MDR1 data, etc. as appropriate was generously provided by the National Institute of Mental Health’s Psychoactive Drug Screening Program, Contract # HHSN-271–2008-00025-C (NIMH PDSP). The NIMH PDSP is directed by Bryan L. Roth MD, PhD at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscol at NIMH, Bethesda MD, USA. For experimental details please refer to the PDSP website http://pdsp.med.unc.edu/Google Scholar
Schwartz, MD, Canales, JJ, Zucci, R, et al. (2018) Trace amine associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opin Ther Targets 22: 513–26.CrossRefGoogle ScholarPubMed
Shekar, A, Potter, WZ, Lightfoot, J, et al. (2008) Seletive muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 165: 1033–9.Google Scholar
Snyder, GL, Vanover, KE, Zhu, H, et al. (2014) Functional profile of a novel modulator of serotonin, dopamine and glutamate neurotransmission. Psychopharmacology 232 : 605–21.Google ScholarPubMed
Stahl, SM (2013) Classifying psychotropic drugs by mode of action and not by target disorder. CNS Spectrums 18: 11317.CrossRefGoogle Scholar
Stahl, SM (2013) Role of α1 adrenergic antagonism in the mechanism of action of iloperidone: reducing extrapyramidal symptoms. CNS Spectrums 18: 285–8.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Clozapine: is now the time for more clinicians to adopt this orphan? CNS Spectrums 19: 279–81.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Mechanism of action of brexpiprazole: comparison with aripiprazole. CNS Spectrums 21: 16.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Mechanism of action of cariprazine. CNS Spectrums 21: 1237.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Mechanism of action of pimavanserin in Parkinson’s disease psychosis: targeting serotonin 5HT2A and 5HT2C receptors. CNS Spectums 21: 271–5.Google ScholarPubMed
Stahl, SM (2017) Drugs for psychosis and mood: unique actions at D3, D2, and D1 dopamine receptor subtypes. CNS Spectrums 22: 375–84.CrossRefGoogle ScholarPubMed
Stahl, SM, Cucchiaro, J, Sinonelli, D, et al. (2013) Effectiveness of lurasidone for patients with schizophrenia following 6 weeks of acute treatment with lurasidone, olanazapine, or placebo: a 6-month, open-label study. J Clin Psychiatry 74: 507–15.CrossRefGoogle Scholar
Stahl, SM, Laredo, SA, Morrissette, DA (2020) Cariprazine as a treatment across the bipolar I spectrum from depression to mania: mechanism of action and review of clinical data. Ther Adv Psychopharmacol 10: 111.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA, Citrome, L, et al. (2013) “Meta-guidelines” for the management of patients with schizophrenia. CNS Spectrums 18: 15062.CrossRefGoogle ScholarPubMed
Suppes, T, Silva, R, Cuccharino, J, et al. (2016) Lurasidone for the treatment of major depressive disorder with mixed features: a randomized, double blind placebo controlled study. Am J Psychiatry 173: 400–7.CrossRefGoogle ScholarPubMed
Tarazi, F, Stahl, SM (2012) Iloperidone, asenapine and lurasidone: a primer on their current status. Expert Opin Pharmacother 13: 1911–22.CrossRefGoogle ScholarPubMed
Thase, ME, Youakim, JM, Skuban, A, et al. (2015) Efficacy and safety of adjunctive brexpiprazole 2 mg in major depressive disorder. J Clin Psychiatry 76: 1224–31.CrossRefGoogle ScholarPubMed
Zhang, L, Hendrick, JP (2018) The presynaptic D2 partial agonist lumateperone acts as a postsynaptic D2 antagonist. Matters: doi: 10.19185/matters.201712000006.CrossRefGoogle Scholar
Alex, KD, Pehak, EA (2007) Pharmacological mechanisms of serotoninergic regulation of dopamine neurotransmission. Pharmacol Ther 113: 296320.CrossRefGoogle Scholar
Amargos-Bosch, M, Bortolozzi, A, Buig, MV, et al. (2004) Co-expression and in vivo interaction of serotonin 1A and serotonin 2A receptors in pyramidal neurons of prefrontal cortex. Cerbral Cortex 14: 281–99.Google ScholarPubMed
Baez, MV, Cercata, MC, Jerusalinsky, DA (2018) NMDA receptor subunits change after synaptic plasticity induction and learning and memory acquisition. Neural Plast, doi.org/10,1155/2018/5093048.CrossRefGoogle Scholar
Beaulier, JM, Gainetdinov, RR (2011) The physiology, signaling and pharmacology of dopamine receptors. Pharmacol Rev 63: 182217.CrossRefGoogle Scholar
Belmer, A, Quentin, E, Diaz, SL, et al. (2018) Positive regulation of raphe serotonin neurons by serotonin 2B receptors. Neuropsychopharmacology 42: 1623–32.Google Scholar
Calabresi, P, Picconi, B, Tozzi, A, Ghiglieri, V, Di Fillippo, M (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nature Neurosci 17: 102230.CrossRefGoogle ScholarPubMed
Cathala, A, Devroye, C, Drutel, G, et al. (2019) Serotonin 2B receptors in the rat dorsal raphe nucleus exert a GABA-mediated tonic inhibitor control on serotonin neurons. Exp Neurol 311: 5766.CrossRefGoogle ScholarPubMed
De Bartolomeis, A, Fiore, G, Iasevoli, F (2005) Dopamine glutamate interaction and antipsychotics mechanism of action: implication for new pharmacologic strategies in psychosis. Curr Pharmaceut Design 11: 3561–94.CrossRefGoogle ScholarPubMed
DeLong, MR, Wichmann, T (2007) Circuits and Ciruit disorders of the basal ganglia. Arch Neurol 64: 20–4.CrossRefGoogle Scholar
Fink, KB, Gothert, M (2007) 5HT receptor regulation of neurotransmitter release. Pharmacol Rev 59: 360417.CrossRefGoogle ScholarPubMed
Hansen, KB, Yi, F, Perszyk, RE, et al (2018) Structure, function and allosteric modulation of NMDA receptors. J Gen Physiol 150: 1081105.CrossRefGoogle ScholarPubMed
Homayoun, H, Moghaddam, B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27: 11496–500.CrossRefGoogle ScholarPubMed
Nicoll, RA (2017) A brief history of long-term potentiation. Neuron 93: 28199.CrossRefGoogle ScholarPubMed
Paoletti, P, Neyton, J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7: 3947.CrossRefGoogle ScholarPubMed
Scheefhals, N, MacGillavry, HD (2018) Functional organization of postsynaptic glutamate receptors. Mol Cell Neurosci 91: 8294.CrossRefGoogle ScholarPubMed
Sokoloff, P, Le Foil, B (2017) The dopamine D3 receptor: a quarter century later. Eur J Neurosci 45: 219.CrossRefGoogle ScholarPubMed
Stahl, SM (2017) Dazzled by the dominions of dopamine: clinical roles of D3, D2, and D1 receptors. CNS Spectrums 22: 305–11.CrossRefGoogle ScholarPubMed
Aghajanian, GK, Marek, GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Rev 31: 302–12.CrossRefGoogle ScholarPubMed
Bloomfield, MAP, Morgan, CJA, Egerton, A, et al. (2014) Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol Psychiatry 75: 470–8.CrossRefGoogle ScholarPubMed
Brugger, SP, Anelescu, I, Abi-Dargham, A, et al. (2020) Heterogeneity and striatal dopamine function in schizophrenia: meta analysis of variance. Biol Psychiatry 67: 215–24.Google Scholar
Bubenikova-Valesova, V, Horacek, J, Vrajova, M, et al. (2008) Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev 32: 1014–23.CrossRefGoogle ScholarPubMed
Demjaha, A, Murray, RM, McGuire, PK (2012) Dopamine synthesis capacity in patients with treatment resistant schizophrenia. Am J Psychiatry 169: 1203–10.CrossRefGoogle ScholarPubMed
Driesen, N, McCarthy, G, Bhagwagar, Z, et al (2013) The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity. Neuropsychopharmacol 38: 2613–22.CrossRefGoogle ScholarPubMed
Egerton, A, Chaddock, CA, Winton-Brown, TT, et al. (2013) Presynaptic striatal dopamine dysfunction in people at ultra high risk for psychosis: findings in a second cohort. Biol Psychiatry 74: 106–12.CrossRefGoogle ScholarPubMed
Gellings Lowe, N, Rapagnani, MP, Mattei, C, Stahl, SM (2012)The psychopharmacology of hallucinations: ironic insights into mechanisms of action. In The Neuroscience of Hallucinations, Jardri, R, Thomas, P, Cachia, A and Pins, D. (eds.), Berlin: Springer, 471–92.Google Scholar
Howes, OD, Bose, SK, Turkheimer, F, et al. (2011) Dopamine synthsis capacity before onset of psychosis: a prospective 18F-DOPA PET imaging study. Am J Psychiatry 169: 1311–17.Google Scholar
Howes, OD, Montgomery, AJ, Asselin, MC, et al. (2009) Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 66: 1320.CrossRefGoogle ScholarPubMed
Juahar, S, Nour, MM, Veronese, M, et al. (2017) A test of the transdiagnostic dopamine hypothesis of psychosis using positron emission tomographic imaging in bipolar affective disorder and schizophrenia. JAMA Psychiatry 74: 1206–13.Google Scholar
Lodge, DJ, Grace, AA (2011) Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharmacol Sci 32: 507–13.CrossRefGoogle ScholarPubMed
McCutcheon, RA, Abi-Dargham, A, Howes, OD (2019) Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci 42: 205–20.CrossRefGoogle ScholarPubMed
Mizrahi, R, Kenk, M, Suridjan, I, et al (2014) Stress induced dopamine response in subjects at clinical high risk for schizophrenia with and without concurrent cannabis use. Neuropsychopharmacology 39: 1479–89.CrossRefGoogle ScholarPubMed
Paz, RD, Tardito, S, Atzori, M (2008) Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. Eur Neuropsychopharmacol 18: 773–86.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Parkinson’s disease psychosis as a serotonin–dopamine imbalance syndrome. CNS Spectrums 21: 355–9.CrossRefGoogle ScholarPubMed
Stahl, SM (2018) Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectrums 23: 187–91.CrossRefGoogle ScholarPubMed
Weinstein, JJ, Chohan, MO, Slifstein, M, et al. (2017) Pathway-specific dopamine abnormalities in schizophrenia. Biol Psychiatry 81: 3142.CrossRefGoogle ScholarPubMed
Alphs, LD, Summerfelt, A, Lann, H, Muller, RJ (1989) The Negative Symptom Assessment: A new instrument to assess negative symptoms of schizophrenia. Psychopharmacol Bull 25: 159–63.Google ScholarPubMed
Arango, C, Rapado-Castro, M, Reig, S, et al. (2012) Progressive brain changes in children and adolescents with first-episode psychosis. Arch Gen Psychiatry 69: 1626.CrossRefGoogle ScholarPubMed
Cruz, DA, Weawver, CL, Lovallo, EM, Melchitzky, DS, Lewis, DA. (2009) Selective alterations in postsynaptic markers of chandelier cell inputs to cortical pyramidal neurons in subjects with schizophrenia. Neuropsychopharmacology 34: 2112–24.CrossRefGoogle ScholarPubMed
Dragt, S, Nieman, DH, Schultze-Lutter, F, et al. (2012) Cannabis use and age at onset of symptoms in subjects at clinical high risk for psychosis. Acta Psychiatr Scand 125: 4553.CrossRefGoogle ScholarPubMed
Eisenberg, DP, Berman, KF (2010) Executive function, neural circuitry, and genetic mechanisms in schizophrenia. Neuropsychopharmacology 35: 258–77.CrossRefGoogle ScholarPubMed
Foti, DJ, Kotov, R, Guey, LT, Bromet, EJ (2010) Cannabis use and the course of schizophrenia: 10-year follow-up after first hospitalization. Am J Psychiatry 167: 987–93.CrossRefGoogle ScholarPubMed
Fusar-Poli, P, Bonoldi, I, Yung, AR, et al. (2012) Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry 69: 220–9.CrossRefGoogle ScholarPubMed
Goff, DC, Zeng, B, Ardelani, BA, et al. (2018) Association of hippocampal atrophy with duration of untreated psychosis and molecular biomarkers during initial antipsychotic treatment of first episode psychosis. JAMA Psychiatry 75: 370–8.CrossRefGoogle ScholarPubMed
Henry, LP, Amminger, GP, Harris, MG, et al. (2010) The EPPIC follow up study of first episode psychosis: longer term clinical and functional outcome 7 years after index admission. J Clin Psychiatry 71: 716–28.CrossRefGoogle ScholarPubMed
Kane, JM, Robinson, DG, Schooler, NR, et al. (2016) Comprehensive versus usual community care for first-episode psychosis: 2-year outcomes from the NIMH RAISE early treatment program. Am J Psychiatry 173: 362–72.CrossRefGoogle ScholarPubMed
Kendler, KS, Ohlsson, H, Sundquist, J, et al. (2019) Prediction of onset of substance induced psychotic disorder and its progression to schizophrenia in a Swedish National Sample. Am J Psychiatry 176: 711–19.CrossRefGoogle Scholar
Large, M, Sharma, S, Compton, MT, Slade, T, Nielssen, O (2011) Cannabis use and earlier onset of psychosis. Arch Gen Psychiatry 68: 555–61.CrossRefGoogle ScholarPubMed
Lieberman, JA, Small, SA, Girgis, RR (2019) Early detection and preventive intervention in schizophrenia: from fantasy to reality. Am J Psychiatry 176: 794810.CrossRefGoogle ScholarPubMed
Mechelli, A, Riecher-Rossler, A, Meisenzahl, EM, et al. (2011) Neuroanatomical abnormalities that predate the onset of psychosis. Arch Gen Psychiatry 68: 489–95.CrossRefGoogle ScholarPubMed
Morrissette, DA, Stahl, SM (2014) Treating the violent patient with psychosis or impulsivity utilizing antipsychotic polypharmacy and high-dose monotherapy. CNS Spectrums 19: 439–48.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Deconstructing violence as a medical syndrome: mapping psychotic, impulsive, and predatory subtypes to malfunctioning brain circuits. CNS Spectrums 19: 357–65.CrossRefGoogle ScholarPubMed
Stahl, SM (2015) Is impulsive violence an addiction? The habit hypothesis. CNS Spectrums 20: 165–9.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA, Cummings, M (2014) California State Hospital Violence Assessment and Treatment (Cal-VAT) guidelines. CNS Spectrums 19: 44965.CrossRefGoogle ScholarPubMed
Wykes, T, Huddy, V, Cellard, C, McGurk, SR, Czobar, P (2011) A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. Am J Psychiatry 168: 472–85.CrossRefGoogle ScholarPubMed
Artukoglu, BB, Li, F, Szejko, N, et al. (2020) Pharmacologic treatment of tardive dyskinesia: a meta analysis and systematic review. J Clin Psychiatry 81: e111.CrossRefGoogle ScholarPubMed
Bhidayasin, R, Jitkretsandakul, O, Friedman, JH (2018) Updating the recommendations for treatment of tardive syndromes: a systematic review of new evidence and practical treatment algorithm. J Neurol Sci 389: 6775.CrossRefGoogle Scholar
Carbon, M, Kane, JM, Leucht, S, et al. (2018) Tardive dyskinesia risk with first- and second-generation antipsychotics in comparative randomized controlled trials: a meta analysis. World Psychiatry 173: 330–40.Google Scholar
Citrome, L (2017) Valbenazine for tardive dyskinesia: a systematic review of the efficacy and safety profile for this newly approved novel medication – what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Practice, doi.org 10.1111/ijcp.12964.CrossRefGoogle Scholar
Citrome, L (2017) Deutetrabenazine for tardive dyskinesia: a systematic review of the efficacy and safety profile for this newly approved novel medication – what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Practice, doi.org 10.1111/ijcp.13030.CrossRefGoogle Scholar
Jacobsen, FM (2015) Second generation antipsychotics and tardive syndromes in affective illness: a public health problem with neuropsychiatric consequences. Am J Public Health 105: e1016.CrossRefGoogle ScholarPubMed
Niemann, N, Jankovic, J (2018) Treatment of tardive dyskinesia: a general overview with focus on the vesicular monoamine transporter 2 inhibitors. Drugs 78: 525–41.Google ScholarPubMed
Stahl, SM (2017) Neuronal traffic signals in tardive dyskinesia: not enough “stop” in the motor striatum. CNS Spectrums 22: 427–34.CrossRefGoogle ScholarPubMed
Stahl, SM (2018) Mechanism of action of vesicular monoamine transporter 2 (VMAT2) inhibitors in tardive dyskinesia: reducing dopamine leads to less “go” and more “stop” from the motor striatum for robust therapeutic effects. CNS Spectrums 23: 16.CrossRefGoogle ScholarPubMed
Stahl, SM (2018) Comparing pharmacological mechanism of action for the vesicular monoamine transporter 2 (VMAT2) inhibitors valbenazine and deutetrabenazine in treating tardive dyskinesia: does one have advantages over the other? CNS Spectrums 23: 239–47.CrossRefGoogle ScholarPubMed
Woods, SW, Morgenstern, H, Saksa, JR, et al. (2010) Incidence of tardive dyskinesia with atypical versus conventional antipsychotic medications: a prospective cohort study. J Clin Psychiatry 71: 463–74.CrossRefGoogle ScholarPubMed
Brissos, S, Veguilla, MR, Taylor, D, et al. (2014) The role of long-acting injectable antipsychotics in schizophrenia: a critical appraisal. Ther Adv Psychopharmacol 4: 198219.CrossRefGoogle ScholarPubMed
Kishimoto, T, Nitto, M, Borenstein, M, et al. (2013) Long acting injectable versus oral antipsychotics in schizophrenia: a systematic review and meta analysis of mirror image studies. J Clin Psychiatry 74: 957–65.CrossRefGoogle ScholarPubMed
MacEwan, JP, Kamat, SA, Duffy, RA, et al. (2016) Hospital readmission rates among patients with schizophrenia treated with long acting injectables or oral antipsychotics. Psychiatr Serv 67: 1183–8.CrossRefGoogle ScholarPubMed
Meyer, JM (2013) Understanding depot antipsychotics: an illustrated guide to kinetics. CNS Spectrums 18: 5868.CrossRefGoogle ScholarPubMed
Meyer, JM (2017) Converting oral to long acting injectable antipsychotics: a guide for the perplexed. CNS Spectrums 22: 1727.CrossRefGoogle Scholar
Stahl, SM (2014) Long-acting injectable antipsychotics: shall the last be first? CNS Spectrums 19: 35.CrossRefGoogle ScholarPubMed
Tiihonen, J, Haukka, J, Taylor, M, et al. (2011) A nationwide cohort study of oral and depot antipsychotics after first hospitalization for schizophrenia. Am J Psychiatry 168: 603–9.CrossRefGoogle ScholarPubMed
Berry, MD, Gainetdinov, RR, Hoener, MC, et al. (2017) Pharmacology of human trace amine-associated receptors: therapeutic opportunities and challenges. Pharmacol Ther 180: 16180.CrossRefGoogle ScholarPubMed
Brannan, S (2020) KarXT (a new mechanism antipsychotic based on xanomeline) is superior to placebo in patients with schizophrenia: phase 2 clinical trial results. Abstract, American Society of Clinical Psychopharmacology Annual Meeting.Google Scholar
Citrome, L (2015) Brexpiprazole for schizophrenia and as adjunct for major depressive disorder: a systematic review of the efficacy and safety profile for the newly approved antipsychotic – what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Pract 69: 978–97.Google ScholarPubMed
Correll, CU, Davis, RE, Weingart, M, et al. (2020) Efficacy and safety of lumateperone for treatment of schizophrenia: a randomized clinical trial. JAMA Psychaitry 77: 349–58.Google ScholarPubMed
Dedic, N, Jones, PG, Hopkins, SC, et al. (2019) SEP363856: a novel psychotropic agent with unique non D2 receptor mechanism of actions. J Pharmacol Exp Ther 371: 114.CrossRefGoogle Scholar
Earley, W, Burgess, MV, Rekeda, L, et al. (2019) Cariprazine treatment of bipolar depression: a randomized double-blind placebo-controlled phase 3 study, Am J Psychiatry 176: 439–48.CrossRefGoogle ScholarPubMed
Gainetdinov, RR, Hoener, MC, Berry, MD (2018) Trace amines and their receptors. Pharmacol Rev 70: 549620.CrossRefGoogle ScholarPubMed
Koblan, KS, Kent, J, Hopkins, SC, Krystal, JH, et al. (2020) A non-D2-receptor-binding drug for the treatment of schizophrenia. New Engl J Med 382: 1407–506.CrossRefGoogle ScholarPubMed
Lieberman, JA, Davis, RE, Correll, CU, et al. (2016) ITI-007 for the treatment of schizophrenia: a 4-week randomized, double-blind, controlled trial. Biol Psychiatry 79: 952–6.CrossRefGoogle ScholarPubMed
Loebel, A, Cucchiaro, J, Silva, R, et al. (2014) Lurasidone monotherapy in the treatment of bipolar I depression: a randomized double-blind, placebo-controlled study. Am J Psychiatry 171: 160–8.Google ScholarPubMed
Loebel, A, Cucchiaro, J, Silva, R, et al. (2014) Lurasidone as adjunctive therapy with lithium or valproate for the treatment of bipolar I depression: a randomized, double blind, placebo-controlled study. Am J Psychiatry 171: 169–77.Google ScholarPubMed
Marder, SR, Davis, JM, Couinard, G (1997) The effects of risperidone on the five dimensions of schizophrenia derived by factor analysis: combined results of the north American trials. J Clin Psychiatry 58: 538–46.CrossRefGoogle ScholarPubMed
McIntyre, RS, Suppes, T, Early, W, Patel, M, Stahl, SM (2020) Cariprazine efficacy in bipolar I depression with and without concurrent manic symptoms: post hoc analysis of three randomized, placebo-controlled studies. CNS Spectrums 25: 502–10.CrossRefGoogle Scholar
Meyer, JM, Cummings, MA, Proctor, G, Stahl, SM (2016) Psychopharmacology of persistent violence and aggression. Psychiatr Clin N Am 39: 541–56.CrossRefGoogle ScholarPubMed
Meyer, JM, Stahl, SM (2020) Stahl’s Handbooks: the Clozapine Handbook. Cambridge: Cambridge University Press.Google Scholar
Nemeth, G, Laszlovszky, I, Czoboar, P, et al. (2017) Cariprazine versus risperidone monotherapy for treatment of predominant negative symptoms in patients with schizophrenia: a randomized double-blind controlled trial. Lancet 389: 1103–13.CrossRefGoogle Scholar
Pei, Y, Asif-Malik, A, Canales, JJ (2016) Trace amines and the trace amine-associated receptor 1: pharmacology, neurochemistry and clinical implications. Front Neurosci 10: 148.CrossRefGoogle ScholarPubMed
Perkins, DO, Gu, H, Boteva, K, Lieberman, JA (2005) Relationship between duration of untreated psychosis and outcome in first episode schizophrenia: a critical review and meta-analysis. Am J Psychiatry 162: 1785–804.CrossRefGoogle ScholarPubMed
Roth, BL. Ki determinations, receptor binding profiles, agonist and/or antagonist functional data, HERG data, MDR1 data, etc. as appropriate was generously provided by the National Institute of Mental Health’s Psychoactive Drug Screening Program, Contract # HHSN-271–2008-00025-C (NIMH PDSP). The NIMH PDSP is directed by Bryan L. Roth MD, PhD at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscol at NIMH, Bethesda MD, USA. For experimental details please refer to the PDSP website http://pdsp.med.unc.edu/Google Scholar
Schwartz, MD, Canales, JJ, Zucci, R, et al. (2018) Trace amine associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opin Ther Targets 22: 513–26.CrossRefGoogle ScholarPubMed
Shekar, A, Potter, WZ, Lightfoot, J, et al. (2008) Seletive muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 165: 1033–9.Google Scholar
Snyder, GL, Vanover, KE, Zhu, H, et al. (2014) Functional profile of a novel modulator of serotonin, dopamine and glutamate neurotransmission. Psychopharmacology 232 : 605–21.Google ScholarPubMed
Stahl, SM (2013) Classifying psychotropic drugs by mode of action and not by target disorder. CNS Spectrums 18: 11317.CrossRefGoogle Scholar
Stahl, SM (2013) Role of α1 adrenergic antagonism in the mechanism of action of iloperidone: reducing extrapyramidal symptoms. CNS Spectrums 18: 285–8.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Clozapine: is now the time for more clinicians to adopt this orphan? CNS Spectrums 19: 279–81.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Mechanism of action of brexpiprazole: comparison with aripiprazole. CNS Spectrums 21: 16.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Mechanism of action of cariprazine. CNS Spectrums 21: 1237.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Mechanism of action of pimavanserin in Parkinson’s disease psychosis: targeting serotonin 5HT2A and 5HT2C receptors. CNS Spectums 21: 271–5.Google ScholarPubMed
Stahl, SM (2017) Drugs for psychosis and mood: unique actions at D3, D2, and D1 dopamine receptor subtypes. CNS Spectrums 22: 375–84.CrossRefGoogle ScholarPubMed
Stahl, SM, Cucchiaro, J, Sinonelli, D, et al. (2013) Effectiveness of lurasidone for patients with schizophrenia following 6 weeks of acute treatment with lurasidone, olanazapine, or placebo: a 6-month, open-label study. J Clin Psychiatry 74: 507–15.CrossRefGoogle Scholar
Stahl, SM, Laredo, SA, Morrissette, DA (2020) Cariprazine as a treatment across the bipolar I spectrum from depression to mania: mechanism of action and review of clinical data. Ther Adv Psychopharmacol 10: 111.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA, Citrome, L, et al. (2013) “Meta-guidelines” for the management of patients with schizophrenia. CNS Spectrums 18: 15062.CrossRefGoogle ScholarPubMed
Suppes, T, Silva, R, Cuccharino, J, et al. (2016) Lurasidone for the treatment of major depressive disorder with mixed features: a randomized, double blind placebo controlled study. Am J Psychiatry 173: 400–7.CrossRefGoogle ScholarPubMed
Tarazi, F, Stahl, SM (2012) Iloperidone, asenapine and lurasidone: a primer on their current status. Expert Opin Pharmacother 13: 1911–22.CrossRefGoogle ScholarPubMed
Thase, ME, Youakim, JM, Skuban, A, et al. (2015) Efficacy and safety of adjunctive brexpiprazole 2 mg in major depressive disorder. J Clin Psychiatry 76: 1224–31.CrossRefGoogle ScholarPubMed
Zhang, L, Hendrick, JP (2018) The presynaptic D2 partial agonist lumateperone acts as a postsynaptic D2 antagonist. Matters: doi: 10.19185/matters.201712000006.CrossRefGoogle Scholar
Alvarez, LD, Pecci, A, Estrin, DA (2019) In searach of GABA A receptor’s neurosteroid binding sites. J Med Chem 62: 5250–60.CrossRefGoogle Scholar
Belelli, D, Hogenkamp, D, Gee, KW, et al. (2020) Realising the therapeutic potential of neuroactive steroid modulators of the GABA A receptor. Neurobiol Stress 12: 100207.CrossRefGoogle ScholarPubMed
Botella, GM, Salitur, FG, Harrison, BL, et al. (2017) Neuroactive steroids. 2. 3α-hydroxy-3β-methyl-21-(4-cyano-1H-pyrazol-1ʹ-yl)-19-nor-5β-pregnan-20-one (SAGE 217): a clinical next generation neuroactive steroid positive allosteric modulator of the GABA A receptor. J Med Chem 60: 7810–19.Google Scholar
Chen, ZW, Bracomonies, JR, Budelier, MM, et al. (2019) Multiple functional neurosteroid binding sites on GABA A receptors. PLOS Biol 17: e3000157; doi.org/10.137/journal.pbio.3000157.CrossRefGoogle Scholar
Gordon, JL, Girdler, SS, Meltzer-Brody, SE, et al. (2015) Ovarian hormone fluctuation, neurosteroids and HPA axis dysregulation in perimenopausal depression: a novel heuristic model. Am J Psychiatry 172: 227–36.CrossRefGoogle ScholarPubMed
Gunduz-Bruce, H, Silber, C, Kaul, I, et al. (2019) Trial of SAGE 217 in patients with major depressive disorder. New Engl J Med 381: 903–11.CrossRefGoogle ScholarPubMed
Luscher, B, Mohler, H (2019) Brexanolone, a neurosteroid antidepressant, vindicates the GABAergic deficit hypothesis of depression and may foster reliance. F1000Research 8: 751.CrossRefGoogle Scholar
Marek, GJ, Aghajanian, GK (1996) Alpha 1B-adrenoceptor-mediated excitation of piriform cortical interneurons. Eur J Pharmacol 305: 95100.CrossRefGoogle ScholarPubMed
Marek, GJ, Aghajanian, GK (1999) 5HT2A receptor or alpha 1-adrenoceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex. Eur J Pharmacol 367: 197206.CrossRefGoogle ScholarPubMed
Meltzer-Brody, S, Kanes, SJ (2020) Allopregnanolone in postpartum depression: role in pathophysiology and treatment. Neurobiol Stress 12: 100212.CrossRefGoogle Scholar
Pieribone, VA, Nicholas, AP, Dagerlind, A, et al. (1994) Distribution of alpha 1 adrenoceptors in rat brain revealed by in situ hybridization experiments utilizing subtype specific probes. J Neurosci 14: 4252–68.CrossRefGoogle ScholarPubMed
Price, DT, Lefkowitz, RJ, Caron, MG, et al. (1994) Localization of mRNA for three distinct alpha1 adrenergic receptor sybtypes in human tissues: implications for human alpha adrenergic physiology. Mol Pharmacol 45: 171–5.Google Scholar
Ramos, BP, Arnsten, AFT (2007) Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther 113: 523–36.CrossRefGoogle ScholarPubMed
Santana, N, Mengod, G, Artigas, F (2013) Expression of alpha1 adrenergic receptors in rat prefrontal cortex: cellular colocalization with 5HT2A receptors. Int J Neuropsychopharmacol 16: 1139–51.CrossRefGoogle Scholar
Zorumski, CF, Paul, SM, Covey, DF, et al. (2019) Neurosteroids as novel antidepressants and anxiolytics: GABA A receptors and beyond. Neurobiol Stress 11: 100196.CrossRefGoogle ScholarPubMed
Bergink, V, Bouvy, PF, Vervoort, JSP, et al. (2012) Prevention of postpartum psychosis and mania in women at high risk. Am J Psychiatry 169: 609–16.CrossRefGoogle ScholarPubMed
Bogdan, R, Williamson, DE, Hariri, AR. (2012) Mineralocorticoid receptor Iso/Val (rs5522) genotype moderates the association between previous childhood emotional neglect and amygdala reactivity. Am J Psychiatry 169: 515–22.CrossRefGoogle ScholarPubMed
Brites, D, Fernandes, A (2015) Neuroinflammation and depression: microglia activion, extracellular microvesicles and micro RNA dysregulation. Front Cell Neurosci 9: 476.CrossRefGoogle Scholar
Fiedorowicz, JG, Endicott, J, Leon, AC, et al. (2011) Subthreshold hypomanic symptoms in progression from unipolar major depression to bipolar disorder. Am J Psychiatry 168: 40–8.CrossRefGoogle ScholarPubMed
Goldberg, JF, Perlis, RH, Bowden, CL, et al. (2009) Manic symptoms during depressive episodes in 1,380 patients with bipolar disorder: findings from the STEP-BD. Am J Psychiatry 166: 173–81.CrossRefGoogle ScholarPubMed
McIntyre, RS, Anderson, N, Baune, BT, et al. (2019) Expert consensus on screening assessment of cognition in psychiatry. CNS Spectrums 24: 15462.CrossRefGoogle ScholarPubMed
Price, JL, Drevets, WC (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35: 192216.CrossRefGoogle ScholarPubMed
Rao, U, Chen, LA, Bidesi, AS, et al. (2010) Hippocampal changes associated with early-life adversity and vulnerability to depression. Biol Psychiatry 67: 357–64.CrossRefGoogle ScholarPubMed
Roiser, JP, Elliott, R, Sahakian, BJ (2012) Cognitive mechanisms of treatment in depression. Neuropsychopharmacology 37: 117–36.CrossRefGoogle ScholarPubMed
Roiser, JP, Sahakian, BJ (2013) Hot and cold cognition in depression. CNS Spectrums 18: 139–49.CrossRefGoogle ScholarPubMed
Roy, A, Gorodetsky, E, Yuan, Q, Goldman, D, Enoch, MA (2010) Interaction of FKBP5, a stress-related gene, with childhood trauma increases the risk for attempting suicide. Neuropsychopharmacology 35: 1674–83.CrossRefGoogle ScholarPubMed
Semkovska, M, Quinlivan, L, Ogrady, T, et al. (2019) Cognitive function following a major depressive episode: a systematic review and meta-analysis. Lancet Psychiatry 6: 851–61.CrossRefGoogle Scholar
Stahl, SM (2017) Psychiatric pharmacogenomics: how to integrate into clinical practice. CNS Spectrums 22: 14.CrossRefGoogle ScholarPubMed
Stahl, SM (2017) Mixed-up about how to diagnose and treat mixed features in major depressive episodes. CNS Spectrums 22: 11115.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA (2017) Does a “whiff” of mania in a major depressive episode shift treatment from a classical antidepressant to an atypical/second-generation antipsychotic? Bipolar Disord 19: 595–6.CrossRefGoogle Scholar
Stahl, SM, Morrissette, DA (2019) Mixed mood states: baffled, bewildered, befuddled and bemused.Bipolar Disord 21: 560–1.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA, Faedda, G, et al. (2017) Guidelines for the recognition and management of mixed depression. CNS Spectrums 22: 203–19.CrossRefGoogle ScholarPubMed
Yatham, LN, Liddle, PF, Sossi, V, et al. (2012) Positron emission tomography study of the effects of tryptophan depletion on brain serotonin2 receptors in subjects recently remitted from major depression. Arch Gen Psychiatry 69: 601–9.CrossRefGoogle ScholarPubMed
Aan het Rot, M, Collins, KA, Murrough, JW, et al. (2010) Safety and efficacy of repeated dose intravenous ketamine for treatment resistant depression. Biol Psychiatry 67: 139–45.CrossRefGoogle ScholarPubMed
Abdallah, CG, DeFeyter, HM, Averill, LA, et al. (2018) The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology 43: 2154–60.CrossRefGoogle ScholarPubMed
Anderson, A, Iosifescu, DV, Macobsen, M, et al. (2019) Efficacy and safety of AXS-05, an oral NMDA receptor antagonist with multimodal activity, in major depressive disorder: results of a phase 2, double blind active controlled trial. Abstract, American Society of Clincal Psychopharmacology Annual Meeting.Google Scholar
Deyama, S, Bang, E, Wohleb, ES, et al. (2019) Role of neuronal VEGF signaling in the prefrontal cortex in the rapid antidepressant effects of ketamine. Am J Psychiatry 176: 388-400.CrossRefGoogle ScholarPubMed
DiazGranados, N, Ibrahim, LA, Brutsche, NE, et al. (2010) Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant depressive disorder. J Clin Psychiatry 71: 1605–11.CrossRefGoogle Scholar
Duman, RS, Voleti, B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 35: 4756.CrossRefGoogle ScholarPubMed
Dwyer, JM, Duman, RS (2013) Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid acting antidepressants. Biol Psychiatry 73: 1189–98.CrossRefGoogle ScholarPubMed
Fu, DJ, Ionescu, DF, Li, X, et al. (2020) Esketamine nasal spray for rapid reduction of major depressive disorder symptoms in patients who have active suicidal ideation with intent: double blind randomized study (ASPIRE K). J Clin Psychiatry 61: doi.org/10.4088/JCP.19m13191.Google Scholar
Hanania, T, Manfredi, P, Inturrisi, C, et al. (2020) The NMDA antagonist dextromethadone acutely improves depressive like behavior in the forced swim test performance of rats. AA Rev Public Health 34: 119–38.Google Scholar
Hasler, G (2020) Toward specific ways to combine ketamine and psychotherapy in treating depression. CNS Spectrums 25: 445–7.CrossRefGoogle ScholarPubMed
Ibrahim, L, Diaz Granados, N, Franco-Chaves, J (2012) Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs. add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology 37: 1526–33.CrossRefGoogle ScholarPubMed
Li, N, Lee, Lin RJ, et al. (2010) mTor-dependent synapse formation underlies the rapid antidepressant effects of NMDA antgonists. Science 329: 959–64.CrossRefGoogle Scholar
Monteggia, LM, Gideons, E, Kavalali, EG (2013) The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine. Biol Psychiatry 73: 1199–203.CrossRefGoogle ScholarPubMed
Mosa-Sava, RN, Murdock, MH, Parekh, PK, et al. (2019) Sustained rescue of prefrontal circuit dysfunction by antidepressant induced spine formation. Science 364: doi: 10.1126/Science.aat80732019.Google Scholar
Murrough, JW, Perez, AM, Pillemer, S, et al. (2013) Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment resistant major depression. Biol Psychiatry 74: 250–6.CrossRefGoogle ScholarPubMed
O’Gorman, C, Iosifescu, DV, Jones, A, et al. (2018) Clinical development of AXS-05 for treatment resistant depression and agitation associated with Alzheimer’s disease. Abstract, American Society of Clinical Psychopharmacology Annual Meeting.Google Scholar
O’Gorman, C, Jones, A, Iosifescu, DV, et al. (2020) Efficacy and safety of AXS-05, an oral NMDA receptor antagonist with multimodal activity in major depressive disorder: results from the GEMINI phase 3, double blind placebo-controlled trial. Abstract, American Society of Clinical Psychopharmacology Annual Meeting.CrossRefGoogle Scholar
Phillips, JL, Norris, S, Talbot, J, et al. (2019) Single, repeated and maintenance ketamine infusions for treatment resistant depression: a randomized controlled trial. Am J Psychiatry 176: 401–9.CrossRefGoogle ScholarPubMed
Price, RB, Nock, MK, Charney, DS, Mathew, SJ (2009) Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry 66: 522–6.CrossRefGoogle ScholarPubMed
Salvadore, G, Cornwell, BR, Sambataro, F, et al. (2010) Anterior cingulate desynchronization and functional connectivity with the amygdala during a working memory task predict rapid antidepressant response to ketamine. Neuropsychopharmacology 35: 1415–22.CrossRefGoogle Scholar
Stahl, SM (2013) Mechanism of action of ketamine. CNS Spectrums 18: 171–4.Google ScholarPubMed
Stahl, SM (2013) Mechanism of action of dextromethorphan/quinidine: comparison with ketamine. CNS Spectrums 18: 225–7.Google ScholarPubMed
Stahl, SM (2016) Dextromethorphan–quinidine-responsive pseudobulbar affect (PBA): psychopharmacological model for wide-ranging disorders of emotional expression? CNS Spectrums 21: 419–23.CrossRefGoogle ScholarPubMed
Stahl, SM (2019) Mechanism of action of dextromethorphan/bupropion: a novel NMDA antagonist with multimodal activity. CNS Spectrums 24: 461–6.CrossRefGoogle ScholarPubMed
Wajs, E, Aluisio, L, Holder, R, et al. (2020) Esketamine nasal spray plus oral antidepressant in patients with treatment resistant depression: assessment of long term safety in a phase 3 open label study (SUSTAIN2). J Clin Psychiatry 81: 19m12891.CrossRefGoogle Scholar
Williams, NR, Heifets, B, Blasey, C, et al. (2018) Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am J Psychiatry 175: 1205–15CrossRefGoogle ScholarPubMed
Zarate, Jr. CA, Brutsche, NE, Ibrahim, L (2012) Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 71: 939–46.CrossRefGoogle ScholarPubMed
Alvarez, E, Perez, V, Dragheim, M, Loft, H, Artigas, F (2012) A double-blind, randomized, placebo-controlled, active reference study of Lu AA21004 in patients with major depressive disorder. Int J Neuropsychopharmacol 15: 589600.CrossRefGoogle ScholarPubMed
BALANCE investigators and collaborators, et al. (2010) Lithium plus valproate combination therapy versus monotherapy for relapse prevention in bipolar I disorder (BALANCE): a randomized open-label trial. Lancet 375: 385–95.Google Scholar
Baldessarini, RJ, Tondo, L, Vazquez, GH (2019) Pharmacological treatment of adult bipolar disorder. Mol Psychiatry 24: 198217.CrossRefGoogle ScholarPubMed
Bang-Andersen, B, Ruhland, T, Jorgensen, M, et al. (2011) Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl] piperazine (LuAA21004): a novel multimodal compound for the treatment of major depressive disorder. J Med Chem 54: 3206–21.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Bolstridge, M, Day, CMG, et al. (2018) Psilocybin with psychological support for treatment-resistant depression: six month follow up. Psychopharmacology 235: 399408.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Bolstridge, M, Rucker, J, et al. (2016) Psilocybin with psychological support for treatment resistant depression: an open label feasibility study. Lancet Psychiatry 3: 619–27.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Goodwin, GM (2017) The therapeutic potential of psychedelic drugs: past, present and future, Neuropsychopharmacology 42: 2105–13.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Leech, R, Williams, TM, et al. (2012) Implications for psychedelic assisted psychotherapy: a functional magnetic resonance imaging study with psilocybin. Br J Psychiatry: doi:10.1192/bjp.bp.111.103309.CrossRefGoogle Scholar
Chiu, CT, Chuan, DM (2010) Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 128: 281304.CrossRefGoogle ScholarPubMed
Cipriani, A, Pretty, H, Hawton, K, Geddes, JR (2005) Lithium in the prevention of suicidal behavior and all-cause mortality in patients with mood disorders: a systematic review of randomized trials. Am J Psychiatry 162: 1805–19.CrossRefGoogle ScholarPubMed
Frye, MA, Grunze, H, Suppes, T, et al. (2007) A placebo-controlled evaluation of adjunctive modafinil in the treatment of bipolar depression. Am J Psychiatry 164: 1242–9.CrossRefGoogle ScholarPubMed
Grady, M, Stahl, SM (2012) Practical guide for prescribing MAOI: Debunking myths and removing barriers. CNS Spectrums 17: 210.CrossRefGoogle Scholar
Mork, A, Pehrson, A, Brennum, LT, et al. (2012) Pharmacological effects of Lu AA21004: a novel multimodal compound for the treatment of major depressive disorder. J Pharmacol Exp Ther 340: 66675.CrossRefGoogle ScholarPubMed
Pasquali, L, Busceti, CL, Fulceri, F, Paparelli, A, Fornai, F (2010) Intracellular pathways underlying the effects of lithium. Behav Pharmacol 21: 47392.CrossRefGoogle ScholarPubMed
Perlis, RH, Ostacher, MJ, Goldberg, JF, et al. (2010) Transition to mania during treatment of bipolar depression. Neuropsychopharmacology 35: 2545–52.CrossRefGoogle ScholarPubMed
Pompili, M, Vazquez, GH, Forte, A, Morrissette, DA, Stahl, SM (2020) Pharmacological treatment of mixed states. Psychiatr Clin N Am 43: 157–86. doi:10.1016/j.psc.2019.10.015CrossRefGoogle ScholarPubMed
Schwartz, TL, Siddiqui, US, Stahl, SM (2011) Vilazodone: a brief pharmacologic and clinical review of the novel SPARI (serotonin partial agonist and reuptake inhibitor). Ther Adv Psychopharmacol 1: 81–7.CrossRefGoogle ScholarPubMed
Settimo, L, Taylor, D (2018) Evaluating the dose-dependent mechanism of action of trazodone by estimation of occupancies for different brain neurotransmitter targets. J Psychopharmacol 32: 960104.CrossRefGoogle ScholarPubMed
Stahl, SM (2009) Mechanism of action of trazodone: a multifunctional drug. CNS Spectrums 14: 536–46.CrossRefGoogle ScholarPubMed
Stahl, SM (2012) Psychotherapy as an epigenetic “drug”: psychiatric therapeutics target symptoms linked to malfunctioning brain circuits with psychotherapy as well as with drugs. J Clin Pharm Ther 37: 249–53.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Mechanism of action of the SPARI vilazodone: (serotonin partial agonist reuptake inhibitor). CNS Spectrums 19: 105–9.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Mechanism of action of agomelatine: a novel antidepressant exploiting synergy between monoaminergic and melatonergic properties. CNS Spectrums 19: 207–12.CrossRefGoogle ScholarPubMed
Stahl, SM (2015) Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): enhancing serotonin release by combining serotonin (5HT) transporter inhibition with actions at 5HT receptors (5HT1A, 5HT1B, 5HT1D, 5HT7 receptors). CNS Spectrums 20: 937.CrossRefGoogle ScholarPubMed
Stahl, SM (2015) Modes and nodes explain the mechanism of action of vortioxetine, multimodal agent (MMA): actions at serotonin receptors may enhance downstream release of four pro-cognitive neurotransmitters. CNS Spectrums 20: 515–19.Google ScholarPubMed
Stahl, SM, Fava, M, Trivedi, M (2010) Agomelatine in the treatment of major depressive disorder: an 8 week, multicenter, randomized, placebo-controlled trial. J Clin Psychiatry 71: 616–26.CrossRefGoogle ScholarPubMed
Undurraga, J, Baldessarini, RJ, Valenti, M, et al. (2012) Bipolar depression: clinical correlates of receiving antidepressants. J Affect Disord 139: 8993.CrossRefGoogle ScholarPubMed
Zajecka, J, Schatzberg, A, Stahl, SM, et al. (2010) Efficacy and safety of agomelatine in the treatment of major depressive disorder: a multicenter, randomized, double-blind, placebo-controlled trial. J Clin Psychopharmacol 30: 135–44.CrossRefGoogle ScholarPubMed
Alvarez, LD, Pecci, A, Estrin, DA (2019) In searach of GABA A receptor’s neurosteroid binding sites. J Med Chem 62: 5250–60.CrossRefGoogle Scholar
Belelli, D, Hogenkamp, D, Gee, KW, et al. (2020) Realising the therapeutic potential of neuroactive steroid modulators of the GABA A receptor. Neurobiol Stress 12: 100207.CrossRefGoogle ScholarPubMed
Botella, GM, Salitur, FG, Harrison, BL, et al. (2017) Neuroactive steroids. 2. 3α-hydroxy-3β-methyl-21-(4-cyano-1H-pyrazol-1ʹ-yl)-19-nor-5β-pregnan-20-one (SAGE 217): a clinical next generation neuroactive steroid positive allosteric modulator of the GABA A receptor. J Med Chem 60: 7810–19.Google Scholar
Chen, ZW, Bracomonies, JR, Budelier, MM, et al. (2019) Multiple functional neurosteroid binding sites on GABA A receptors. PLOS Biol 17: e3000157; doi.org/10.137/journal.pbio.3000157.CrossRefGoogle Scholar
Gordon, JL, Girdler, SS, Meltzer-Brody, SE, et al. (2015) Ovarian hormone fluctuation, neurosteroids and HPA axis dysregulation in perimenopausal depression: a novel heuristic model. Am J Psychiatry 172: 227–36.CrossRefGoogle ScholarPubMed
Gunduz-Bruce, H, Silber, C, Kaul, I, et al. (2019) Trial of SAGE 217 in patients with major depressive disorder. New Engl J Med 381: 903–11.CrossRefGoogle ScholarPubMed
Luscher, B, Mohler, H (2019) Brexanolone, a neurosteroid antidepressant, vindicates the GABAergic deficit hypothesis of depression and may foster reliance. F1000Research 8: 751.CrossRefGoogle Scholar
Marek, GJ, Aghajanian, GK (1996) Alpha 1B-adrenoceptor-mediated excitation of piriform cortical interneurons. Eur J Pharmacol 305: 95100.CrossRefGoogle ScholarPubMed
Marek, GJ, Aghajanian, GK (1999) 5HT2A receptor or alpha 1-adrenoceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex. Eur J Pharmacol 367: 197206.CrossRefGoogle ScholarPubMed
Meltzer-Brody, S, Kanes, SJ (2020) Allopregnanolone in postpartum depression: role in pathophysiology and treatment. Neurobiol Stress 12: 100212.CrossRefGoogle Scholar
Pieribone, VA, Nicholas, AP, Dagerlind, A, et al. (1994) Distribution of alpha 1 adrenoceptors in rat brain revealed by in situ hybridization experiments utilizing subtype specific probes. J Neurosci 14: 4252–68.CrossRefGoogle ScholarPubMed
Price, DT, Lefkowitz, RJ, Caron, MG, et al. (1994) Localization of mRNA for three distinct alpha1 adrenergic receptor sybtypes in human tissues: implications for human alpha adrenergic physiology. Mol Pharmacol 45: 171–5.Google Scholar
Ramos, BP, Arnsten, AFT (2007) Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther 113: 523–36.CrossRefGoogle ScholarPubMed
Santana, N, Mengod, G, Artigas, F (2013) Expression of alpha1 adrenergic receptors in rat prefrontal cortex: cellular colocalization with 5HT2A receptors. Int J Neuropsychopharmacol 16: 1139–51.CrossRefGoogle Scholar
Zorumski, CF, Paul, SM, Covey, DF, et al. (2019) Neurosteroids as novel antidepressants and anxiolytics: GABA A receptors and beyond. Neurobiol Stress 11: 100196.CrossRefGoogle ScholarPubMed
Bergink, V, Bouvy, PF, Vervoort, JSP, et al. (2012) Prevention of postpartum psychosis and mania in women at high risk. Am J Psychiatry 169: 609–16.CrossRefGoogle ScholarPubMed
Bogdan, R, Williamson, DE, Hariri, AR. (2012) Mineralocorticoid receptor Iso/Val (rs5522) genotype moderates the association between previous childhood emotional neglect and amygdala reactivity. Am J Psychiatry 169: 515–22.CrossRefGoogle ScholarPubMed
Brites, D, Fernandes, A (2015) Neuroinflammation and depression: microglia activion, extracellular microvesicles and micro RNA dysregulation. Front Cell Neurosci 9: 476.CrossRefGoogle Scholar
Fiedorowicz, JG, Endicott, J, Leon, AC, et al. (2011) Subthreshold hypomanic symptoms in progression from unipolar major depression to bipolar disorder. Am J Psychiatry 168: 40–8.CrossRefGoogle ScholarPubMed
Goldberg, JF, Perlis, RH, Bowden, CL, et al. (2009) Manic symptoms during depressive episodes in 1,380 patients with bipolar disorder: findings from the STEP-BD. Am J Psychiatry 166: 173–81.CrossRefGoogle ScholarPubMed
McIntyre, RS, Anderson, N, Baune, BT, et al. (2019) Expert consensus on screening assessment of cognition in psychiatry. CNS Spectrums 24: 15462.CrossRefGoogle ScholarPubMed
Price, JL, Drevets, WC (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35: 192216.CrossRefGoogle ScholarPubMed
Rao, U, Chen, LA, Bidesi, AS, et al. (2010) Hippocampal changes associated with early-life adversity and vulnerability to depression. Biol Psychiatry 67: 357–64.CrossRefGoogle ScholarPubMed
Roiser, JP, Elliott, R, Sahakian, BJ (2012) Cognitive mechanisms of treatment in depression. Neuropsychopharmacology 37: 117–36.CrossRefGoogle ScholarPubMed
Roiser, JP, Sahakian, BJ (2013) Hot and cold cognition in depression. CNS Spectrums 18: 139–49.CrossRefGoogle ScholarPubMed
Roy, A, Gorodetsky, E, Yuan, Q, Goldman, D, Enoch, MA (2010) Interaction of FKBP5, a stress-related gene, with childhood trauma increases the risk for attempting suicide. Neuropsychopharmacology 35: 1674–83.CrossRefGoogle ScholarPubMed
Semkovska, M, Quinlivan, L, Ogrady, T, et al. (2019) Cognitive function following a major depressive episode: a systematic review and meta-analysis. Lancet Psychiatry 6: 851–61.CrossRefGoogle Scholar
Stahl, SM (2017) Psychiatric pharmacogenomics: how to integrate into clinical practice. CNS Spectrums 22: 14.CrossRefGoogle ScholarPubMed
Stahl, SM (2017) Mixed-up about how to diagnose and treat mixed features in major depressive episodes. CNS Spectrums 22: 11115.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA (2017) Does a “whiff” of mania in a major depressive episode shift treatment from a classical antidepressant to an atypical/second-generation antipsychotic? Bipolar Disord 19: 595–6.CrossRefGoogle Scholar
Stahl, SM, Morrissette, DA (2019) Mixed mood states: baffled, bewildered, befuddled and bemused.Bipolar Disord 21: 560–1.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA, Faedda, G, et al. (2017) Guidelines for the recognition and management of mixed depression. CNS Spectrums 22: 203–19.CrossRefGoogle ScholarPubMed
Yatham, LN, Liddle, PF, Sossi, V, et al. (2012) Positron emission tomography study of the effects of tryptophan depletion on brain serotonin2 receptors in subjects recently remitted from major depression. Arch Gen Psychiatry 69: 601–9.CrossRefGoogle ScholarPubMed
Aan het Rot, M, Collins, KA, Murrough, JW, et al. (2010) Safety and efficacy of repeated dose intravenous ketamine for treatment resistant depression. Biol Psychiatry 67: 139–45.CrossRefGoogle ScholarPubMed
Abdallah, CG, DeFeyter, HM, Averill, LA, et al. (2018) The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology 43: 2154–60.CrossRefGoogle ScholarPubMed
Anderson, A, Iosifescu, DV, Macobsen, M, et al. (2019) Efficacy and safety of AXS-05, an oral NMDA receptor antagonist with multimodal activity, in major depressive disorder: results of a phase 2, double blind active controlled trial. Abstract, American Society of Clincal Psychopharmacology Annual Meeting.Google Scholar
Deyama, S, Bang, E, Wohleb, ES, et al. (2019) Role of neuronal VEGF signaling in the prefrontal cortex in the rapid antidepressant effects of ketamine. Am J Psychiatry 176: 388-400.CrossRefGoogle ScholarPubMed
DiazGranados, N, Ibrahim, LA, Brutsche, NE, et al. (2010) Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant depressive disorder. J Clin Psychiatry 71: 1605–11.CrossRefGoogle Scholar
Duman, RS, Voleti, B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 35: 4756.CrossRefGoogle ScholarPubMed
Dwyer, JM, Duman, RS (2013) Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid acting antidepressants. Biol Psychiatry 73: 1189–98.CrossRefGoogle ScholarPubMed
Fu, DJ, Ionescu, DF, Li, X, et al. (2020) Esketamine nasal spray for rapid reduction of major depressive disorder symptoms in patients who have active suicidal ideation with intent: double blind randomized study (ASPIRE K). J Clin Psychiatry 61: doi.org/10.4088/JCP.19m13191.Google Scholar
Hanania, T, Manfredi, P, Inturrisi, C, et al. (2020) The NMDA antagonist dextromethadone acutely improves depressive like behavior in the forced swim test performance of rats. AA Rev Public Health 34: 119–38.Google Scholar
Hasler, G (2020) Toward specific ways to combine ketamine and psychotherapy in treating depression. CNS Spectrums 25: 445–7.CrossRefGoogle ScholarPubMed
Ibrahim, L, Diaz Granados, N, Franco-Chaves, J (2012) Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs. add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology 37: 1526–33.CrossRefGoogle ScholarPubMed
Li, N, Lee, Lin RJ, et al. (2010) mTor-dependent synapse formation underlies the rapid antidepressant effects of NMDA antgonists. Science 329: 959–64.CrossRefGoogle Scholar
Monteggia, LM, Gideons, E, Kavalali, EG (2013) The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine. Biol Psychiatry 73: 1199–203.CrossRefGoogle ScholarPubMed
Mosa-Sava, RN, Murdock, MH, Parekh, PK, et al. (2019) Sustained rescue of prefrontal circuit dysfunction by antidepressant induced spine formation. Science 364: doi: 10.1126/Science.aat80732019.Google Scholar
Murrough, JW, Perez, AM, Pillemer, S, et al. (2013) Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment resistant major depression. Biol Psychiatry 74: 250–6.CrossRefGoogle ScholarPubMed
O’Gorman, C, Iosifescu, DV, Jones, A, et al. (2018) Clinical development of AXS-05 for treatment resistant depression and agitation associated with Alzheimer’s disease. Abstract, American Society of Clinical Psychopharmacology Annual Meeting.Google Scholar
O’Gorman, C, Jones, A, Iosifescu, DV, et al. (2020) Efficacy and safety of AXS-05, an oral NMDA receptor antagonist with multimodal activity in major depressive disorder: results from the GEMINI phase 3, double blind placebo-controlled trial. Abstract, American Society of Clinical Psychopharmacology Annual Meeting.CrossRefGoogle Scholar
Phillips, JL, Norris, S, Talbot, J, et al. (2019) Single, repeated and maintenance ketamine infusions for treatment resistant depression: a randomized controlled trial. Am J Psychiatry 176: 401–9.CrossRefGoogle ScholarPubMed
Price, RB, Nock, MK, Charney, DS, Mathew, SJ (2009) Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry 66: 522–6.CrossRefGoogle ScholarPubMed
Salvadore, G, Cornwell, BR, Sambataro, F, et al. (2010) Anterior cingulate desynchronization and functional connectivity with the amygdala during a working memory task predict rapid antidepressant response to ketamine. Neuropsychopharmacology 35: 1415–22.CrossRefGoogle Scholar
Stahl, SM (2013) Mechanism of action of ketamine. CNS Spectrums 18: 171–4.Google ScholarPubMed
Stahl, SM (2013) Mechanism of action of dextromethorphan/quinidine: comparison with ketamine. CNS Spectrums 18: 225–7.Google ScholarPubMed
Stahl, SM (2016) Dextromethorphan–quinidine-responsive pseudobulbar affect (PBA): psychopharmacological model for wide-ranging disorders of emotional expression? CNS Spectrums 21: 419–23.CrossRefGoogle ScholarPubMed
Stahl, SM (2019) Mechanism of action of dextromethorphan/bupropion: a novel NMDA antagonist with multimodal activity. CNS Spectrums 24: 461–6.CrossRefGoogle ScholarPubMed
Wajs, E, Aluisio, L, Holder, R, et al. (2020) Esketamine nasal spray plus oral antidepressant in patients with treatment resistant depression: assessment of long term safety in a phase 3 open label study (SUSTAIN2). J Clin Psychiatry 81: 19m12891.CrossRefGoogle Scholar
Williams, NR, Heifets, B, Blasey, C, et al. (2018) Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am J Psychiatry 175: 1205–15CrossRefGoogle ScholarPubMed
Zarate, Jr. CA, Brutsche, NE, Ibrahim, L (2012) Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 71: 939–46.CrossRefGoogle ScholarPubMed
Aan het Rot, M, Collins, KA, Murrough, JW, et al. (2010) Safety and efficacy of repeated dose intravenous ketamine for treatment resistant depression. Biol Psychiatry 67: 139–45.CrossRefGoogle ScholarPubMed
Abdallah, CG, DeFeyter, HM, Averill, LA, et al. (2018) The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology 43: 2154–60.CrossRefGoogle ScholarPubMed
Anderson, A, Iosifescu, DV, Macobsen, M, et al. (2019) Efficacy and safety of AXS-05, an oral NMDA receptor antagonist with multimodal activity, in major depressive disorder: results of a phase 2, double blind active controlled trial. Abstract, American Society of Clincal Psychopharmacology Annual Meeting.Google Scholar
Deyama, S, Bang, E, Wohleb, ES, et al. (2019) Role of neuronal VEGF signaling in the prefrontal cortex in the rapid antidepressant effects of ketamine. Am J Psychiatry 176: 388-400.CrossRefGoogle ScholarPubMed
DiazGranados, N, Ibrahim, LA, Brutsche, NE, et al. (2010) Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant depressive disorder. J Clin Psychiatry 71: 1605–11.CrossRefGoogle Scholar
Duman, RS, Voleti, B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 35: 4756.CrossRefGoogle ScholarPubMed
Dwyer, JM, Duman, RS (2013) Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid acting antidepressants. Biol Psychiatry 73: 1189–98.CrossRefGoogle ScholarPubMed
Fu, DJ, Ionescu, DF, Li, X, et al. (2020) Esketamine nasal spray for rapid reduction of major depressive disorder symptoms in patients who have active suicidal ideation with intent: double blind randomized study (ASPIRE K). J Clin Psychiatry 61: doi.org/10.4088/JCP.19m13191.Google Scholar
Hanania, T, Manfredi, P, Inturrisi, C, et al. (2020) The NMDA antagonist dextromethadone acutely improves depressive like behavior in the forced swim test performance of rats. AA Rev Public Health 34: 119–38.Google Scholar
Hasler, G (2020) Toward specific ways to combine ketamine and psychotherapy in treating depression. CNS Spectrums 25: 445–7.CrossRefGoogle ScholarPubMed
Ibrahim, L, Diaz Granados, N, Franco-Chaves, J (2012) Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs. add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology 37: 1526–33.CrossRefGoogle ScholarPubMed
Li, N, Lee, Lin RJ, et al. (2010) mTor-dependent synapse formation underlies the rapid antidepressant effects of NMDA antgonists. Science 329: 959–64.CrossRefGoogle Scholar
Monteggia, LM, Gideons, E, Kavalali, EG (2013) The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine. Biol Psychiatry 73: 1199–203.CrossRefGoogle ScholarPubMed
Mosa-Sava, RN, Murdock, MH, Parekh, PK, et al. (2019) Sustained rescue of prefrontal circuit dysfunction by antidepressant induced spine formation. Science 364: doi: 10.1126/Science.aat80732019.Google Scholar
Murrough, JW, Perez, AM, Pillemer, S, et al. (2013) Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment resistant major depression. Biol Psychiatry 74: 250–6.CrossRefGoogle ScholarPubMed
O’Gorman, C, Iosifescu, DV, Jones, A, et al. (2018) Clinical development of AXS-05 for treatment resistant depression and agitation associated with Alzheimer’s disease. Abstract, American Society of Clinical Psychopharmacology Annual Meeting.Google Scholar
O’Gorman, C, Jones, A, Iosifescu, DV, et al. (2020) Efficacy and safety of AXS-05, an oral NMDA receptor antagonist with multimodal activity in major depressive disorder: results from the GEMINI phase 3, double blind placebo-controlled trial. Abstract, American Society of Clinical Psychopharmacology Annual Meeting.CrossRefGoogle Scholar
Phillips, JL, Norris, S, Talbot, J, et al. (2019) Single, repeated and maintenance ketamine infusions for treatment resistant depression: a randomized controlled trial. Am J Psychiatry 176: 401–9.CrossRefGoogle ScholarPubMed
Price, RB, Nock, MK, Charney, DS, Mathew, SJ (2009) Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry 66: 522–6.CrossRefGoogle ScholarPubMed
Salvadore, G, Cornwell, BR, Sambataro, F, et al. (2010) Anterior cingulate desynchronization and functional connectivity with the amygdala during a working memory task predict rapid antidepressant response to ketamine. Neuropsychopharmacology 35: 1415–22.CrossRefGoogle Scholar
Stahl, SM (2013) Mechanism of action of ketamine. CNS Spectrums 18: 171–4.Google ScholarPubMed
Stahl, SM (2013) Mechanism of action of dextromethorphan/quinidine: comparison with ketamine. CNS Spectrums 18: 225–7.Google ScholarPubMed
Stahl, SM (2016) Dextromethorphan–quinidine-responsive pseudobulbar affect (PBA): psychopharmacological model for wide-ranging disorders of emotional expression? CNS Spectrums 21: 419–23.CrossRefGoogle ScholarPubMed
Stahl, SM (2019) Mechanism of action of dextromethorphan/bupropion: a novel NMDA antagonist with multimodal activity. CNS Spectrums 24: 461–6.CrossRefGoogle ScholarPubMed
Wajs, E, Aluisio, L, Holder, R, et al. (2020) Esketamine nasal spray plus oral antidepressant in patients with treatment resistant depression: assessment of long term safety in a phase 3 open label study (SUSTAIN2). J Clin Psychiatry 81: 19m12891.CrossRefGoogle Scholar
Williams, NR, Heifets, B, Blasey, C, et al. (2018) Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am J Psychiatry 175: 1205–15CrossRefGoogle ScholarPubMed
Zarate, Jr. CA, Brutsche, NE, Ibrahim, L (2012) Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 71: 939–46.CrossRefGoogle ScholarPubMed
Alvarez, E, Perez, V, Dragheim, M, Loft, H, Artigas, F (2012) A double-blind, randomized, placebo-controlled, active reference study of Lu AA21004 in patients with major depressive disorder. Int J Neuropsychopharmacol 15: 589600.CrossRefGoogle ScholarPubMed
BALANCE investigators and collaborators, et al. (2010) Lithium plus valproate combination therapy versus monotherapy for relapse prevention in bipolar I disorder (BALANCE): a randomized open-label trial. Lancet 375: 385–95.Google Scholar
Baldessarini, RJ, Tondo, L, Vazquez, GH (2019) Pharmacological treatment of adult bipolar disorder. Mol Psychiatry 24: 198217.CrossRefGoogle ScholarPubMed
Bang-Andersen, B, Ruhland, T, Jorgensen, M, et al. (2011) Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl] piperazine (LuAA21004): a novel multimodal compound for the treatment of major depressive disorder. J Med Chem 54: 3206–21.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Bolstridge, M, Day, CMG, et al. (2018) Psilocybin with psychological support for treatment-resistant depression: six month follow up. Psychopharmacology 235: 399408.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Bolstridge, M, Rucker, J, et al. (2016) Psilocybin with psychological support for treatment resistant depression: an open label feasibility study. Lancet Psychiatry 3: 619–27.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Goodwin, GM (2017) The therapeutic potential of psychedelic drugs: past, present and future, Neuropsychopharmacology 42: 2105–13.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Leech, R, Williams, TM, et al. (2012) Implications for psychedelic assisted psychotherapy: a functional magnetic resonance imaging study with psilocybin. Br J Psychiatry: doi:10.1192/bjp.bp.111.103309.CrossRefGoogle Scholar
Chiu, CT, Chuan, DM (2010) Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 128: 281304.CrossRefGoogle ScholarPubMed
Cipriani, A, Pretty, H, Hawton, K, Geddes, JR (2005) Lithium in the prevention of suicidal behavior and all-cause mortality in patients with mood disorders: a systematic review of randomized trials. Am J Psychiatry 162: 1805–19.CrossRefGoogle ScholarPubMed
Frye, MA, Grunze, H, Suppes, T, et al. (2007) A placebo-controlled evaluation of adjunctive modafinil in the treatment of bipolar depression. Am J Psychiatry 164: 1242–9.CrossRefGoogle ScholarPubMed
Grady, M, Stahl, SM (2012) Practical guide for prescribing MAOI: Debunking myths and removing barriers. CNS Spectrums 17: 210.CrossRefGoogle Scholar
Mork, A, Pehrson, A, Brennum, LT, et al. (2012) Pharmacological effects of Lu AA21004: a novel multimodal compound for the treatment of major depressive disorder. J Pharmacol Exp Ther 340: 66675.CrossRefGoogle ScholarPubMed
Pasquali, L, Busceti, CL, Fulceri, F, Paparelli, A, Fornai, F (2010) Intracellular pathways underlying the effects of lithium. Behav Pharmacol 21: 47392.CrossRefGoogle ScholarPubMed
Perlis, RH, Ostacher, MJ, Goldberg, JF, et al. (2010) Transition to mania during treatment of bipolar depression. Neuropsychopharmacology 35: 2545–52.CrossRefGoogle ScholarPubMed
Pompili, M, Vazquez, GH, Forte, A, Morrissette, DA, Stahl, SM (2020) Pharmacological treatment of mixed states. Psychiatr Clin N Am 43: 157–86. doi:10.1016/j.psc.2019.10.015CrossRefGoogle ScholarPubMed
Schwartz, TL, Siddiqui, US, Stahl, SM (2011) Vilazodone: a brief pharmacologic and clinical review of the novel SPARI (serotonin partial agonist and reuptake inhibitor). Ther Adv Psychopharmacol 1: 81–7.CrossRefGoogle ScholarPubMed
Settimo, L, Taylor, D (2018) Evaluating the dose-dependent mechanism of action of trazodone by estimation of occupancies for different brain neurotransmitter targets. J Psychopharmacol 32: 960104.CrossRefGoogle ScholarPubMed
Stahl, SM (2009) Mechanism of action of trazodone: a multifunctional drug. CNS Spectrums 14: 536–46.CrossRefGoogle ScholarPubMed
Stahl, SM (2012) Psychotherapy as an epigenetic “drug”: psychiatric therapeutics target symptoms linked to malfunctioning brain circuits with psychotherapy as well as with drugs. J Clin Pharm Ther 37: 249–53.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Mechanism of action of the SPARI vilazodone: (serotonin partial agonist reuptake inhibitor). CNS Spectrums 19: 105–9.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Mechanism of action of agomelatine: a novel antidepressant exploiting synergy between monoaminergic and melatonergic properties. CNS Spectrums 19: 207–12.CrossRefGoogle ScholarPubMed
Stahl, SM (2015) Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): enhancing serotonin release by combining serotonin (5HT) transporter inhibition with actions at 5HT receptors (5HT1A, 5HT1B, 5HT1D, 5HT7 receptors). CNS Spectrums 20: 937.CrossRefGoogle ScholarPubMed
Stahl, SM (2015) Modes and nodes explain the mechanism of action of vortioxetine, multimodal agent (MMA): actions at serotonin receptors may enhance downstream release of four pro-cognitive neurotransmitters. CNS Spectrums 20: 515–19.Google ScholarPubMed
Stahl, SM, Fava, M, Trivedi, M (2010) Agomelatine in the treatment of major depressive disorder: an 8 week, multicenter, randomized, placebo-controlled trial. J Clin Psychiatry 71: 616–26.CrossRefGoogle ScholarPubMed
Undurraga, J, Baldessarini, RJ, Valenti, M, et al. (2012) Bipolar depression: clinical correlates of receiving antidepressants. J Affect Disord 139: 8993.CrossRefGoogle ScholarPubMed
Zajecka, J, Schatzberg, A, Stahl, SM, et al. (2010) Efficacy and safety of agomelatine in the treatment of major depressive disorder: a multicenter, randomized, double-blind, placebo-controlled trial. J Clin Psychopharmacol 30: 135–44.CrossRefGoogle ScholarPubMed
Batelaan, NM, Van Balkom, AJLM, Stein, DJ (2010) Evidence-based pharmacotherapy of panic disorder: an update. Int J Neuropsychopharmacol 15: 403–15.Google Scholar
De Oliveira, IR, Schwartz, T, Stahl, SM (eds.) (2014) Integrating Psychotherapy and Psychopharmacology. New York, NY: Routledge Press.Google Scholar
Etkin, A, Prater, KE, Hoeft, F, et al. (2010) Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. Am J Psychiatry 167: 545–54.CrossRefGoogle ScholarPubMed
Monk, S, Nelson, EE, McClure, EB, et al. (2006) Ventrolateral prefrontal cortex activation and attentional bias in response to angry faces in adolescents with generalized anxiety disorder. Am J Psychiatry 163: 1091–7.CrossRefGoogle ScholarPubMed
Otto, MW, Basden, SL, Leyro, TM, McHugh, K, Hofmann, SG (2007) Clinical perspectives on the combination of D-cycloserine and cognitive behavioral therapy for the treatment of anxiety disorders. CNS Spectrums 12: 5961.CrossRefGoogle ScholarPubMed
Otto, MW, Tolin, DF, Simon, NM, et al. (2010) Efficacy of D-cycloserine for enhancing response to cognitive-behavior therapy for panic disorder. Biol Psychiatry 67: 365–70.CrossRefGoogle ScholarPubMed
Stahl, SM (2010) Stahl’s Illustrated: Anxiety and PTSD. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM (2012) Psychotherapy as an epigenetic “drug”: psychiatric therapeutics target symptoms linked to malfunctioning brain circuits with psychotherapy as well as with drugs. J Clin Pharm Ther 37: 249–53.CrossRefGoogle ScholarPubMed
Stahl, SM, Moore, BA (eds.) (2013) Anxiey Disorders: A Guide for Integrating Psychopharmacology and Psychotherapy. New York, NY: Routledge Press.CrossRefGoogle Scholar
Chen, Y, Baram, TZ (2016) Toward understanding how early life stress reprograms cognitive and emotional brain networks. Neuropsychopharm Rev 41: 187296.CrossRefGoogle ScholarPubMed
Hanson, JL, Nacewicz, BM, Suggerer, MJ, et al. (2015) Behavioral problems after early life stress: contributions of the hippocampus and amygdala. Biol Psychiatry 77: 314–23.CrossRefGoogle ScholarPubMed
Kundakavic, M, Champagne, FA (2015) Early life experience, epigenetics and the developing brain. Neuropsychopharmacol Rev 40: 141–53.Google Scholar
Marusak, HA, Martin, K, Etkin, A, et al. (2015) Childhood trauma exposure disrupts the automatic regulation of emotional processing. Neuropsychopharmacology 40: 1250–8.CrossRefGoogle ScholarPubMed
McEwen, BS, Nasca, C, Gray, JD (2016) Stress effects on neuronal structure: hippocampus, amygdala and prefrontal cortex. Neuropsychopharm Rev 41: 323.CrossRefGoogle ScholarPubMed
McLaughlin, KA, Sheridan, MA, Gold, AL, et al. (2016) Maltreatment exposure, brain structure and fear conditioning in children and adolescents. Neuropsychopharmacology 41: 1956–65.CrossRefGoogle ScholarPubMed
Teicher, MH, Anderson, CM, Ohashi, K, et al. (2014) Childhood maltreatment: altered network centrality of cingulate precuneus, temporal pole and insula. Biol Psychiatry 76: 297305.CrossRefGoogle ScholarPubMed
Tyrka, AR, Burgers, DE, Philip, NS (2013) The neurobiological correlates of childhood adversity and implications for treatment. Acta Psychiatr Scand 138: 43447.CrossRefGoogle Scholar
Zhang, JY, Liu, TH, He, Y, et al. (2019) Chronic stress remodels synapses in an amygdala circuit-specific manner. Biol Psychiatry 85: 189201.CrossRefGoogle Scholar
Anderson, KC, Insel, TR (2006) The promise of extinction research for the prevention and treatment of anxiety disorders. Biol Psychiatry 60: 319–21.CrossRefGoogle ScholarPubMed
Barad, M, Gean, PW, Lutz, B. (2006) The role of the amygdala in the extinction of conditioned fear. Biol Psychiatry 60: 322–8.CrossRefGoogle ScholarPubMed
Bonin, RP, De Koninck, Y (2015) Reconsolidation and the regulation of plasticity: moving beyond memory. Trends Neurosci 38: 336–44.CrossRefGoogle ScholarPubMed
Dejean, C, Courtin, J, Rozeaske, RR, et al. (2015) Neuronal circuits for fear expression and recovery: recent advances and potential therapeutic strategies. Biol Psychiatry 78: 298306.CrossRefGoogle ScholarPubMed
Feduccia, AA, Mithoefer, MC (2018) MDMA-assisted psychotherapy for PTSD: are memory reconsolidation and fear extinction underlying mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 84: 221–8.CrossRefGoogle ScholarPubMed
Fox, AS, Oler, JA, Tromp, DPM, et al. (2015) Extending the amygdala in theories of threat processing. Trends Neurosci 38: 319–29.CrossRefGoogle ScholarPubMed
Giustino, RF, Seemann, JR, Acca, GM, et al. (2017) Beta adrenoceptor blockade in the basolateral amygdala, but not the medial prefrontal cortex, rescues the immediate extinction deficit. Neuropsychopharmacol 42: 2537–44.CrossRefGoogle Scholar
Graham, BM, Milad, MR (2011) The study of fear extinction: implications for anxiety disorder. Am J Psychiatry 168: 1255–65.CrossRefGoogle Scholar
Hartley, CA, Phelps, EA (2010) Changing fear: the neurocircuitry of emotion regulation. Neuropsychopharmacol Rev 35: 136–46.CrossRefGoogle ScholarPubMed
Haubrich, J, Crestani, AP, Cassini, LF, et al. (2015) Reconsolidation allows fear memory to be updated to a less aversive level through the incorporation of appetitive information. Neuropsychopharmacology 40: 315–26.CrossRefGoogle ScholarPubMed
Hermans, D, Craske, MG, Mineka, S, Lovibond, PF (2006) Extinction in human fear conditioning. Biol Psychiatry 60: 361–8.CrossRefGoogle ScholarPubMed
Holbrook, TL, Galarneau, ME, Dye, JL, et al. (2010) Morphine use after combat injury in Iraq and post traumatic stress disorder. New Engl J Med 362: 110–17.CrossRefGoogle ScholarPubMed
Keding, TJ, Herringa, RJ (2015) Abnormal structure of fear circuitry in pediatric post traumatic stress disorder. Neuropsychopharmacology 40: 537–45.CrossRefGoogle ScholarPubMed
Krabbe, S, Grundemann, J, Luthi, A (2018) Amygdala inhibitory circuits regulate associative fear conditioning. Biol Psychiatry 83: 800–9.CrossRefGoogle ScholarPubMed
Kroes, MCW, Tona, KD, den Ouden, HEM, et al. (2016) How administration of the beta blocker propranolol before extinction can prevent the return of fear. Neuropsychopharmacology 41: 1569–78.CrossRefGoogle ScholarPubMed
Kwapis, JL, Wood, MA (2014) Epigenetic mechanisms in fear conditioning: implications for treating post traumatic stress disorder. Trends Neurosci 37: 706–19.CrossRefGoogle ScholarPubMed
Lin, HC, Mao, SC, Su, CL, et al. (2010) Alterations of excitatory transmission in the lateral amygdala during expression and extinction of fear memory. Int J Neuropsychopharmacol 13: 335–45.CrossRefGoogle ScholarPubMed
Linnman, C, Zeidan, MA, Furtak, SC, et al. (2012) Resting amygdala and medial prefrontal metabolism predicts functional activation of the fear extinction circuit. Am J Psychiatry 169: 415–23.CrossRefGoogle ScholarPubMed
Mahan, AL, Ressler, KJ (2012) Fear conditioning, synaptic plasticity and the amygdala: implications for post traumatic stress disorder. Trends Neurosci 35: 2435.CrossRefGoogle Scholar
Mithoefer, MC, Wagner, MT, Mithoefer, AT, et al. (2011) The safety and efficacy of {+/−} 3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol 25: 439–52.CrossRefGoogle ScholarPubMed
Myers, KM, Carlezon, WA Jr. (2012) D-Cycloserine effects on extinction of conditioned responses to drug-related cues. Biol Psychiatry 71: 947–55.CrossRefGoogle ScholarPubMed
Onur, OA, Schlaepfer, TE, Kukolja, J, et al. (2010) The N-methyl-D-aspartate receptor co-agonist D-cycloserine facilitates declarative learning and hippocampal activity in humans. Biol Psychiatry 67: 1205–11.CrossRefGoogle ScholarPubMed
Otis, JM, Werner, CR, Muelier, D (2015) Noradrenergic regulation of fear and drug-associated memory reconsolidation. Neuropsychopharmacology 40: 793803.CrossRefGoogle ScholarPubMed
Ressler, KJ (2020) Translating across circuits and genetics toward progress in fear- and anxiety-related disorders. Am J Psychiatry 177: 214–22.CrossRefGoogle ScholarPubMed
Sandkuher, J, Lee, J (2013) How to erase memory traces of pain and fear. Trends Neurosci 36: 343–52.Google Scholar
Schwabe, L, Nader, K, Pruessner, JC (2011) Reconsolidation of human memory: brain mechanisms and clinical relevance. Biol Psychiatry 76: 274–80.Google Scholar
Schwabe, L, Nader, K, Wold, OT (2012) Neural signature of reconsolidation impairments by propranolol in humans. Biol Psychiatry 71: 380–6.CrossRefGoogle ScholarPubMed
Shin, LM, Liberzon, I (2010) The neurocircuitry of fear, stress and anxiety disorders. Neuropsychopharmacol Rev 35: 169–91.CrossRefGoogle ScholarPubMed
Soeter, M, Kindt, M (2012) Stimulation of the noradrenergic system during memory formation impairs extinction learning but not the disruption of reconsolidation. Neuropsychopharmacology 37: 1204–15.CrossRefGoogle Scholar
Stern, CAJ, Gazarini, L, Takahashi, RN, et al. (2012) On disruption of fear memory by reconsolidation blockade: evidence from cannabidiol treatment. Neuropsychopharmacology 37: 2132–42.CrossRefGoogle ScholarPubMed
Tamminga, CA (2006) The anatomy of fear extinction. Am J Psychiatry 163: 961.CrossRefGoogle ScholarPubMed
Tronson, NC, Corcoran, KA, Jovasevic, V, et al. (2011) Fear conditioning and extinction: emotional states encoded by distinct signaling pathways. Trends Neurosci 35: 145–55.Google ScholarPubMed
Batelaan, NM, Van Balkom, AJLM, Stein, DJ (2010) Evidence-based pharmacotherapy of panic disorder: an update. Int J Neuropsychopharmacol 15: 403–15.Google Scholar
De Oliveira, IR, Schwartz, T, Stahl, SM (eds.) (2014) Integrating Psychotherapy and Psychopharmacology. New York, NY: Routledge Press.Google Scholar
Etkin, A, Prater, KE, Hoeft, F, et al. (2010) Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. Am J Psychiatry 167: 545–54.CrossRefGoogle ScholarPubMed
Monk, S, Nelson, EE, McClure, EB, et al. (2006) Ventrolateral prefrontal cortex activation and attentional bias in response to angry faces in adolescents with generalized anxiety disorder. Am J Psychiatry 163: 1091–7.CrossRefGoogle ScholarPubMed
Otto, MW, Basden, SL, Leyro, TM, McHugh, K, Hofmann, SG (2007) Clinical perspectives on the combination of D-cycloserine and cognitive behavioral therapy for the treatment of anxiety disorders. CNS Spectrums 12: 5961.CrossRefGoogle ScholarPubMed
Otto, MW, Tolin, DF, Simon, NM, et al. (2010) Efficacy of D-cycloserine for enhancing response to cognitive-behavior therapy for panic disorder. Biol Psychiatry 67: 365–70.CrossRefGoogle ScholarPubMed
Stahl, SM (2010) Stahl’s Illustrated: Anxiety and PTSD. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM (2012) Psychotherapy as an epigenetic “drug”: psychiatric therapeutics target symptoms linked to malfunctioning brain circuits with psychotherapy as well as with drugs. J Clin Pharm Ther 37: 249–53.CrossRefGoogle ScholarPubMed
Stahl, SM, Moore, BA (eds.) (2013) Anxiey Disorders: A Guide for Integrating Psychopharmacology and Psychotherapy. New York, NY: Routledge Press.CrossRefGoogle Scholar
Chen, Y, Baram, TZ (2016) Toward understanding how early life stress reprograms cognitive and emotional brain networks. Neuropsychopharm Rev 41: 187296.CrossRefGoogle ScholarPubMed
Hanson, JL, Nacewicz, BM, Suggerer, MJ, et al. (2015) Behavioral problems after early life stress: contributions of the hippocampus and amygdala. Biol Psychiatry 77: 314–23.CrossRefGoogle ScholarPubMed
Kundakavic, M, Champagne, FA (2015) Early life experience, epigenetics and the developing brain. Neuropsychopharmacol Rev 40: 141–53.Google Scholar
Marusak, HA, Martin, K, Etkin, A, et al. (2015) Childhood trauma exposure disrupts the automatic regulation of emotional processing. Neuropsychopharmacology 40: 1250–8.CrossRefGoogle ScholarPubMed
McEwen, BS, Nasca, C, Gray, JD (2016) Stress effects on neuronal structure: hippocampus, amygdala and prefrontal cortex. Neuropsychopharm Rev 41: 323.CrossRefGoogle ScholarPubMed
McLaughlin, KA, Sheridan, MA, Gold, AL, et al. (2016) Maltreatment exposure, brain structure and fear conditioning in children and adolescents. Neuropsychopharmacology 41: 1956–65.CrossRefGoogle ScholarPubMed
Teicher, MH, Anderson, CM, Ohashi, K, et al. (2014) Childhood maltreatment: altered network centrality of cingulate precuneus, temporal pole and insula. Biol Psychiatry 76: 297305.CrossRefGoogle ScholarPubMed
Tyrka, AR, Burgers, DE, Philip, NS (2013) The neurobiological correlates of childhood adversity and implications for treatment. Acta Psychiatr Scand 138: 43447.CrossRefGoogle Scholar
Zhang, JY, Liu, TH, He, Y, et al. (2019) Chronic stress remodels synapses in an amygdala circuit-specific manner. Biol Psychiatry 85: 189201.CrossRefGoogle Scholar
Anderson, KC, Insel, TR (2006) The promise of extinction research for the prevention and treatment of anxiety disorders. Biol Psychiatry 60: 319–21.CrossRefGoogle ScholarPubMed
Barad, M, Gean, PW, Lutz, B. (2006) The role of the amygdala in the extinction of conditioned fear. Biol Psychiatry 60: 322–8.CrossRefGoogle ScholarPubMed
Bonin, RP, De Koninck, Y (2015) Reconsolidation and the regulation of plasticity: moving beyond memory. Trends Neurosci 38: 336–44.CrossRefGoogle ScholarPubMed
Dejean, C, Courtin, J, Rozeaske, RR, et al. (2015) Neuronal circuits for fear expression and recovery: recent advances and potential therapeutic strategies. Biol Psychiatry 78: 298306.CrossRefGoogle ScholarPubMed
Feduccia, AA, Mithoefer, MC (2018) MDMA-assisted psychotherapy for PTSD: are memory reconsolidation and fear extinction underlying mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 84: 221–8.CrossRefGoogle ScholarPubMed
Fox, AS, Oler, JA, Tromp, DPM, et al. (2015) Extending the amygdala in theories of threat processing. Trends Neurosci 38: 319–29.CrossRefGoogle ScholarPubMed
Giustino, RF, Seemann, JR, Acca, GM, et al. (2017) Beta adrenoceptor blockade in the basolateral amygdala, but not the medial prefrontal cortex, rescues the immediate extinction deficit. Neuropsychopharmacol 42: 2537–44.CrossRefGoogle Scholar
Graham, BM, Milad, MR (2011) The study of fear extinction: implications for anxiety disorder. Am J Psychiatry 168: 1255–65.CrossRefGoogle Scholar
Hartley, CA, Phelps, EA (2010) Changing fear: the neurocircuitry of emotion regulation. Neuropsychopharmacol Rev 35: 136–46.CrossRefGoogle ScholarPubMed
Haubrich, J, Crestani, AP, Cassini, LF, et al. (2015) Reconsolidation allows fear memory to be updated to a less aversive level through the incorporation of appetitive information. Neuropsychopharmacology 40: 315–26.CrossRefGoogle ScholarPubMed
Hermans, D, Craske, MG, Mineka, S, Lovibond, PF (2006) Extinction in human fear conditioning. Biol Psychiatry 60: 361–8.CrossRefGoogle ScholarPubMed
Holbrook, TL, Galarneau, ME, Dye, JL, et al. (2010) Morphine use after combat injury in Iraq and post traumatic stress disorder. New Engl J Med 362: 110–17.CrossRefGoogle ScholarPubMed
Keding, TJ, Herringa, RJ (2015) Abnormal structure of fear circuitry in pediatric post traumatic stress disorder. Neuropsychopharmacology 40: 537–45.CrossRefGoogle ScholarPubMed
Krabbe, S, Grundemann, J, Luthi, A (2018) Amygdala inhibitory circuits regulate associative fear conditioning. Biol Psychiatry 83: 800–9.CrossRefGoogle ScholarPubMed
Kroes, MCW, Tona, KD, den Ouden, HEM, et al. (2016) How administration of the beta blocker propranolol before extinction can prevent the return of fear. Neuropsychopharmacology 41: 1569–78.CrossRefGoogle ScholarPubMed
Kwapis, JL, Wood, MA (2014) Epigenetic mechanisms in fear conditioning: implications for treating post traumatic stress disorder. Trends Neurosci 37: 706–19.CrossRefGoogle ScholarPubMed
Lin, HC, Mao, SC, Su, CL, et al. (2010) Alterations of excitatory transmission in the lateral amygdala during expression and extinction of fear memory. Int J Neuropsychopharmacol 13: 335–45.CrossRefGoogle ScholarPubMed
Linnman, C, Zeidan, MA, Furtak, SC, et al. (2012) Resting amygdala and medial prefrontal metabolism predicts functional activation of the fear extinction circuit. Am J Psychiatry 169: 415–23.CrossRefGoogle ScholarPubMed
Mahan, AL, Ressler, KJ (2012) Fear conditioning, synaptic plasticity and the amygdala: implications for post traumatic stress disorder. Trends Neurosci 35: 2435.CrossRefGoogle Scholar
Mithoefer, MC, Wagner, MT, Mithoefer, AT, et al. (2011) The safety and efficacy of {+/−} 3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol 25: 439–52.CrossRefGoogle ScholarPubMed
Myers, KM, Carlezon, WA Jr. (2012) D-Cycloserine effects on extinction of conditioned responses to drug-related cues. Biol Psychiatry 71: 947–55.CrossRefGoogle ScholarPubMed
Onur, OA, Schlaepfer, TE, Kukolja, J, et al. (2010) The N-methyl-D-aspartate receptor co-agonist D-cycloserine facilitates declarative learning and hippocampal activity in humans. Biol Psychiatry 67: 1205–11.CrossRefGoogle ScholarPubMed
Otis, JM, Werner, CR, Muelier, D (2015) Noradrenergic regulation of fear and drug-associated memory reconsolidation. Neuropsychopharmacology 40: 793803.CrossRefGoogle ScholarPubMed
Ressler, KJ (2020) Translating across circuits and genetics toward progress in fear- and anxiety-related disorders. Am J Psychiatry 177: 214–22.CrossRefGoogle ScholarPubMed
Sandkuher, J, Lee, J (2013) How to erase memory traces of pain and fear. Trends Neurosci 36: 343–52.Google Scholar
Schwabe, L, Nader, K, Pruessner, JC (2011) Reconsolidation of human memory: brain mechanisms and clinical relevance. Biol Psychiatry 76: 274–80.Google Scholar
Schwabe, L, Nader, K, Wold, OT (2012) Neural signature of reconsolidation impairments by propranolol in humans. Biol Psychiatry 71: 380–6.CrossRefGoogle ScholarPubMed
Shin, LM, Liberzon, I (2010) The neurocircuitry of fear, stress and anxiety disorders. Neuropsychopharmacol Rev 35: 169–91.CrossRefGoogle ScholarPubMed
Soeter, M, Kindt, M (2012) Stimulation of the noradrenergic system during memory formation impairs extinction learning but not the disruption of reconsolidation. Neuropsychopharmacology 37: 1204–15.CrossRefGoogle Scholar
Stern, CAJ, Gazarini, L, Takahashi, RN, et al. (2012) On disruption of fear memory by reconsolidation blockade: evidence from cannabidiol treatment. Neuropsychopharmacology 37: 2132–42.CrossRefGoogle ScholarPubMed
Tamminga, CA (2006) The anatomy of fear extinction. Am J Psychiatry 163: 961.CrossRefGoogle ScholarPubMed
Tronson, NC, Corcoran, KA, Jovasevic, V, et al. (2011) Fear conditioning and extinction: emotional states encoded by distinct signaling pathways. Trends Neurosci 35: 145–55.Google ScholarPubMed
Aupperle, RL, Allard, CB, Grimes, EM, et al. (2012) Dorsolateral prefrontal cortex activation during emotional anticipation and neuropsychological performance in posttraumatic stress disorder. Arch Gen Psychiatry 69: 360–71.Google ScholarPubMed
Bonne, O, Vythilingam, M, Inagaki, M, et al. (2008) Reduced posterior hippocampal volume in posttraumatic stress disorder. J Clin Psychiatry 69: 1087–91.CrossRefGoogle ScholarPubMed
De Kleine, RA, Hendriks, GJ, Kusters, WJC, Broekman, TG, van Minnen, A (2012) A randomized placebo-controlled trial of D-cycloserine to enhance exposure therapy for posttraumatic stress disorder. Biol Psychiatry 71: 962–8.CrossRefGoogle ScholarPubMed
Feduccia, AA, Mithoefer, MC (2018) MDMA-assisted psychotherapy for PTSD: are memory reconsolidation and fear extinction underlying mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 84: 221–8.CrossRefGoogle ScholarPubMed
Ipser, JC, Stein, DJ (2012) Evidence-based pharmacotherapy of post-traumatic stress disorder (PTSD). Int J Neuropsychopharmacol 15: 825–40.CrossRefGoogle ScholarPubMed
Jovanovic, T, Ressler, KJ (2010) How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am J Psychiatry 167: 648–62.CrossRefGoogle ScholarPubMed
Mercer, KB, Orcutt, HK, Quinn, JF, et al. (2012) Acute and posttraumatic stress symptoms in a prospective gene X environment study of a university campus shooting. Arch Gen Psychiatry 69: 8997.CrossRefGoogle Scholar
Mithoefer, MC, Wagner, MT, Mithoefer, AT, et al. (2011) The safety and efficacy of {+/−} 3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol 25: 439–52.CrossRefGoogle ScholarPubMed
Orr, SP, Milad, MR, Metzger, LJ (2006) Effects of beta blockade, PTSD diagnosis, and explicit threat on the extinction and retention of an aversively conditioned response. Biol Psychol 732: 262–71.Google Scholar
Perusini, JN, Meyer, EM, Long, VA, et al. (2016) Induction and expression of fear sensitization caused by acute traumatic stress. Neuropsychopharm Rev 41: 4557.CrossRefGoogle ScholarPubMed
Raskind, MA, Peskind, ER, Hoff, DJ (2007) A parallel group placebo controlled study of prazosin for trauma nightmares and sleep disturbance in combat veterans with post-traumatic stress disorder. Biol Psychiatry 61: 928–34.CrossRefGoogle ScholarPubMed
Rauch, SL, Shin, LM, Phelps, EA. (2006) Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research – past, present and future. Biol Psychiatry 60: 376–82.CrossRefGoogle ScholarPubMed
Reist, C, Streja, E, Tang, CC, et al. (2020) Prazocin for treatment of post traumatic stress disorder: a systematic review and met analysis. CNS Spectrums: doi.org/10.1017/S1092852920001121.Google Scholar
Sandweiss, DA, Slymen, DJ, Leardmann, CA, et al. (2011) Preinjury psychiatric status, injury severity, and postdeployment posttraumatic stress disorder. Arch Gen Psychiatry 68: 496504.CrossRefGoogle ScholarPubMed
Sauve, W, Stahl, SM (2019) Psychopharmacological and neuromodulation treatment of PTSD. In Treating PTSD in Military Personnel, 2nd edition, Moore, BA and Penk, WE (eds.), Guilford Press: 155–72.Google Scholar
Shin, LM, Bush, G, Milad, MR, et al. (2011) exaggerated activation of dorsal anterior cingulate cortex during cognitive interference: a monozygotic twin study of posttraumatic stress disorder. Am J Psychiatry 168: 979–85.CrossRefGoogle ScholarPubMed
Stein, MB, McAllister, TW (2009) Exploring the convergence of posttraumatic stress disorder and mild traumatic brain injury. Am J Psychiatry 166: 768–76.CrossRefGoogle ScholarPubMed
Vaiva, G, Ducrocq, F, Jezequel, K, et al. (2003) Immediate treatment with propranolol decreases postraumatic stress disorder two months after trauma. Biol Psychiatry 54: 947–9.CrossRefGoogle Scholar
van Zuiden, M, Geuze, E, Willemen, HLD, et al. (2011) Pre-existing high glucocorticoid receptor number predicting development of posttraumatic stress symptoms after military deployment. Am J Psychiatry 168: 8996.CrossRefGoogle ScholarPubMed
Apkarian, AV, Sosa, Y, Sonty, S, et al. (2004) Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 24: 10410–15.CrossRefGoogle ScholarPubMed
Bar, KJ, Wagner, G, Koschke, M, et al. (2007) Increased prefrontal activation during pain perception in major depression. Biol Psychiatry 62: 1281–7.CrossRefGoogle ScholarPubMed
Benarroch, EE (2007) Sodium channels and pain. Neurology 68: 233–6.CrossRefGoogle ScholarPubMed
Brandt, MR, Beyer, CE, Stahl, SM (2012) TRPV1 antagonists and chronic pain: beyond thermal perception. Pharmaceuticals 5: 114–32.CrossRefGoogle ScholarPubMed
Davies, A, Hendrich, J, Van Minh, AT, et al. (2007) Functional biology of the alpha 2 beta subunits of voltage gated calcium channels. Trends Pharmacol Sci 28: 220–8.CrossRefGoogle Scholar
Descalzi, G, Ikegami, D, Ushijima, T, et al. (2015) Epigenetic mechanisms of chronic pain Trends Neurosci 38: 237–46.Google ScholarPubMed
Dooley, DJ, Taylor, CP, Donevan, S, Feltner, D (2007) Ca2+ Channel alpha 2 beta ligands: novel modulators of neurotransmission. Trends Pharmacol Sci 28: 7582.CrossRefGoogle Scholar
Farrar, JT (2006) Ion channels as therapeutic targets in neuropathic pain. J Pain 7 (Suppl 1): S3847.Google Scholar
Gellings-Lowe, N, Stahl, SM (2012) Antidepressants in pain, anxiety and depression. In Pain Comorbidities, Giamberardino, MA and Jensen, TS (eds.), Washington, DC: IASP Press, 409–23.Google Scholar
Gracely, RH, Petzke, F, Wolf, JM, Clauw, DJ (2002) Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum 46: 1222–343.CrossRefGoogle ScholarPubMed
Khoutorsky, A, Price, TJ (2018) Translational control mechanism in persistent pain. Trends Neuosci 41: 100–14.Google ScholarPubMed
Luo, C, Kuner, T, Kuner, R (2014) Synaptic plasticity in pathological pain. Trends Neurosci 37: 343–55.CrossRefGoogle ScholarPubMed
McLean, SA, Williams, DA, Stein, PK, et al. (2006) Cerebrospinal fluid corticotropin-releasing factor concentration is associated with pain but not fatigue symptoms in patients with fibromyalgia. Neuropsychopharmacology 31: 2776–82.CrossRefGoogle Scholar
Nickel, FT, Seifert, F, Lanz, S, Maihofner, C (2012) Mechanisms of neuropathic pain. Eur Neuropsychopharmacol 22: 8191.CrossRefGoogle ScholarPubMed
Norman, E, Potvin, S, Gaumond, I, et al. (2011) Pain inhibition is deficient in chronic widespread pain but normal in major depressive disorder. J Clin Psychiatry 72: 219–24.Google Scholar
Ogawa, K, Tateno, A, Arakawa, R, et al. (2014) Occupancy of serotonin transporter by tramadol: a positron emission tomography study with 11C-DSDB. Int J Neuropsychopharmacol 17: 845–50.CrossRefGoogle Scholar
Stahl, SM (2009) Fibromyalgia: pathways and neurotransmitters. Hum Psychopharmacol 24: S1117.CrossRefGoogle ScholarPubMed
Stahl, SM, Eisenach, JC, Taylor, CP, et al. (2013) The diverse therapeutic actions of pregabalin: is a single mechanism responsible for several pharmacologic activities. Trends Pharmacol Sci 34: 332–9.CrossRefGoogle Scholar
Wall, PD, Melzack, R (eds.) (1999) Textbook of Pain, 4th edition. London: Harcourt Publishers Limited.Google Scholar
Williams, DA, Gracely, RH (2006) Functional magnetic resonance imaging findings in fibromyalgia. Arthritis Res Ther 8: 224–32.CrossRefGoogle ScholarPubMed
Broderick, M, Masri, T (2011) Histamine H3 receptor (H3R) antagonists and inverse agonists in the treatment of sleep disorders. Curr Pharm Design 17: 1426–9.CrossRefGoogle ScholarPubMed
Kotanska, M, Kuker, KJ, Szcaepanska, K, et al. (2018) The histamine H3 receptor inverse agonist pitolisant reduces body weight in obese mice. Arch Pharmacol 391: 875–81.CrossRefGoogle ScholarPubMed
Nomura, H, Mizuta, H, Norimoto, H, et al. (2019) Central histamine boosts perirhinal cortex activity and restores forgotten object memories. Biol Psychiatry 86: 230–9.CrossRefGoogle ScholarPubMed
Romig, A, Vitran, G, Giudice, TL, et al. (2018) Profile of pitolisant in the management of narcolepsy: design, development and place in therapy. Drug Des Devel Ther 12: 2665–75.Google Scholar
Schwartz, JC (2011) The histamine H3 receptor: from discovery to clinical trials with pitolisant. Br J Pharmacol 163: 713–21.CrossRefGoogle ScholarPubMed
Szakacs, Z, Dauvilliers, Y, Mikhaulov, V, et al. (2017) Safety and efficacy of pitolisant on cataplexy in patients with narcolepsy: a randomized, double-blind placebo controlled trial. Lancet Neurol 16: 200–7.CrossRefGoogle Scholar
Bennett, T, Bray, D, Neville, MW (2014) Suvorexant, a dual orexin receptor antagonist for the management of insomnia. PT 39: 264–6.Google ScholarPubMed
Bettica, P, Squassante, L, Groeger, JA, et al. (2012) Differential effects of a dual orexin receptor antagonist (SB-649868) and zolpidem on sleep initiation and consolidation, SWS, REM sleep, and EEG power spectra in a model of situational insomnia. Neuropsychopharmacology 37: 1224–33.CrossRefGoogle Scholar
Beuckmann, CT, Suzuki, M, Ueno, T, et al. (2017) In vitro and in silico characterization of lemborexant (E2006), a novel dual orexin receptor antagonist. J Pharmacol Exp Ther 362: 287–95.CrossRefGoogle ScholarPubMed
Beuckmann, CT, Ueno, T, Nakagawa, M, et al. (2019) Preclinical in vivo characterization of lemborexant (E2006) a novel dual orexin receptor antagonist for sleep/wake regulation. Sleep: doi 10.1093/sleep/zsz076.CrossRefGoogle Scholar
Bonnavion, P, de Lecea, L (2010) Hypocretins in the control of sleep and wakefulness. Curr Neurol Neurosci Rep 10: 174–9.CrossRefGoogle ScholarPubMed
Bourgin, P, Zeitzer, JM, Mignot, E (2008) CSF hypocretin-1 assessment in sleep and neurological disorders. Lancet Neurol 7: 649–62.CrossRefGoogle ScholarPubMed
Brisbare-Roch, C, Dingemanse, J, Koberstein, R, et al. (2007) Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med 13: 150–5.CrossRefGoogle ScholarPubMed
Cao, M, Guilleminault, C (2011) Hypocretin and its emerging role as a target for treatment of sleep disorders. Curr Neurol Neurosci Rep 11: 227–34.CrossRefGoogle ScholarPubMed
Citrome, L (2014) Suvorexant for insomnia: a systematic review of the efficacy and safety profile for this newly approved hypnotic – what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Pract 68: 1429–41.Google ScholarPubMed
Coleman, PJ, Schreier, JD, Cox, CD, et al. (2012) Discovery of [(2R, 5R)-5-{[(5‐fluoropyridin‐2‐yl)oxy]methyl}‐2‐methylpiperidin‐1‐yl] [5-methyl-2-(pyrimidin-2-yl)phenyl]methanone (MK-6096): a dual orexin receptor antagonist with potent sleep-promoting properties. Chem Med 7, 41524.Google Scholar
Dauvilliers, Y, Abril, B, Mas, E, et al. (2009) Normalization of hypocretin-1 in narcolepsy after intravenous immunoglobulin treatment. Neurology 73: 1333–4.CrossRefGoogle ScholarPubMed
de Lecea, L, Huerta, R (2015) Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol 5: 17.Google Scholar
DiFabio, R, Pellacani, A, Faedo, S (2011) Discovery process and pharmacological characterization of a novel dual orexin 1 and orexin 2 receptor antagonist useful for treatment of sleep disorders. Bioorg Med Chem Lett 21: 5562–7.Google Scholar
Dubey, AK, Handu, SS, Mediratta, PK (2015) Suvorexant: the first orexin receptor antagonist to treat insomnia. J Pharmacol Pharmacother 6: 118–21.CrossRefGoogle ScholarPubMed
Equihua, AC, De la Herran-Arita, AK, Drucker-Colin, R (2013) Orexin receptor antagonists as therapeutic agents for insomnia. Front Pharmacol 4: 110.CrossRefGoogle ScholarPubMed
Gentile, TA, Simmons, SJ, Watson, MN, et al. (2018) Effects of suvorexant, a dual orexin hypocretin receptor antagonist on impulsive behavior associated with cocaine. Neuropsychopharmacology 43: 1001–9.CrossRefGoogle ScholarPubMed
Gotter, AL, Winrow, CJ, Brunner, J, et al. (2013) The duration of sleep promoting efficacy by dual orexin receptor antagonists is dependent upon receptor occupancy threshold. BMC Neurosci 14: 90.CrossRefGoogle ScholarPubMed
Griebel, G, Decobert, M, Jacquet, A, et al. (2012) Awakening properties of newly discovered highly selective H3 receptor antagonists in rats. Behav Brain Res 232: 416–20.CrossRefGoogle ScholarPubMed
Herring, WJ, Connor, KM, Ivgy-May, N, et al. (2016) Suvorexant in patients with insomnia: results from two 3-month randomized controlled clinical trials. Biol Psychiatry 79: 136–48.CrossRefGoogle ScholarPubMed
Hoever, P, Dorffner, G, Benes, H, et al. (2012) Orexin receptor antagonism, a new sleep-enabling paradigm: a proof-of-concept clinical trial. Clin Pharmacol Ther 91: 975–85.CrossRefGoogle ScholarPubMed
Hoyer, D, Jacobson, LH (2013) Orexin in sleep, addiction, and more: is the perfect insomnia drug at hand? Neuropeptides 47: 477–88.CrossRefGoogle ScholarPubMed
Jones, BE, Hassani, OK (2013) The role of Hcrt/Orx and MCH neurons in sleep–wake state regulation. Sleep 36: 1769–72.CrossRefGoogle ScholarPubMed
Krystal, AD, Benca, RM, Kilduff, TS (2013) Understanding the sleep–wake cycle: sleep, insomnia, and the orexin system. J Clin Psychiatry 74 (Suppl 1): 320.CrossRefGoogle ScholarPubMed
Mahler, SV, Moorman, DE, Smith, RJ, et al. (2014) Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nat Neurosci 17: 1298–303.CrossRefGoogle ScholarPubMed
Michelson, D, Snyder, E, Paradis, E, et al. (2014) Safety and efficacy of suvorexant during 1-year treatment of insomnia with subsequent abrupt treatment discontinuation: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet Neurol 13: 461–71.CrossRefGoogle ScholarPubMed
Nixon, JP, Mavanji, V, Butterick, TA, et al. (2015) Sleep disorders, obesity, and aging: the role of orexin. Aging Res Rev 20: 6373.CrossRefGoogle ScholarPubMed
Rosenberg, R, Murphy, P, Zammit, G, et al. (2019) Comparison of lemborexant with placebo and zolpidem tartrate extended release for the treatment of older adults with insomnia disorder: a phase 3 randomized clinical trial. JAMA Network Open 2: e1918254CrossRefGoogle ScholarPubMed
Ruoff, C, Cao, M, Guilleminault, C (2011) Hypocretin antagonists in insomnia treatment and beyond. Curr Pharm Design 17: 1476–82.CrossRefGoogle ScholarPubMed
Sakurai, T, Mieda, M (2011) Connectomics of orexin-producing neurons: interface of systems of emotion, energy homeostasis and arousal. Trends Pharmacol Sci 32: 451–62.CrossRefGoogle ScholarPubMed
Scammel, TE, Winrow, CJ (2011) Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol 51: 243–66.CrossRefGoogle Scholar
Stahl, SM (2016) Mechanism of action of suvorexant. CNS Spectrums 21: 215–18.Google ScholarPubMed
Steiner, MA, Lecourt, H, Strasser, DS, Brisbare-Roch, C, Jenck, F (2011) Differential effects of the dual orexin receptor antagonist almorexant and the GABAA-α1 receptor modulator zolpidem, alone or combined with ethanol, on motor performance in the rat. Neuropsychopharmacology 36: 848–56.CrossRefGoogle ScholarPubMed
Vermeeren, A, Jongen, S, Murphy, P, et al. (2019) On the road driving performance the morning after bedtime administration of lemborexant in healthy adult and elderly volunteers. Sleep: doi: 10.1093.sleep/zsy260.CrossRefGoogle Scholar
Willie, JT, Chemelli, RM, Sinton, CM, et al. (2003) Distinct narcolepsy syndromes in orexin recepter-2 and orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron 38: 715–30.CrossRefGoogle Scholar
Winrow, CJ, Gotter, AL, Cox, CD, et al. (2012) Pharmacological characterization of MK-6096: a dual orexin receptor antagonist for insomnia. Neuropharmacology 62: 978–87.CrossRefGoogle ScholarPubMed
Yeoh, JW, Campbell, EJ, James, MH, et al. (2014) Orexin antagonists for neuropsychiatric disease: progress and potential pitfalls. Front Neurosci 8: 112.CrossRefGoogle ScholarPubMed
Abadie, P, Rioux, P, Scatton, B, et al. (1996) Central benzodiazepine receptor occupancy by zolpidem in the human brain as assessed by positron emission tomography. Science 295: 3544.Google ScholarPubMed
Allen, RP, Burchell, BJ, MacDonald, B, et al. (2009) Validation of the self-completed Cambridge–Hopkins questionnaire (CH-RLSq) for ascertainment of restless legs syndrome (RLS) in a population survey. Sleep Med 10: 1079–100.CrossRefGoogle Scholar
Bastien, CH, Vallieres, A, Morin, CM (2001) Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med 2: 297307.CrossRefGoogle ScholarPubMed
Bonnet, MH, Burton, GG, Arand, DL (2014) Physiological and medical findings in insomnia: implications for diagnosis and care. Sleep Med Rev 18: 95–8.CrossRefGoogle ScholarPubMed
Burke, RA, Faulkner, MA (2011) Gabapentin enacarbil for the treatment of restless legs syndrome (RLS). Expert Opin Pharmacother 12: 2905–14.CrossRefGoogle ScholarPubMed
Buysse, DJ, Reynolds, CF III, Monk, TH, et al. (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28: 193213.CrossRefGoogle ScholarPubMed
Cappuccio, FP, D’Elia, L, Strazzullo, P, et al. (2010) Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep 33: 585–92.CrossRefGoogle ScholarPubMed
Chahine, LM, Chemali, ZN (2006) Restless legs syndrome: a review. CNS Spectrums 11: 511–20.CrossRefGoogle ScholarPubMed
Dawson, GR, Collinson, N, Atack, JR (2005) Development of subtype selective GABAA modulators. CNS Spectrums 10: 21–7.CrossRefGoogle ScholarPubMed
De Lecea, L, Winkelman, JW (2020) Sleep and neuropsychiatric illness. Neuropsychopharmacol Rev 45: 1216.Google Scholar
Drover, DR (2004) Comparative pharmacokinetics and pharmacodynamics of short-acting hypnosedatives – zaleplon, zolpidem and zopiclone. Clin Pharmacokinet 43: 227–38.CrossRefGoogle ScholarPubMed
Durmer, JS, Dinges, DF (2005) Neurocognitive consequences of sleep deprivation. Semin Neurol 25: 117–29.CrossRefGoogle ScholarPubMed
Espana, RA, Scammell, TE (2011) Sleep neurobiology from a clinical perspective. Sleep 34: 845–58.Google ScholarPubMed
Fava, M, McCall, WV, Krystal, A, et al. (2006) Eszopiclone co-administered with fluoxetine in patients with insomnia coexisting with major depressive disorder. Biol Psychiatry 59: 1052–60.CrossRefGoogle ScholarPubMed
Freedom, T (2011) Sleep-related movement disorders. Dis Mon 57 : 438-47.Google ScholarPubMed
Frenette, E (2011) Restless legs syndrome in children: a review and update on pharmacological options. Curr Pharm Design 17: 1436–42.CrossRefGoogle ScholarPubMed
Garcia-Borreguero, D, Allen, R, Kohnen, R, et al. (2010) Loss of response during long-term treatment of restless legs syndrome: guidelines approved by the International Restless Legs Syndrome Study Group for use in clinical trials. Sleep Med 11: 956–9.CrossRefGoogle Scholar
Green, CB, Takahashi, JS, Bass, J (2008) The meter of metabolism. Cell 134: 728–42.CrossRefGoogle ScholarPubMed
Harris, J, Lack, L, Kemo, K, et al. (2012) A randomized controlled trial of intensive sleep retraining (ISR): a brief conditioning treatment for chronic insomnia. Sleep 35: 4960.CrossRefGoogle ScholarPubMed
Hening, W, Walters, AS, Allen, RP, et al. (2004) Impact, diagnosis and treatment of restless legs syndrome (RLS) in a primary care population: the REST (RLS Epidemiology, Symptoms, and Treatment) Primary Care Study. Sleep Med 5: 237–46.CrossRefGoogle Scholar
Koffel, EA, Koffel, JB, Gehrman, PR (2015) A meta-analysis of group cognitive behavioral therapy for insomnia. Sleep Med Rev 19: 616.CrossRefGoogle ScholarPubMed
Krystal, AD, Walsh, JK, Laska, E, et al. (2003) Sustained efficacy of eszopiclone over 6 months of nightly treatment: results of a randomized, double-blind, placebo-controlled study in adults with chronic insomnia. Sleep 26: 793–9.CrossRefGoogle ScholarPubMed
Morin, CM, Benca, R (2012) Chronic insomnia. Lancet 379: 1129–41.CrossRefGoogle ScholarPubMed
Nofzinger, EA, Buysse, DJ, Germain, A, et al. (2004) Functional neuroimaging evidence for hyperarousal in insomnia. Am J Psychiatry 161: 2126–9.CrossRefGoogle ScholarPubMed
Nutt, D, Stahl, SM (2010) Searching for perfect sleep: the continuing evolution of GABAA receptor modulators as hypnotics. J Psychopharmacol 24: 1601–2.CrossRefGoogle ScholarPubMed
Orzel-Gryglewska, J (2010) Consequences of sleep deprivation. Int J Occup Med Environ Health 23: 95114.CrossRefGoogle ScholarPubMed
Palma, JA, Urrestarazu, E, Iriarte, J (2013) Sleep loss as a risk factor for neurologic disorders: a review. Sleep Med 14: 229–36.CrossRefGoogle Scholar
Parthasarathy, S, Vasquez, MM, Halonen, M, et al. (2015) Persistent insomnia is associated with mortality risk. Am J Med 128: 268–75.CrossRefGoogle ScholarPubMed
Jr LR, Pinto, Alves, RC, Caixeta, E, et al. (2010) New guidelines for diagnosis and treatment of insomnia. Arq Neuropsiquiatr 68: 666–75.Google Scholar
Plante, DT (2017) Sleep propensity in psychiatric hypersomnolence: a systematic review and meta-analysis of multiple sleep latency findings. Sleep Med Rev 31: 4857.CrossRefGoogle Scholar
Reeve, K, Bailes, B. (2010) Insomnia in adults: etiology and management. JNP 6: 5360.Google Scholar
Richey, SM, Krystal, AD (2011) Pharmacological advances in the treatment of insomnia. Curr Pharm Design 17: 1471–5.CrossRefGoogle ScholarPubMed
Roth, T, Roehrs, T (2000) Sleep organization and regulation. Neurology 54 (Suppl 1): S27.Google ScholarPubMed
Sahar, S, Sassone-Corsi, P (2009) Metabolism and cancer: the circadian clock connection. Nature 9: 886–96.Google ScholarPubMed
Schutte-Rodin, S, Broch, L, Buysse, D, et al. (2008) Clinical guideline for the evaluation and management of chronic insomnia in adults. J Clin Sleep Med 4: 487504.CrossRefGoogle ScholarPubMed
Sehgal, A, Mignot, E (2011) Genetics of sleep and sleep disorders. Cell 146: 194207.CrossRefGoogle ScholarPubMed
Tafti, M (2009) Genetic aspects of normal and disturbed sleep. Sleep Med 10: S1721.CrossRefGoogle ScholarPubMed
Thorpe, AJ, Clair, A, Hochman, S, et al. (2011) Possible sites of therapeutic action in restless legs syndrome: focus on dopamine and α2δ ligands. Eur Neurol 66: 1829.CrossRefGoogle ScholarPubMed
Vgontzas, AN, Fernadez-Mendoza, J, Bixler, EO, et al. (2012) Persistent insomnia: the role of objective short sleep duration. Sleep 35: 61–8.CrossRefGoogle ScholarPubMed
Wu, JC, Gillin, JC, Buchsbaum, MS, et al. (2006) Frontal lobe metabolic decreases with sleep deprivation not totally reversed by recovery sleep. Neuropsychopharmacology 31: 2783–92.CrossRefGoogle Scholar
Zeitzer, JM, Morales-Villagran, A, Maidment, NT (2006) Extracellular adenosine in the human brain during sleep and sleep deprivation: an in vivo microdialysis study. Sleep 29: 455–61.CrossRefGoogle ScholarPubMed
Abad, VC, Guilleminault, C (2011) Pharmacological treatment of obstructive sleep apnea. Curr Pharm Design 17: 1418–25.CrossRefGoogle ScholarPubMed
Adenuga, O, Attarian, H (2014) Treatment of disorders of hypersomnolence. Curr Treat Options Neurol 16: 302.CrossRefGoogle ScholarPubMed
Ahmed, I, Thorpy, M (2010) Clinical features, diagnosis and treatment of narcolepsy. Clin Chest Med 31: 371–81.CrossRefGoogle ScholarPubMed
Aloia, MS, Arnedt, JT, Davis, JD, Riggs, RL, Byrd, D (2004) Neuropsychological sequelae of obstructive sleep apnea–hypopnea syndrome: a critical review. J Int Neuropsychol Soc 10: 772–85.CrossRefGoogle ScholarPubMed
Arallanes-Licea, E, Caldelas, I, De Ita-Perez, D, et al. (2014) The circadian timing system: a recent addition in the physiological mechanisms underlying pathological and aging processes. Aging Dis 5: 406–18.Google Scholar
Artioli, P, Lorenzi, C, Priovano, A, et al. (2007) How do genes exert their role? Period 3 gene variants and possible influences on mood disorder phenotypes. Eur Neuropsychopharmacol 17: 587–94.CrossRefGoogle ScholarPubMed
Aurora, RN, Chowdhuri, S, Ramar, K, et al. (2012) The treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analyses. Sleep 35: 1740.CrossRefGoogle ScholarPubMed
Banerjee, S, Wang, Y, Solt, LA, et al. (2014) Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour. Nat Commun 5: 5759.CrossRefGoogle ScholarPubMed
Barger, LK, Ogeil, RP, Drake, CL, et al. (2012) Validation of a questionnaire to screen for shift work disorder. Sleep 35: 1693–703.CrossRefGoogle ScholarPubMed
Benedetti, F, Serretti, A, Colombo, C, et al. (2003) Influence of CLOCK gene polymorphisms on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B, Neuropsychiatr Genet 123 : 23–6.Google Scholar
Black, JE, Hull, SG, Tiller, J, et al. (2010) The long-term tolerability and efficacy of armodafinil in patients with excessive sleepiness associated with treated obstructive sleep apnea, shift work disorder, or narcolepsy: an open-label extension study. J Clin Sleep Med 6: 458–66.CrossRefGoogle ScholarPubMed
Bogan, RK (2010) Armodafinil in the treatment of excessive sleepiness. Expert Opin Pharmacother 11: 9931002.CrossRefGoogle ScholarPubMed
Bonacci, JM, Venci, JV, Ghandi, MA (2015) Tasimelteon (HetliozTM): a new melatonin receptor agonist for the treatment of non-24 sleep-wake disorder. J Pharm Pract 28: 473–8.CrossRefGoogle ScholarPubMed
Brancaccio, M, Enoki, R, Mazuki, CN, et al. (2014) Network-mediated encoding of circadian time: the suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back. J Neurosci 34: 15192–9.CrossRefGoogle ScholarPubMed
Carocci, A, Catalano, A, Sinicropi, MS (2014) Melatonergic drugs in development. Clin Pharmacol Adv Applications 6: 127–37.Google ScholarPubMed
Cauter, EV, Plat, L, Scharf, MB, et al. (1997) Simultaneous stimulation of slow-wave sleep and growth hormone secretion by gamma-hydroxybutyrate in normal young men. J Clin Invest 100: 745–53.Google ScholarPubMed
Cermakian, N, Lange, T, Golombek, D, et al. (2013) Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int 30: 870–88.CrossRefGoogle ScholarPubMed
Cirelli, C (2009) The genetic and molecular regulation of sleep: from fruit flies to humans. Nat Rev Neurosci 10: 549–60.CrossRefGoogle ScholarPubMed
Colwell, CS (2011) Linking neural activity and molecular oscillators in the SCN. Nat Rev Neurosci 12: 553–69.CrossRefGoogle ScholarPubMed
Cook, H et al. (2003) A 12-month, open-label, multicenter extension trial of orally administered sodium oxybate for the treatment of narcolepsy. Sleep 26: 31–5.Google Scholar
Crowley, SJ, Lee, C, Tseng, CY, et al. (2004) Complete or partial circadian re-entrainment improves performance, alertness, and mood during night-shift work. Sleep 27: 1077–87.CrossRefGoogle ScholarPubMed
Czeisler, CA, Walsh, JK, Roth, T, et al. (2005) Modafinil for excessive sleepiness associated with shift-work sleep disorder. New Engl J Med 353: 476–86.CrossRefGoogle ScholarPubMed
Dallaspezia, S, Benedetti, F (2011) Chronobiological therapy for mood disorders. Expert Rev Neurother 11: 961–70.CrossRefGoogle ScholarPubMed
Darwish, M, Bond, M, Ezzet, F (2012) Armodafinil in patients with excessive sleepiness associated with shift work disorder: a pharmacokinetic/pharmacodynamic model for predicting and comparing their concentration-effect relationships. J Clin Pharmacol 52: 1328–42.CrossRefGoogle ScholarPubMed
Darwish, M, Kirby, M, D’Andrea, DM, et al. (2010) Pharmacokinetics of armodafinil and modafinil after single and multiple doses in patients with excessive sleepiness associated with treated obstructive sleep apnea: a randomized, open-label, crossover study. Clin Ther 32: 2074–87.CrossRefGoogle ScholarPubMed
Dauvilliers, Y, Tafti, M (2006) Molecular genetics and treatment of narcolepsy. Ann Med 38: 252–62.CrossRefGoogle ScholarPubMed
De la Herran-Arita, AK, Garcia-Garcia, F (2014) Narcolepsy as an immune-mediated disease. Sleep Disord 2014: 792687.CrossRefGoogle ScholarPubMed
Dinges, DF, Weaver, TE (2003) Effects of modafinil on sustained attention performance and quality of life in OSA patients with residual sleepiness while being treated with CPAP. Sleep Med 4: 393402.CrossRefGoogle Scholar
Dresler, M, Spoormaker, VI, Beitinger, P, et al. (2014) Neuroscience-driven discovery and development of sleep therapeutics. Pharmacol Ther 141: 300–34.CrossRefGoogle ScholarPubMed
Eckel-Mahan, KL, Patel, VR, de Mateo, S, et al. (2013) Reprogramming of the circadian clock by nutritional challenge. Cell 155: 1464–78.CrossRefGoogle ScholarPubMed
Ellis, CM, Monk, C, Simmons, A, et al. (1999) Functional magnetic resonance imaging neuroactivation studies in normal subjects and subjects with the narcoleptic syndrome. Actions of modafinil. J Sleep Res 8: 8593.CrossRefGoogle ScholarPubMed
Epstein, LJ, Kristo, D, Strollo, PJ, et al. (2009) Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med 5: 263–76.Google ScholarPubMed
Erman, MK, Seiden, DJ, Yang, R, et al. (2011) Efficacy and tolerability of armodafinil: effect on clinical condition late in the shift and overall functioning of patients with excessive sleepiness associated with shift work disorder. J Occup Environ Med 53: 1460–5.CrossRefGoogle ScholarPubMed
Froy, O (2010) Metabolism and circadian rhythms: implications for obesity. Endocr Rev 31: 124.CrossRefGoogle ScholarPubMed
Golombek, DA, Casiraghi, LP, Agostino, PV, et al. (2013) The times they are a-changing: effects of circadian desynchronization on physiology and disease. J Physiol Paris 107: 310–22.CrossRefGoogle ScholarPubMed
Guo, X, Zheng, L, Wang, J, et al. (2013) Epidemiological evidence for the link between sleep duration and high blood pressure: a systematic review and meta-analysis. Sleep Med 14: 324–32.CrossRefGoogle ScholarPubMed
Hampp, G, Ripperger, JA, Houben, T, et al. (2008) Regulation of monoamine oxidase A by circadian-clock components implies influence on mood. Curr Biol 18: 678–83.CrossRefGoogle ScholarPubMed
Harrison, EM, Gorman, MR (2012) Changing the waveform of circadian rhythms: considerations for shift-work. Front Neurol 3: 17.CrossRefGoogle ScholarPubMed
Hart, CL, Haney, M, Vosburg, SK, et al. (2006) Modafinil attentuates disruptions in cognitive performance during simulated night-shift work. Neuropsychopharmacology 31: 1526–36.CrossRefGoogle Scholar
He, B, Peng, H, Zhao, Y, et al. (2011) Modafinil treatment prevents REM sleep deprivation-induced brain function impairment by increasing MMP-9 expression. Brain Res 1426: 3842.CrossRefGoogle ScholarPubMed
Hirai, N, Nishino, S (2011) Recent advances in the treatment of narcolepsy. Curr Treat Options Neurol 13: 437–57.CrossRefGoogle ScholarPubMed
Horne, JA, Ostberg, O (1976) A self-assessment questionnaire to determine morningness–eveningness in human circadian rhythms. Int J Chronobiol 4: 97100.Google ScholarPubMed
Johansson, C, Willeit, M, Smedh, C, et al. (2003) Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology 28: 734–9.CrossRefGoogle ScholarPubMed
Khalsa, SB, Jewett, ME, Cajochen, C, et al. (2003) A phase response curve to single bright light pulses in human subjects. J Physiol 549(pt 3): 945–52.CrossRefGoogle ScholarPubMed
Knudsen, S, Biering-Sorensen, B, Kornum, BR, et al. (2012) Early IVIg treatment has no effect on post-H1N1 narcolepsy phenotype or hypocretin deficiency. Neurology 79: 102–3.CrossRefGoogle ScholarPubMed
Krakow, B, Ulibarri, VA (2013) Prevalence of sleep breathing complaints reported by treatment-seeking chronic insomnia disorder patients on presentation to a sleep medical center: a preliminary report. Sleep Breath 17: 317–22.CrossRefGoogle Scholar
Kripke, DE, Nievergelt, CM, Joo, E, et al. (2009) Circadian polymorphisms associated with affective disorders. J Circadian Rhythms 27: 2.CrossRefGoogle Scholar
Krystal, AD, Harsh, JR, Yang, R et al. (2010) A double-blind, placebo-controlled study of armodafinil for excessive sleepiness in patients with treated obstructive sleep apnea and comorbid depression. J Clin Psychiatry 71: 3240.CrossRefGoogle ScholarPubMed
Lallukka, T, Kaikkonen, R, Harkanen, T, et al. (2014) Sleep and sickness absence: a nationally representative register-based follow-up study. Sleep 37: 1413–25.CrossRefGoogle ScholarPubMed
Landrigan, CP, Rothschild, JM, Cronin, JW, et al. (2004) Effect of reducing interns work hours on serious medical errors in intensive care units. New Engl J Med 351: 1838–48.CrossRefGoogle ScholarPubMed
Larson-Prior, LJ, Ju, Y, Galvin, JE (2014) Cortical–subcortical interactions in hypersomnia disorders: mechanisms underlying cognitive and behavioral aspects of the sleep–wake cycle. Front Neurol 5: 113.CrossRefGoogle ScholarPubMed
Laudon, M, Frydman-Marom, A (2014) Therapeutic effects of melatonin receptor agonists on sleep and comorbid disorders. Int J Mol Sci 15: 15924–50.CrossRefGoogle ScholarPubMed
Liira, J, Verbeek, JH, Costa, G, et al. (2014) Pharmacological interventions for sleepiness and sleep disturbances caused by shift work. Cochrane Database Syst Rev 8: CD009776.Google Scholar
Lim, DC, Veasey, SC (2010) Neural injury in sleep apnea. Curr Neurol Neurosci Rep 10: 4752.CrossRefGoogle ScholarPubMed
Liu, Y, Wheaton, AG, Chapman, DP, et al. (2013) Sleep duration and chronic disease among US adults age 45 years and older: evidence from the 2010 behavioral risk factor surveillance system. Sleep 36: 1421–7.CrossRefGoogle ScholarPubMed
Madras, BK, Xie, Z, Lin, Z, et al. (2006) Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro. J Pharmacol Exp Ther 319: 561–9.CrossRefGoogle ScholarPubMed
Makris, AP, Rush, CR, Frederich, RC, Kelly, TH (2004) Wake-promoting agents with different mechanisms of action: comparison of effects of modafinil and amphetamine on food intake and cardiovascular activity. Appetite 42: 185–95.CrossRefGoogle ScholarPubMed
Mansour, HA, Wood, J, Logue, T, et al. (2006) Association of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav 5: 150–7.CrossRefGoogle Scholar
Martin, JL, Hakim, AD (2011) Wrist actigraphy. Chest 139: 1514–27.CrossRefGoogle ScholarPubMed
Masri, S, Kinouchi, K, Sassone-Corsi, P (2015) Circadian clocks, epigenetics, and cancer. Curr Opin Oncol 27: 50–6.CrossRefGoogle ScholarPubMed
Mignot, EJM (2012) A practical guide to the therapy of narcolepsy and hypersomnia syndromes. Neurotherapeutics 9: 739–52.CrossRefGoogle Scholar
Miletic, V, Relja, M (2011) Restless legs syndrome. Coll Antropol 35: 1339–47.Google ScholarPubMed
Morgenthaler, TI, Kapur, VK, Brown, T, et al. (2007) Practice parameters for the treatment of narcolepsy and other hypersomnias of central origin. Sleep 30: 1705–11.CrossRefGoogle ScholarPubMed
Morgenthaler, TI, Lee-Chiong, T, Alessi, C, et al. (2007) Practice parameters for the clinical evaluation and treatment of circadian rhythm sleep disorders. Sleep 30: 1445–59.CrossRefGoogle ScholarPubMed
Morrissette, DA (2013) Twisting the night away: a review of the neurobiology, genetics, diagnosis, and treatment of shift work disorder. CNS Spectrums 18 (Suppl 1): 4553.CrossRefGoogle ScholarPubMed
Niervergelt, CM, Kripke, DF, Barrett, TB, et al. (2006) Suggestive evidence for association of circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B, Neuropsychiatr Genet 141: 234–41.Google Scholar
Norman, D, Haberman, PB, Valladares, EM (2012) Medical consequences and associations with untreated sleep-related breathing disorders and outcomes of treatments. J Calif Dent Assoc 40: 141–9.Google ScholarPubMed
O’Donoghue, FJ, Wellard, RM, Rochford, PD, et al. (2012) Magnetic resonance spectroscopy and neurocognitive dysfunction in obstructive sleep apnea before and after CPAP treatment. Sleep 35: 41–8.Google ScholarPubMed
Ohayon, MM (2012) Determining the level of sleepiness in the American population and its correlates. J Psychiatr Res 46: 422–7.CrossRefGoogle ScholarPubMed
Oosterman, JE, Kalsbeek, A, la Fleur, SE, et al. (2015) Impact of nutrition on circadian rhythmicity. Am J Physiol Regul Integr Comp Physiol 308: R337–50.CrossRefGoogle ScholarPubMed
Pail, G, Huf, W, Pjrek, E, et al. (2011) Bright-light therapy in the treatment of mood disorders. Neuropsychobiology 64: 152–62.CrossRefGoogle ScholarPubMed
Palagini, L, Biber, K, Riemann, D (2014) The genetics of insomnia: evidence for epigenetic mechanisms? Sleep Med Rev 18: 225–35.CrossRefGoogle ScholarPubMed
Partonen, T, Treutlein, J, Alpman, A, et al. (2007) Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann Med 39: 229–38.CrossRefGoogle ScholarPubMed
Pigeon, WR, Pinquart, M, Conner, K (2012) Meta-analysis of sleep disturbance and suicidal thoughts and behaviors. J Clin Psychiatry 73: e1160–7.CrossRefGoogle ScholarPubMed
Qureshi, IA, Mehler, MF (2014) Epigenetics of sleep and chronobiology. Curr Neurol Neurosci Rep 14: 432.CrossRefGoogle ScholarPubMed
Rogers, RR (2012) Past, present, and future use of oral appliance therapies in sleep-related breathing disorders. J Calif Dent Assoc 40: 151–7.Google ScholarPubMed
Sangal, RB, Thomas, L, Mitler, MM (1992) Maintenance of wakefulness test and multiple sleep latency test. Measurement of different abilities in patients with sleep disorders. Chest 101: 898902.CrossRefGoogle ScholarPubMed
Saper, CB, Lu, J, Chou, TC, Gooley, J (2005) The hypothalamic integrator for circadian rhythms. Trends Neurosci 3: 152–7.Google Scholar
Saper, CB, Scammell, TE, Lu, J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437: 1257–63.CrossRefGoogle ScholarPubMed
Schwartz, JRL, Nelson, MT, Schwartz, ER, Hughes, RJ (2004) Effects of modafinil on wakefulness and executive function in patients with narcolepsy experiencing late-day sleepiness. Clin Neuropharmacol 27: 74–9.CrossRefGoogle ScholarPubMed
Severino, G, Manchia, M, Contu, P, et al. (2009) Association study in a Sardinian sample between bipolar disorder and the nuclear receptor REV-ERBalpha gene, a critical component of the circadian clock system. Bipolar Disord 11: 215–20.CrossRefGoogle Scholar
Soria, V, Martinez-Amoros, E, Escaramis, G, et al. (2010) Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 35: 1279–89.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Mechanism of action of tasimelteon in non-24 sleep–wake syndrome: treatment for a circadian rhythm disorder in blind patients. CNS Spectrums 19: 475–87.CrossRefGoogle ScholarPubMed
Stippig, A, Hubers, U, Emerich, M (2015) Apps in sleep medicine. Sleep Breath 19: 411–17.CrossRefGoogle ScholarPubMed
Tafti, M, Dauvilliers, Y, Overeem, S (2007) Narcolepsy and familial advanced sleep-phase syndrome: molecular genetics of sleep disorders. Curr Opin Genet Dev 17: 222–7.CrossRefGoogle ScholarPubMed
Tahara, Y, Shibata, S (2014) Chrono-biology, chrono-pharmacology, and chrononutrition. J Pharmacol Sci 124: 320–35.CrossRefGoogle ScholarPubMed
Takahashi, S, Hong, HK, McDearmon, EL (2008) The genetic of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9: 764–75.CrossRefGoogle ScholarPubMed
Takao, T, Tachikawa, H, Kawanishi, Y, et al. (2007) CLOCK gene T3111C polymorphism is associated with Japanese schizophrenics: a preliminary study. Eur Neuropsychopharmacol 17: 273–6.CrossRefGoogle ScholarPubMed
Tarasiuk, A, Reuveni, H (2013) The economic impact of obstructive sleep apnea. Curr Opin Pulm Med 19: 639–44.Google ScholarPubMed
Thaiss, CA, Zeevi, D, Levy, M, et al. (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159: 514–29.CrossRefGoogle ScholarPubMed
Thomas, RJ, Kwong, K (2006) Modafinil activates cortical and subcortical sites in the sleep-deprived state. Sleep 29: 1471–81.CrossRefGoogle ScholarPubMed
Thomas, RJ, Rosen, BR, Stern, CE, Weiss, JW, Kwong, KK (2005) Functional imaging of working memory in obstructive sleep-disordered breathing. J Appl Physiol 98: 2226–34.CrossRefGoogle ScholarPubMed
Thorpy, MJ, Dauvilliers, Y (2015) Clinical and practical consideration in the pharmacologic management of narcolepsy. Sleep Med 16: 918.CrossRefGoogle ScholarPubMed
Trotti, LM, Saini, P, Bliwise, DL, et al. (2015) Clarithromycin in gamma-aminobutyric acid-related hypersomnolence: a randomized, crossover trial. Ann Neurol 78: 454–65.CrossRefGoogle ScholarPubMed
Trotti, LM, Saini, P, Freeman, AA, et al. (2013) Improvement in daytime sleepiness with clarithromycin in patients with GABA-related hypersomnia: clinical experience. J Psychopharmacol 28: 697702.CrossRefGoogle ScholarPubMed
Van Someren, EJ, Riemersma-Van Der Lek, RF (2007) Live to the rhythm, slave to the rhythm. Sleep Med Rev 11: 465–84.CrossRefGoogle Scholar
Wulff, K, Gatti, S, Wettstein, JG, Foster, RG (2010) Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 11: 589–99.CrossRefGoogle ScholarPubMed
Zaharna, M, Dimitriu, A, Guilleminault, C (2010) Expert opinion on pharmacotherapy of narcolepsy. Expert Opin Pharmacother 11: 1633–45.CrossRefGoogle ScholarPubMed
Zawilska, JB, Skene, DJ, Arendt, J. (2009) Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep 61: 383410.CrossRefGoogle ScholarPubMed
Broderick, M, Masri, T (2011) Histamine H3 receptor (H3R) antagonists and inverse agonists in the treatment of sleep disorders. Curr Pharm Design 17: 1426–9.CrossRefGoogle ScholarPubMed
Kotanska, M, Kuker, KJ, Szcaepanska, K, et al. (2018) The histamine H3 receptor inverse agonist pitolisant reduces body weight in obese mice. Arch Pharmacol 391: 875–81.CrossRefGoogle ScholarPubMed
Nomura, H, Mizuta, H, Norimoto, H, et al. (2019) Central histamine boosts perirhinal cortex activity and restores forgotten object memories. Biol Psychiatry 86: 230–9.CrossRefGoogle ScholarPubMed
Romig, A, Vitran, G, Giudice, TL, et al. (2018) Profile of pitolisant in the management of narcolepsy: design, development and place in therapy. Drug Des Devel Ther 12: 2665–75.Google Scholar
Schwartz, JC (2011) The histamine H3 receptor: from discovery to clinical trials with pitolisant. Br J Pharmacol 163: 713–21.CrossRefGoogle ScholarPubMed
Szakacs, Z, Dauvilliers, Y, Mikhaulov, V, et al. (2017) Safety and efficacy of pitolisant on cataplexy in patients with narcolepsy: a randomized, double-blind placebo controlled trial. Lancet Neurol 16: 200–7.CrossRefGoogle Scholar
Bennett, T, Bray, D, Neville, MW (2014) Suvorexant, a dual orexin receptor antagonist for the management of insomnia. PT 39: 264–6.Google ScholarPubMed
Bettica, P, Squassante, L, Groeger, JA, et al. (2012) Differential effects of a dual orexin receptor antagonist (SB-649868) and zolpidem on sleep initiation and consolidation, SWS, REM sleep, and EEG power spectra in a model of situational insomnia. Neuropsychopharmacology 37: 1224–33.CrossRefGoogle Scholar
Beuckmann, CT, Suzuki, M, Ueno, T, et al. (2017) In vitro and in silico characterization of lemborexant (E2006), a novel dual orexin receptor antagonist. J Pharmacol Exp Ther 362: 287–95.CrossRefGoogle ScholarPubMed
Beuckmann, CT, Ueno, T, Nakagawa, M, et al. (2019) Preclinical in vivo characterization of lemborexant (E2006) a novel dual orexin receptor antagonist for sleep/wake regulation. Sleep: doi 10.1093/sleep/zsz076.CrossRefGoogle Scholar
Bonnavion, P, de Lecea, L (2010) Hypocretins in the control of sleep and wakefulness. Curr Neurol Neurosci Rep 10: 174–9.CrossRefGoogle ScholarPubMed
Bourgin, P, Zeitzer, JM, Mignot, E (2008) CSF hypocretin-1 assessment in sleep and neurological disorders. Lancet Neurol 7: 649–62.CrossRefGoogle ScholarPubMed
Brisbare-Roch, C, Dingemanse, J, Koberstein, R, et al. (2007) Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med 13: 150–5.CrossRefGoogle ScholarPubMed
Cao, M, Guilleminault, C (2011) Hypocretin and its emerging role as a target for treatment of sleep disorders. Curr Neurol Neurosci Rep 11: 227–34.CrossRefGoogle ScholarPubMed
Citrome, L (2014) Suvorexant for insomnia: a systematic review of the efficacy and safety profile for this newly approved hypnotic – what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Pract 68: 1429–41.Google ScholarPubMed
Coleman, PJ, Schreier, JD, Cox, CD, et al. (2012) Discovery of [(2R, 5R)-5-{[(5‐fluoropyridin‐2‐yl)oxy]methyl}‐2‐methylpiperidin‐1‐yl] [5-methyl-2-(pyrimidin-2-yl)phenyl]methanone (MK-6096): a dual orexin receptor antagonist with potent sleep-promoting properties. Chem Med 7, 41524.Google Scholar
Dauvilliers, Y, Abril, B, Mas, E, et al. (2009) Normalization of hypocretin-1 in narcolepsy after intravenous immunoglobulin treatment. Neurology 73: 1333–4.CrossRefGoogle ScholarPubMed
de Lecea, L, Huerta, R (2015) Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol 5: 17.Google Scholar
DiFabio, R, Pellacani, A, Faedo, S (2011) Discovery process and pharmacological characterization of a novel dual orexin 1 and orexin 2 receptor antagonist useful for treatment of sleep disorders. Bioorg Med Chem Lett 21: 5562–7.Google Scholar
Dubey, AK, Handu, SS, Mediratta, PK (2015) Suvorexant: the first orexin receptor antagonist to treat insomnia. J Pharmacol Pharmacother 6: 118–21.CrossRefGoogle ScholarPubMed
Equihua, AC, De la Herran-Arita, AK, Drucker-Colin, R (2013) Orexin receptor antagonists as therapeutic agents for insomnia. Front Pharmacol 4: 110.CrossRefGoogle ScholarPubMed
Gentile, TA, Simmons, SJ, Watson, MN, et al. (2018) Effects of suvorexant, a dual orexin hypocretin receptor antagonist on impulsive behavior associated with cocaine. Neuropsychopharmacology 43: 1001–9.CrossRefGoogle ScholarPubMed
Gotter, AL, Winrow, CJ, Brunner, J, et al. (2013) The duration of sleep promoting efficacy by dual orexin receptor antagonists is dependent upon receptor occupancy threshold. BMC Neurosci 14: 90.CrossRefGoogle ScholarPubMed
Griebel, G, Decobert, M, Jacquet, A, et al. (2012) Awakening properties of newly discovered highly selective H3 receptor antagonists in rats. Behav Brain Res 232: 416–20.CrossRefGoogle ScholarPubMed
Herring, WJ, Connor, KM, Ivgy-May, N, et al. (2016) Suvorexant in patients with insomnia: results from two 3-month randomized controlled clinical trials. Biol Psychiatry 79: 136–48.CrossRefGoogle ScholarPubMed
Hoever, P, Dorffner, G, Benes, H, et al. (2012) Orexin receptor antagonism, a new sleep-enabling paradigm: a proof-of-concept clinical trial. Clin Pharmacol Ther 91: 975–85.CrossRefGoogle ScholarPubMed
Hoyer, D, Jacobson, LH (2013) Orexin in sleep, addiction, and more: is the perfect insomnia drug at hand? Neuropeptides 47: 477–88.CrossRefGoogle ScholarPubMed
Jones, BE, Hassani, OK (2013) The role of Hcrt/Orx and MCH neurons in sleep–wake state regulation. Sleep 36: 1769–72.CrossRefGoogle ScholarPubMed
Krystal, AD, Benca, RM, Kilduff, TS (2013) Understanding the sleep–wake cycle: sleep, insomnia, and the orexin system. J Clin Psychiatry 74 (Suppl 1): 320.CrossRefGoogle ScholarPubMed
Mahler, SV, Moorman, DE, Smith, RJ, et al. (2014) Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nat Neurosci 17: 1298–303.CrossRefGoogle ScholarPubMed
Michelson, D, Snyder, E, Paradis, E, et al. (2014) Safety and efficacy of suvorexant during 1-year treatment of insomnia with subsequent abrupt treatment discontinuation: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet Neurol 13: 461–71.CrossRefGoogle ScholarPubMed
Nixon, JP, Mavanji, V, Butterick, TA, et al. (2015) Sleep disorders, obesity, and aging: the role of orexin. Aging Res Rev 20: 6373.CrossRefGoogle ScholarPubMed
Rosenberg, R, Murphy, P, Zammit, G, et al. (2019) Comparison of lemborexant with placebo and zolpidem tartrate extended release for the treatment of older adults with insomnia disorder: a phase 3 randomized clinical trial. JAMA Network Open 2: e1918254CrossRefGoogle ScholarPubMed
Ruoff, C, Cao, M, Guilleminault, C (2011) Hypocretin antagonists in insomnia treatment and beyond. Curr Pharm Design 17: 1476–82.CrossRefGoogle ScholarPubMed
Sakurai, T, Mieda, M (2011) Connectomics of orexin-producing neurons: interface of systems of emotion, energy homeostasis and arousal. Trends Pharmacol Sci 32: 451–62.CrossRefGoogle ScholarPubMed
Scammel, TE, Winrow, CJ (2011) Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol 51: 243–66.CrossRefGoogle Scholar
Stahl, SM (2016) Mechanism of action of suvorexant. CNS Spectrums 21: 215–18.Google ScholarPubMed
Steiner, MA, Lecourt, H, Strasser, DS, Brisbare-Roch, C, Jenck, F (2011) Differential effects of the dual orexin receptor antagonist almorexant and the GABAA-α1 receptor modulator zolpidem, alone or combined with ethanol, on motor performance in the rat. Neuropsychopharmacology 36: 848–56.CrossRefGoogle ScholarPubMed
Vermeeren, A, Jongen, S, Murphy, P, et al. (2019) On the road driving performance the morning after bedtime administration of lemborexant in healthy adult and elderly volunteers. Sleep: doi: 10.1093.sleep/zsy260.CrossRefGoogle Scholar
Willie, JT, Chemelli, RM, Sinton, CM, et al. (2003) Distinct narcolepsy syndromes in orexin recepter-2 and orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron 38: 715–30.CrossRefGoogle Scholar
Winrow, CJ, Gotter, AL, Cox, CD, et al. (2012) Pharmacological characterization of MK-6096: a dual orexin receptor antagonist for insomnia. Neuropharmacology 62: 978–87.CrossRefGoogle ScholarPubMed
Yeoh, JW, Campbell, EJ, James, MH, et al. (2014) Orexin antagonists for neuropsychiatric disease: progress and potential pitfalls. Front Neurosci 8: 112.CrossRefGoogle ScholarPubMed
Abadie, P, Rioux, P, Scatton, B, et al. (1996) Central benzodiazepine receptor occupancy by zolpidem in the human brain as assessed by positron emission tomography. Science 295: 3544.Google ScholarPubMed
Allen, RP, Burchell, BJ, MacDonald, B, et al. (2009) Validation of the self-completed Cambridge–Hopkins questionnaire (CH-RLSq) for ascertainment of restless legs syndrome (RLS) in a population survey. Sleep Med 10: 1079–100.CrossRefGoogle Scholar
Bastien, CH, Vallieres, A, Morin, CM (2001) Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med 2: 297307.CrossRefGoogle ScholarPubMed
Bonnet, MH, Burton, GG, Arand, DL (2014) Physiological and medical findings in insomnia: implications for diagnosis and care. Sleep Med Rev 18: 95–8.CrossRefGoogle ScholarPubMed
Burke, RA, Faulkner, MA (2011) Gabapentin enacarbil for the treatment of restless legs syndrome (RLS). Expert Opin Pharmacother 12: 2905–14.CrossRefGoogle ScholarPubMed
Buysse, DJ, Reynolds, CF III, Monk, TH, et al. (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28: 193213.CrossRefGoogle ScholarPubMed
Cappuccio, FP, D’Elia, L, Strazzullo, P, et al. (2010) Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep 33: 585–92.CrossRefGoogle ScholarPubMed
Chahine, LM, Chemali, ZN (2006) Restless legs syndrome: a review. CNS Spectrums 11: 511–20.CrossRefGoogle ScholarPubMed
Dawson, GR, Collinson, N, Atack, JR (2005) Development of subtype selective GABAA modulators. CNS Spectrums 10: 21–7.CrossRefGoogle ScholarPubMed
De Lecea, L, Winkelman, JW (2020) Sleep and neuropsychiatric illness. Neuropsychopharmacol Rev 45: 1216.Google Scholar
Drover, DR (2004) Comparative pharmacokinetics and pharmacodynamics of short-acting hypnosedatives – zaleplon, zolpidem and zopiclone. Clin Pharmacokinet 43: 227–38.CrossRefGoogle ScholarPubMed
Durmer, JS, Dinges, DF (2005) Neurocognitive consequences of sleep deprivation. Semin Neurol 25: 117–29.CrossRefGoogle ScholarPubMed
Espana, RA, Scammell, TE (2011) Sleep neurobiology from a clinical perspective. Sleep 34: 845–58.Google ScholarPubMed
Fava, M, McCall, WV, Krystal, A, et al. (2006) Eszopiclone co-administered with fluoxetine in patients with insomnia coexisting with major depressive disorder. Biol Psychiatry 59: 1052–60.CrossRefGoogle ScholarPubMed
Freedom, T (2011) Sleep-related movement disorders. Dis Mon 57 : 438-47.Google ScholarPubMed
Frenette, E (2011) Restless legs syndrome in children: a review and update on pharmacological options. Curr Pharm Design 17: 1436–42.CrossRefGoogle ScholarPubMed
Garcia-Borreguero, D, Allen, R, Kohnen, R, et al. (2010) Loss of response during long-term treatment of restless legs syndrome: guidelines approved by the International Restless Legs Syndrome Study Group for use in clinical trials. Sleep Med 11: 956–9.CrossRefGoogle Scholar
Green, CB, Takahashi, JS, Bass, J (2008) The meter of metabolism. Cell 134: 728–42.CrossRefGoogle ScholarPubMed
Harris, J, Lack, L, Kemo, K, et al. (2012) A randomized controlled trial of intensive sleep retraining (ISR): a brief conditioning treatment for chronic insomnia. Sleep 35: 4960.CrossRefGoogle ScholarPubMed
Hening, W, Walters, AS, Allen, RP, et al. (2004) Impact, diagnosis and treatment of restless legs syndrome (RLS) in a primary care population: the REST (RLS Epidemiology, Symptoms, and Treatment) Primary Care Study. Sleep Med 5: 237–46.CrossRefGoogle Scholar
Koffel, EA, Koffel, JB, Gehrman, PR (2015) A meta-analysis of group cognitive behavioral therapy for insomnia. Sleep Med Rev 19: 616.CrossRefGoogle ScholarPubMed
Krystal, AD, Walsh, JK, Laska, E, et al. (2003) Sustained efficacy of eszopiclone over 6 months of nightly treatment: results of a randomized, double-blind, placebo-controlled study in adults with chronic insomnia. Sleep 26: 793–9.CrossRefGoogle ScholarPubMed
Morin, CM, Benca, R (2012) Chronic insomnia. Lancet 379: 1129–41.CrossRefGoogle ScholarPubMed
Nofzinger, EA, Buysse, DJ, Germain, A, et al. (2004) Functional neuroimaging evidence for hyperarousal in insomnia. Am J Psychiatry 161: 2126–9.CrossRefGoogle ScholarPubMed
Nutt, D, Stahl, SM (2010) Searching for perfect sleep: the continuing evolution of GABAA receptor modulators as hypnotics. J Psychopharmacol 24: 1601–2.CrossRefGoogle ScholarPubMed
Orzel-Gryglewska, J (2010) Consequences of sleep deprivation. Int J Occup Med Environ Health 23: 95114.CrossRefGoogle ScholarPubMed
Palma, JA, Urrestarazu, E, Iriarte, J (2013) Sleep loss as a risk factor for neurologic disorders: a review. Sleep Med 14: 229–36.CrossRefGoogle Scholar
Parthasarathy, S, Vasquez, MM, Halonen, M, et al. (2015) Persistent insomnia is associated with mortality risk. Am J Med 128: 268–75.CrossRefGoogle ScholarPubMed
Jr LR, Pinto, Alves, RC, Caixeta, E, et al. (2010) New guidelines for diagnosis and treatment of insomnia. Arq Neuropsiquiatr 68: 666–75.Google Scholar
Plante, DT (2017) Sleep propensity in psychiatric hypersomnolence: a systematic review and meta-analysis of multiple sleep latency findings. Sleep Med Rev 31: 4857.CrossRefGoogle Scholar
Reeve, K, Bailes, B. (2010) Insomnia in adults: etiology and management. JNP 6: 5360.Google Scholar
Richey, SM, Krystal, AD (2011) Pharmacological advances in the treatment of insomnia. Curr Pharm Design 17: 1471–5.CrossRefGoogle ScholarPubMed
Roth, T, Roehrs, T (2000) Sleep organization and regulation. Neurology 54 (Suppl 1): S27.Google ScholarPubMed
Sahar, S, Sassone-Corsi, P (2009) Metabolism and cancer: the circadian clock connection. Nature 9: 886–96.Google ScholarPubMed
Schutte-Rodin, S, Broch, L, Buysse, D, et al. (2008) Clinical guideline for the evaluation and management of chronic insomnia in adults. J Clin Sleep Med 4: 487504.CrossRefGoogle ScholarPubMed
Sehgal, A, Mignot, E (2011) Genetics of sleep and sleep disorders. Cell 146: 194207.CrossRefGoogle ScholarPubMed
Tafti, M (2009) Genetic aspects of normal and disturbed sleep. Sleep Med 10: S1721.CrossRefGoogle ScholarPubMed
Thorpe, AJ, Clair, A, Hochman, S, et al. (2011) Possible sites of therapeutic action in restless legs syndrome: focus on dopamine and α2δ ligands. Eur Neurol 66: 1829.CrossRefGoogle ScholarPubMed
Vgontzas, AN, Fernadez-Mendoza, J, Bixler, EO, et al. (2012) Persistent insomnia: the role of objective short sleep duration. Sleep 35: 61–8.CrossRefGoogle ScholarPubMed
Wu, JC, Gillin, JC, Buchsbaum, MS, et al. (2006) Frontal lobe metabolic decreases with sleep deprivation not totally reversed by recovery sleep. Neuropsychopharmacology 31: 2783–92.CrossRefGoogle Scholar
Zeitzer, JM, Morales-Villagran, A, Maidment, NT (2006) Extracellular adenosine in the human brain during sleep and sleep deprivation: an in vivo microdialysis study. Sleep 29: 455–61.CrossRefGoogle ScholarPubMed
Abad, VC, Guilleminault, C (2011) Pharmacological treatment of obstructive sleep apnea. Curr Pharm Design 17: 1418–25.CrossRefGoogle ScholarPubMed
Adenuga, O, Attarian, H (2014) Treatment of disorders of hypersomnolence. Curr Treat Options Neurol 16: 302.CrossRefGoogle ScholarPubMed
Ahmed, I, Thorpy, M (2010) Clinical features, diagnosis and treatment of narcolepsy. Clin Chest Med 31: 371–81.CrossRefGoogle ScholarPubMed
Aloia, MS, Arnedt, JT, Davis, JD, Riggs, RL, Byrd, D (2004) Neuropsychological sequelae of obstructive sleep apnea–hypopnea syndrome: a critical review. J Int Neuropsychol Soc 10: 772–85.CrossRefGoogle ScholarPubMed
Arallanes-Licea, E, Caldelas, I, De Ita-Perez, D, et al. (2014) The circadian timing system: a recent addition in the physiological mechanisms underlying pathological and aging processes. Aging Dis 5: 406–18.Google Scholar
Artioli, P, Lorenzi, C, Priovano, A, et al. (2007) How do genes exert their role? Period 3 gene variants and possible influences on mood disorder phenotypes. Eur Neuropsychopharmacol 17: 587–94.CrossRefGoogle ScholarPubMed
Aurora, RN, Chowdhuri, S, Ramar, K, et al. (2012) The treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analyses. Sleep 35: 1740.CrossRefGoogle ScholarPubMed
Banerjee, S, Wang, Y, Solt, LA, et al. (2014) Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour. Nat Commun 5: 5759.CrossRefGoogle ScholarPubMed
Barger, LK, Ogeil, RP, Drake, CL, et al. (2012) Validation of a questionnaire to screen for shift work disorder. Sleep 35: 1693–703.CrossRefGoogle ScholarPubMed
Benedetti, F, Serretti, A, Colombo, C, et al. (2003) Influence of CLOCK gene polymorphisms on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B, Neuropsychiatr Genet 123 : 23–6.Google Scholar
Black, JE, Hull, SG, Tiller, J, et al. (2010) The long-term tolerability and efficacy of armodafinil in patients with excessive sleepiness associated with treated obstructive sleep apnea, shift work disorder, or narcolepsy: an open-label extension study. J Clin Sleep Med 6: 458–66.CrossRefGoogle ScholarPubMed
Bogan, RK (2010) Armodafinil in the treatment of excessive sleepiness. Expert Opin Pharmacother 11: 9931002.CrossRefGoogle ScholarPubMed
Bonacci, JM, Venci, JV, Ghandi, MA (2015) Tasimelteon (HetliozTM): a new melatonin receptor agonist for the treatment of non-24 sleep-wake disorder. J Pharm Pract 28: 473–8.CrossRefGoogle ScholarPubMed
Brancaccio, M, Enoki, R, Mazuki, CN, et al. (2014) Network-mediated encoding of circadian time: the suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back. J Neurosci 34: 15192–9.CrossRefGoogle ScholarPubMed
Carocci, A, Catalano, A, Sinicropi, MS (2014) Melatonergic drugs in development. Clin Pharmacol Adv Applications 6: 127–37.Google ScholarPubMed
Cauter, EV, Plat, L, Scharf, MB, et al. (1997) Simultaneous stimulation of slow-wave sleep and growth hormone secretion by gamma-hydroxybutyrate in normal young men. J Clin Invest 100: 745–53.Google ScholarPubMed
Cermakian, N, Lange, T, Golombek, D, et al. (2013) Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int 30: 870–88.CrossRefGoogle ScholarPubMed
Cirelli, C (2009) The genetic and molecular regulation of sleep: from fruit flies to humans. Nat Rev Neurosci 10: 549–60.CrossRefGoogle ScholarPubMed
Colwell, CS (2011) Linking neural activity and molecular oscillators in the SCN. Nat Rev Neurosci 12: 553–69.CrossRefGoogle ScholarPubMed
Cook, H et al. (2003) A 12-month, open-label, multicenter extension trial of orally administered sodium oxybate for the treatment of narcolepsy. Sleep 26: 31–5.Google Scholar
Crowley, SJ, Lee, C, Tseng, CY, et al. (2004) Complete or partial circadian re-entrainment improves performance, alertness, and mood during night-shift work. Sleep 27: 1077–87.CrossRefGoogle ScholarPubMed
Czeisler, CA, Walsh, JK, Roth, T, et al. (2005) Modafinil for excessive sleepiness associated with shift-work sleep disorder. New Engl J Med 353: 476–86.CrossRefGoogle ScholarPubMed
Dallaspezia, S, Benedetti, F (2011) Chronobiological therapy for mood disorders. Expert Rev Neurother 11: 961–70.CrossRefGoogle ScholarPubMed
Darwish, M, Bond, M, Ezzet, F (2012) Armodafinil in patients with excessive sleepiness associated with shift work disorder: a pharmacokinetic/pharmacodynamic model for predicting and comparing their concentration-effect relationships. J Clin Pharmacol 52: 1328–42.CrossRefGoogle ScholarPubMed
Darwish, M, Kirby, M, D’Andrea, DM, et al. (2010) Pharmacokinetics of armodafinil and modafinil after single and multiple doses in patients with excessive sleepiness associated with treated obstructive sleep apnea: a randomized, open-label, crossover study. Clin Ther 32: 2074–87.CrossRefGoogle ScholarPubMed
Dauvilliers, Y, Tafti, M (2006) Molecular genetics and treatment of narcolepsy. Ann Med 38: 252–62.CrossRefGoogle ScholarPubMed
De la Herran-Arita, AK, Garcia-Garcia, F (2014) Narcolepsy as an immune-mediated disease. Sleep Disord 2014: 792687.CrossRefGoogle ScholarPubMed
Dinges, DF, Weaver, TE (2003) Effects of modafinil on sustained attention performance and quality of life in OSA patients with residual sleepiness while being treated with CPAP. Sleep Med 4: 393402.CrossRefGoogle Scholar
Dresler, M, Spoormaker, VI, Beitinger, P, et al. (2014) Neuroscience-driven discovery and development of sleep therapeutics. Pharmacol Ther 141: 300–34.CrossRefGoogle ScholarPubMed
Eckel-Mahan, KL, Patel, VR, de Mateo, S, et al. (2013) Reprogramming of the circadian clock by nutritional challenge. Cell 155: 1464–78.CrossRefGoogle ScholarPubMed
Ellis, CM, Monk, C, Simmons, A, et al. (1999) Functional magnetic resonance imaging neuroactivation studies in normal subjects and subjects with the narcoleptic syndrome. Actions of modafinil. J Sleep Res 8: 8593.CrossRefGoogle ScholarPubMed
Epstein, LJ, Kristo, D, Strollo, PJ, et al. (2009) Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med 5: 263–76.Google ScholarPubMed
Erman, MK, Seiden, DJ, Yang, R, et al. (2011) Efficacy and tolerability of armodafinil: effect on clinical condition late in the shift and overall functioning of patients with excessive sleepiness associated with shift work disorder. J Occup Environ Med 53: 1460–5.CrossRefGoogle ScholarPubMed
Froy, O (2010) Metabolism and circadian rhythms: implications for obesity. Endocr Rev 31: 124.CrossRefGoogle ScholarPubMed
Golombek, DA, Casiraghi, LP, Agostino, PV, et al. (2013) The times they are a-changing: effects of circadian desynchronization on physiology and disease. J Physiol Paris 107: 310–22.CrossRefGoogle ScholarPubMed
Guo, X, Zheng, L, Wang, J, et al. (2013) Epidemiological evidence for the link between sleep duration and high blood pressure: a systematic review and meta-analysis. Sleep Med 14: 324–32.CrossRefGoogle ScholarPubMed
Hampp, G, Ripperger, JA, Houben, T, et al. (2008) Regulation of monoamine oxidase A by circadian-clock components implies influence on mood. Curr Biol 18: 678–83.CrossRefGoogle ScholarPubMed
Harrison, EM, Gorman, MR (2012) Changing the waveform of circadian rhythms: considerations for shift-work. Front Neurol 3: 17.CrossRefGoogle ScholarPubMed
Hart, CL, Haney, M, Vosburg, SK, et al. (2006) Modafinil attentuates disruptions in cognitive performance during simulated night-shift work. Neuropsychopharmacology 31: 1526–36.CrossRefGoogle Scholar
He, B, Peng, H, Zhao, Y, et al. (2011) Modafinil treatment prevents REM sleep deprivation-induced brain function impairment by increasing MMP-9 expression. Brain Res 1426: 3842.CrossRefGoogle ScholarPubMed
Hirai, N, Nishino, S (2011) Recent advances in the treatment of narcolepsy. Curr Treat Options Neurol 13: 437–57.CrossRefGoogle ScholarPubMed
Horne, JA, Ostberg, O (1976) A self-assessment questionnaire to determine morningness–eveningness in human circadian rhythms. Int J Chronobiol 4: 97100.Google ScholarPubMed
Johansson, C, Willeit, M, Smedh, C, et al. (2003) Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology 28: 734–9.CrossRefGoogle ScholarPubMed
Khalsa, SB, Jewett, ME, Cajochen, C, et al. (2003) A phase response curve to single bright light pulses in human subjects. J Physiol 549(pt 3): 945–52.CrossRefGoogle ScholarPubMed
Knudsen, S, Biering-Sorensen, B, Kornum, BR, et al. (2012) Early IVIg treatment has no effect on post-H1N1 narcolepsy phenotype or hypocretin deficiency. Neurology 79: 102–3.CrossRefGoogle ScholarPubMed
Krakow, B, Ulibarri, VA (2013) Prevalence of sleep breathing complaints reported by treatment-seeking chronic insomnia disorder patients on presentation to a sleep medical center: a preliminary report. Sleep Breath 17: 317–22.CrossRefGoogle Scholar
Kripke, DE, Nievergelt, CM, Joo, E, et al. (2009) Circadian polymorphisms associated with affective disorders. J Circadian Rhythms 27: 2.CrossRefGoogle Scholar
Krystal, AD, Harsh, JR, Yang, R et al. (2010) A double-blind, placebo-controlled study of armodafinil for excessive sleepiness in patients with treated obstructive sleep apnea and comorbid depression. J Clin Psychiatry 71: 3240.CrossRefGoogle ScholarPubMed
Lallukka, T, Kaikkonen, R, Harkanen, T, et al. (2014) Sleep and sickness absence: a nationally representative register-based follow-up study. Sleep 37: 1413–25.CrossRefGoogle ScholarPubMed
Landrigan, CP, Rothschild, JM, Cronin, JW, et al. (2004) Effect of reducing interns work hours on serious medical errors in intensive care units. New Engl J Med 351: 1838–48.CrossRefGoogle ScholarPubMed
Larson-Prior, LJ, Ju, Y, Galvin, JE (2014) Cortical–subcortical interactions in hypersomnia disorders: mechanisms underlying cognitive and behavioral aspects of the sleep–wake cycle. Front Neurol 5: 113.CrossRefGoogle ScholarPubMed
Laudon, M, Frydman-Marom, A (2014) Therapeutic effects of melatonin receptor agonists on sleep and comorbid disorders. Int J Mol Sci 15: 15924–50.CrossRefGoogle ScholarPubMed
Liira, J, Verbeek, JH, Costa, G, et al. (2014) Pharmacological interventions for sleepiness and sleep disturbances caused by shift work. Cochrane Database Syst Rev 8: CD009776.Google Scholar
Lim, DC, Veasey, SC (2010) Neural injury in sleep apnea. Curr Neurol Neurosci Rep 10: 4752.CrossRefGoogle ScholarPubMed
Liu, Y, Wheaton, AG, Chapman, DP, et al. (2013) Sleep duration and chronic disease among US adults age 45 years and older: evidence from the 2010 behavioral risk factor surveillance system. Sleep 36: 1421–7.CrossRefGoogle ScholarPubMed
Madras, BK, Xie, Z, Lin, Z, et al. (2006) Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro. J Pharmacol Exp Ther 319: 561–9.CrossRefGoogle ScholarPubMed
Makris, AP, Rush, CR, Frederich, RC, Kelly, TH (2004) Wake-promoting agents with different mechanisms of action: comparison of effects of modafinil and amphetamine on food intake and cardiovascular activity. Appetite 42: 185–95.CrossRefGoogle ScholarPubMed
Mansour, HA, Wood, J, Logue, T, et al. (2006) Association of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav 5: 150–7.CrossRefGoogle Scholar
Martin, JL, Hakim, AD (2011) Wrist actigraphy. Chest 139: 1514–27.CrossRefGoogle ScholarPubMed
Masri, S, Kinouchi, K, Sassone-Corsi, P (2015) Circadian clocks, epigenetics, and cancer. Curr Opin Oncol 27: 50–6.CrossRefGoogle ScholarPubMed
Mignot, EJM (2012) A practical guide to the therapy of narcolepsy and hypersomnia syndromes. Neurotherapeutics 9: 739–52.CrossRefGoogle Scholar
Miletic, V, Relja, M (2011) Restless legs syndrome. Coll Antropol 35: 1339–47.Google ScholarPubMed
Morgenthaler, TI, Kapur, VK, Brown, T, et al. (2007) Practice parameters for the treatment of narcolepsy and other hypersomnias of central origin. Sleep 30: 1705–11.CrossRefGoogle ScholarPubMed
Morgenthaler, TI, Lee-Chiong, T, Alessi, C, et al. (2007) Practice parameters for the clinical evaluation and treatment of circadian rhythm sleep disorders. Sleep 30: 1445–59.CrossRefGoogle ScholarPubMed
Morrissette, DA (2013) Twisting the night away: a review of the neurobiology, genetics, diagnosis, and treatment of shift work disorder. CNS Spectrums 18 (Suppl 1): 4553.CrossRefGoogle ScholarPubMed
Niervergelt, CM, Kripke, DF, Barrett, TB, et al. (2006) Suggestive evidence for association of circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B, Neuropsychiatr Genet 141: 234–41.Google Scholar
Norman, D, Haberman, PB, Valladares, EM (2012) Medical consequences and associations with untreated sleep-related breathing disorders and outcomes of treatments. J Calif Dent Assoc 40: 141–9.Google ScholarPubMed
O’Donoghue, FJ, Wellard, RM, Rochford, PD, et al. (2012) Magnetic resonance spectroscopy and neurocognitive dysfunction in obstructive sleep apnea before and after CPAP treatment. Sleep 35: 41–8.Google ScholarPubMed
Ohayon, MM (2012) Determining the level of sleepiness in the American population and its correlates. J Psychiatr Res 46: 422–7.CrossRefGoogle ScholarPubMed
Oosterman, JE, Kalsbeek, A, la Fleur, SE, et al. (2015) Impact of nutrition on circadian rhythmicity. Am J Physiol Regul Integr Comp Physiol 308: R337–50.CrossRefGoogle ScholarPubMed
Pail, G, Huf, W, Pjrek, E, et al. (2011) Bright-light therapy in the treatment of mood disorders. Neuropsychobiology 64: 152–62.CrossRefGoogle ScholarPubMed
Palagini, L, Biber, K, Riemann, D (2014) The genetics of insomnia: evidence for epigenetic mechanisms? Sleep Med Rev 18: 225–35.CrossRefGoogle ScholarPubMed
Partonen, T, Treutlein, J, Alpman, A, et al. (2007) Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann Med 39: 229–38.CrossRefGoogle ScholarPubMed
Pigeon, WR, Pinquart, M, Conner, K (2012) Meta-analysis of sleep disturbance and suicidal thoughts and behaviors. J Clin Psychiatry 73: e1160–7.CrossRefGoogle ScholarPubMed
Qureshi, IA, Mehler, MF (2014) Epigenetics of sleep and chronobiology. Curr Neurol Neurosci Rep 14: 432.CrossRefGoogle ScholarPubMed
Rogers, RR (2012) Past, present, and future use of oral appliance therapies in sleep-related breathing disorders. J Calif Dent Assoc 40: 151–7.Google ScholarPubMed
Sangal, RB, Thomas, L, Mitler, MM (1992) Maintenance of wakefulness test and multiple sleep latency test. Measurement of different abilities in patients with sleep disorders. Chest 101: 898902.CrossRefGoogle ScholarPubMed
Saper, CB, Lu, J, Chou, TC, Gooley, J (2005) The hypothalamic integrator for circadian rhythms. Trends Neurosci 3: 152–7.Google Scholar
Saper, CB, Scammell, TE, Lu, J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437: 1257–63.CrossRefGoogle ScholarPubMed
Schwartz, JRL, Nelson, MT, Schwartz, ER, Hughes, RJ (2004) Effects of modafinil on wakefulness and executive function in patients with narcolepsy experiencing late-day sleepiness. Clin Neuropharmacol 27: 74–9.CrossRefGoogle ScholarPubMed
Severino, G, Manchia, M, Contu, P, et al. (2009) Association study in a Sardinian sample between bipolar disorder and the nuclear receptor REV-ERBalpha gene, a critical component of the circadian clock system. Bipolar Disord 11: 215–20.CrossRefGoogle Scholar
Soria, V, Martinez-Amoros, E, Escaramis, G, et al. (2010) Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 35: 1279–89.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Mechanism of action of tasimelteon in non-24 sleep–wake syndrome: treatment for a circadian rhythm disorder in blind patients. CNS Spectrums 19: 475–87.CrossRefGoogle ScholarPubMed
Stippig, A, Hubers, U, Emerich, M (2015) Apps in sleep medicine. Sleep Breath 19: 411–17.CrossRefGoogle ScholarPubMed
Tafti, M, Dauvilliers, Y, Overeem, S (2007) Narcolepsy and familial advanced sleep-phase syndrome: molecular genetics of sleep disorders. Curr Opin Genet Dev 17: 222–7.CrossRefGoogle ScholarPubMed
Tahara, Y, Shibata, S (2014) Chrono-biology, chrono-pharmacology, and chrononutrition. J Pharmacol Sci 124: 320–35.CrossRefGoogle ScholarPubMed
Takahashi, S, Hong, HK, McDearmon, EL (2008) The genetic of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9: 764–75.CrossRefGoogle ScholarPubMed
Takao, T, Tachikawa, H, Kawanishi, Y, et al. (2007) CLOCK gene T3111C polymorphism is associated with Japanese schizophrenics: a preliminary study. Eur Neuropsychopharmacol 17: 273–6.CrossRefGoogle ScholarPubMed
Tarasiuk, A, Reuveni, H (2013) The economic impact of obstructive sleep apnea. Curr Opin Pulm Med 19: 639–44.Google ScholarPubMed
Thaiss, CA, Zeevi, D, Levy, M, et al. (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159: 514–29.CrossRefGoogle ScholarPubMed
Thomas, RJ, Kwong, K (2006) Modafinil activates cortical and subcortical sites in the sleep-deprived state. Sleep 29: 1471–81.CrossRefGoogle ScholarPubMed
Thomas, RJ, Rosen, BR, Stern, CE, Weiss, JW, Kwong, KK (2005) Functional imaging of working memory in obstructive sleep-disordered breathing. J Appl Physiol 98: 2226–34.CrossRefGoogle ScholarPubMed
Thorpy, MJ, Dauvilliers, Y (2015) Clinical and practical consideration in the pharmacologic management of narcolepsy. Sleep Med 16: 918.CrossRefGoogle ScholarPubMed
Trotti, LM, Saini, P, Bliwise, DL, et al. (2015) Clarithromycin in gamma-aminobutyric acid-related hypersomnolence: a randomized, crossover trial. Ann Neurol 78: 454–65.CrossRefGoogle ScholarPubMed
Trotti, LM, Saini, P, Freeman, AA, et al. (2013) Improvement in daytime sleepiness with clarithromycin in patients with GABA-related hypersomnia: clinical experience. J Psychopharmacol 28: 697702.CrossRefGoogle ScholarPubMed
Van Someren, EJ, Riemersma-Van Der Lek, RF (2007) Live to the rhythm, slave to the rhythm. Sleep Med Rev 11: 465–84.CrossRefGoogle Scholar
Wulff, K, Gatti, S, Wettstein, JG, Foster, RG (2010) Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 11: 589–99.CrossRefGoogle ScholarPubMed
Zaharna, M, Dimitriu, A, Guilleminault, C (2010) Expert opinion on pharmacotherapy of narcolepsy. Expert Opin Pharmacother 11: 1633–45.CrossRefGoogle ScholarPubMed
Zawilska, JB, Skene, DJ, Arendt, J. (2009) Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep 61: 383410.CrossRefGoogle ScholarPubMed
Arnsten, AFT (2006) Fundamentals of attention deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry 67 (Suppl 8): 712.Google ScholarPubMed
Arnsten, AFT (2006) Stimulants: therapeutic actions in ADHD. Neuropsychopharmacology 31: 2376–83.CrossRefGoogle ScholarPubMed
Arnsten, AFT (2009) Stress signaling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 10: 410–22.CrossRefGoogle ScholarPubMed
Arnsten, AFT, Li, BM (2005) Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry 57: 1377–84.CrossRefGoogle ScholarPubMed
Avery, RA, Franowicz, JS, Phil, M, et al. (2000) The alpha 2a adrenoceptor agonist, guanfacine, increases regional cerebral blood flow in dorsolateral prefrontal cortex of monkeys performing a spatial working memory task. Neuropsychopharmacology 23: 240–9.CrossRefGoogle ScholarPubMed
Berridge, CW, Devilbiss, DM, Andrzejewski, ME, et al. (2006) Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 60: 1111–20.CrossRefGoogle ScholarPubMed
Berridge, CW, Shumsky, JS, Andrzejewski, ME, et al. (2012) Differential sensitivity to psychostimulants across prefrontal cognitive tasks: differential involvement of noradrenergic α1- and α2-receptors. Biol Psychiatry 71: 467–73.CrossRefGoogle ScholarPubMed
Biederman, J (2004) Impact of comorbidity in adults with attention deficit/hyperactivity disorder. J Clin Psychiatry 65 (Suppl 3): 37.Google ScholarPubMed
Biederman, J, Petty, CR, Fried, R, et al. (2007) Stability of executive function deficits into young adult years: a prospective longitudinal follow-up study of grown up males with ADHD. Acta Psychiatr Scand 116: 129–36.CrossRefGoogle Scholar
Clerkin, SM, Schulz, KP, Halperin, JM (2009) Guanfacine potentiates the activation of prefrontal cortex evoked by warning signals. Biol Psychiatry 66: 307–12.CrossRefGoogle ScholarPubMed
Cortese, S, Adamo, N, Del Giovane, C, et al. (2018) Comparative efficacy and tolerability of medications for attention deficit hyperactivity disorder in children, adolescents, and adults: a systematic review and network meta-analysis. Lancet Psychiatry 5: 727–38.Google ScholarPubMed
Easton, N, Shah, YB, Marshall, FH, Fone, KC, Marsden, CA (2006) Guanfacine produces differential effects in frontal cortex compared with striatum: assessed by phMRI BOLD contrast. Psychopharmacology 189: 369–85.CrossRefGoogle ScholarPubMed
Faraone, SV, Biederman, J, Spencer, T (2006) Diagnosing adult attention deficit hyperactivity disorder: are late onset and subthreshold diagnoses valid? Am J Psychiatry 163: 1720–9.CrossRefGoogle ScholarPubMed
Franke, B, Nucgekubu, G, Asherson, P, et al. (2018) Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan. Eur Neuropsychopharmacol 28: 1059–88.CrossRefGoogle Scholar
Fusar-Poli, P, Rubia, K, Rossi, G, Sartori, G, Balottin, U (2012) Striatal dopamine transporter alterations in ADHD: pathophysiology or adaptation to psychostimulants? a meta-analysis. Am J Psychiatry 169: 264–72.CrossRefGoogle ScholarPubMed
Grady, M, Stahl, SM (2012) A horse of a different color: how formulation influences medication effects. CNS Spectrums 17: 63–9.CrossRefGoogle ScholarPubMed
Hannestad, J, Gallezot, JD, Planeta-Wilson, B, et al. (2010) Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo. Biol Psychiatry 68: 854–60.CrossRefGoogle ScholarPubMed
Jakala, P, Riekkinen, M, Sirvio, J, et al. (1999) Guanfacine, but not clonidine, improves planning and working memory performance in humans. Neuropsychopharmacology 20: 460–70.CrossRefGoogle ScholarPubMed
Johnson, K, Liranso, T, Saylor, K, et al. (2020) A phase II double blind placebo controlled efficacy and safety study of SPN-812 (extended release vilaxazine) in children with ADHD. J Atten Disord 24: 348–58.CrossRefGoogle Scholar
Kessler, RC, Adler, L, Barkley, R (2006) The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatry 163: 716–23.CrossRefGoogle ScholarPubMed
Kessler, RC, Green, JG, Adler, LA, et al. (2010) Structure and diagnosis of adult attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 67: 1168–78.CrossRefGoogle ScholarPubMed
Kollins, SH, McClernon, JM, Fuemmeler, BF (2005) Association between smoking and attention deficit/hyperactivity disorder symptoms in a population based sample of young adults. Arch Gen Psychiatry 62: 1142–7.CrossRefGoogle Scholar
Madras, BK, Miller, GM, Fischman, AJ (2005) The dopamine transporter and attention deficit/hyperactivity disorder. Biol Psychiatry 57: 1397–409.CrossRefGoogle Scholar
Matthijssen, AFM, Dietrich, A, Bierens, M, et al. (2019) Continued benefits of methylphenidate in ADHD after 2 years in clinical practice: a randomized placebo-controlled discontinuation study. Am J Psychiatry 176: 754–62.CrossRefGoogle ScholarPubMed
Mattingly, G, Anderson, RH (2016) Optimizing outcomes of ADHD treatment: from clinical targets to novel delivery systems. CNS Spectrums 21: 4858.CrossRefGoogle ScholarPubMed
Pinder, RM, Brogden, RN, Speight, TM, et al. (1977) Voloxazine: a review of its pharmacological properties and therapeutic efficacy in depressive illness. Drugs 13: 401–21.Google ScholarPubMed
Pingault, JB, Tremblay, RE, Vitaro, F, et al. (2011) Childhood trajectories of inattention and hyperactivity and prediction of educational attainment in early adulthood: a 16-year longitudinal population-based study. Am J Psychiatry 168: 1164–70.CrossRefGoogle ScholarPubMed
Seidman, LJ, Valera, EM, Makris, N, et al. (2006) Dorsolateral prefrontal and anterior cingulate cortex volumetric abnormalities in adults with attention-deficit/hyperactivity disorder identified by magnetic resonance imaging. Biol Psychiatry 60: 1071–80.CrossRefGoogle ScholarPubMed
Shaw, P, Stringaris, A, Nigg, J, et al. (2014) Emotion dysregulation in attention deficit hyperactivity disorder. Am J Psychiatry 171: 276–93.CrossRefGoogle ScholarPubMed
Spencer, TJ, Biederman, J, Madras, BK, et al. (2005) In vivo neuroreceptor imaging in attention deficit/hyperactivity disorder: a focus on the dopamine transporter. Biol Psychiatry 57: 1293–300.CrossRefGoogle ScholarPubMed
Spencer, TJ, Bonab, AA, Dougherty, DD, et al. (2012) Understanding the central pharmacokinetics of spheroidal oral drug absorption system (SODAS) dexmethylphenidate: a positron emission tomography study of dopamine transporter receptor occupancy measured with C-11 altropane. J Clin Psychiatry 73: 346–52.CrossRefGoogle ScholarPubMed
Stahl, SM (2009) The prefrontal cortex is out of tune in attention-deficit/hyperactivity disorder. J Clin Psychiatry 70: 950–1.CrossRefGoogle ScholarPubMed
Stahl, SM (2009) Norepinephrine and dopamine regulate signals and noise in the prefrontal cortex. J Clin Psychiatry 70: 617–18.CrossRefGoogle ScholarPubMed
Stahl, SM (2010) Mechanism of action of stimulants in attention deficit/hyperactivity disorder. J Clin Psychiatry 71: 1213.CrossRefGoogle ScholarPubMed
Stahl, SM (2010) Mechanism of action of α2A-adrenergic agonists in attention-deficit/hyperactivity disorder with or without oppositional symptoms. J Clin Psychiatry 71: 223–24.Google ScholarPubMed
Steere, JC, Arnsten, AFT (1997) The alpha 2A noradrenergic receptor agonist guanfacine improves visual object discrimination reversal performance in aged rhesus monkeys. Behav Neurosci 111: 883–91.CrossRefGoogle ScholarPubMed
Surman, CBH, Biederman, J, Spencer, T (2011) Deficient emotional self regulation and adult attention deficit hyperactivity disorder: a family risk analysis. Am J Psychiatry 168: 617–23.CrossRefGoogle ScholarPubMed
Swanson, J, Baler, RD, Volkow, ND (2011) Understanding the effects of stimulant medications on cognition in individuals with attention-deficit hyperactivity disorder: a decade of progress. Neuropsychopharmacology 36: 207–26.CrossRefGoogle ScholarPubMed
Turgay, A, Goodman, DW, Asherson, P, et al. (2012) Lifespan persistance of ADHD: the lift transition model and its application. J Clin Psychiatry 73: 192201.CrossRefGoogle Scholar
Turner, DC, Clark, L, Dowson, J, Robbins, TW, Sahakian, BJ (2004) Modafinil improves cognition and response inhibition in adult attention deficit/hyperactivity disorder. Biol Psychiatry 55: 1031–40.CrossRefGoogle ScholarPubMed
Turner, DC, Robbins, TW, Clark, L, et al. (2003) Cognitive enhancing effects of modafinil in healthy volunteers. Psychopharmacology 165: 260–9.CrossRefGoogle ScholarPubMed
Vaughan, BS, March, JS, Kratochvil, CJ (2012) The evidence-based pharmacological treatment of pediatric ADHD. Int J Neuropsychopharmacol 15: 2739.CrossRefGoogle Scholar
Volkow, ND, Wong, GJ, Kollins, SH, et al. (2009) Evaluating dopamine reward pathway in ADHD: Clinical implications. JAMA 302: 1084–91.CrossRefGoogle ScholarPubMed
Wang, M, Ramos, BP, Paspalas, CD, et al. (2007) α2A-Adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129: 397410.CrossRefGoogle ScholarPubMed
Wigal, T, Brams, M, Gasior, M, et al. (2010) Randomized, double-blind, placebo-controlled, crossover study of the efficacy and safety of lisdexamfetamine dimesylate in adults with attention-deficit/hyperactivity disorder: novel findings using a simulated adult workplace environment design. Behav Brain Funct 6: 3448.CrossRefGoogle ScholarPubMed
Wilens, TE (2007) Lisdexamfetamine for ADHD. Curr Psychiatry 6: 96–105.Google Scholar
Yang, L, Cao, Q, Shuai, L (2012) Comparative study of OROS-MPH and atomoxetine on executive function improvement in ADHD: a randomized controlled trial. Int J Neuropsychopharmacol 15: 1516.CrossRefGoogle ScholarPubMed
Zang, YF, Jin, Z, Weng, XC, et al. (2005) Functional MRI in attention deficit hyperactivity disorder: evidence for hypofrontality. Brain Dev 27: 544–50.CrossRefGoogle ScholarPubMed
Zuvekas, SH, Vitiello, B (2012) Stimulant medication use in children: a 12-year perspective. Am J Psychiatry 169: 160–6.CrossRefGoogle ScholarPubMed
Bacher, I, Rabin, R, Woznica, A, Sacvco, KA, George, TP (2010) Nicotinic receptor mechanisms in neuropsychiatric disorders: therapeutic implications. Prim Psychiatry 17: 3541.Google Scholar
Fryer, AD, Christopoulos, A, Nathanson, NM (eds.) (2012) Muscarinic Receptors. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Geldmacher, DS, Provenano, G, McRae, T, et al. (2003) Donepezil is associated with delayed nursing home placement in patients with Alzheimer’s disease. J Am Geriatr Soc 51: 937–44.CrossRefGoogle ScholarPubMed
Grothe, M, Heinsen, H, Teipel, SF (2012) Atrophy of the cholinergic basal forebrain over the adult age range and in early states of Alzheimer’s disease. Biol Psychiatry 71: 805–13.CrossRefGoogle ScholarPubMed
Hasselmo, ME, Sarter, M (2011) Nodes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36: 5273.CrossRefGoogle Scholar
Lane, RM, Potkin, SG, Enz, A (2006) Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 9: 101–24.Google ScholarPubMed
Ohta, Y, Darwish, M, Hishikawa, N, et al. (2017) Therapeutic effects of drug switching between acetylcholinesterase inhibitors in patients with Alzheimer’s disease. Geriatr Gerontol Int 17: 1843–8.CrossRefGoogle ScholarPubMed
Pepeu, G, Giovannini, M (2017) The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res 1670: 173–84.CrossRefGoogle ScholarPubMed
Tariot, PN, Farlow, MR, Grossberg, GT, et al. (2004) Memantine treatment in patients with moderate to severe Alzheimer’s disease already receiving donepezil. JAMA 291: 317–24.CrossRefGoogle ScholarPubMed
Anastasiou, CA, Yannakoulia, M, Kosmidis, MH, et al. (2017) Mediterranean diet and cognitive health: initial results from the Hellenic Longitudinal Investigation of ageing and diet. PLOS ONE 12: e0182048.CrossRefGoogle ScholarPubMed
Aridi, YS, Walker, JL, Wright, ORL (2017) The association between the Mediterranean dietary pattern and cognitive health: a systematic review. Nutrients 9: E674.CrossRefGoogle ScholarPubMed
Ballard, C, Khan, Z, Clack, H, et al. (2011) Nonpharmacological treatment of Alzheimer disease. Can J Psychiatry 56: 589–95.CrossRefGoogle ScholarPubMed
Buchman, AS, Boyle, PA, Yu, L, et al. (2012) Total daily physical activity and the risk of AD and cognitive decline in older adults. Neurology 78: 1323–9.CrossRefGoogle ScholarPubMed
Burmester, B, Leathem, J, Merrick, P (2016) Subjective cognitive complaints and objective cognitive function in aging: a systematic review and meta-analysis of recent cross-sectional findings. Neuropsychol Rev 26: 376–93.CrossRefGoogle ScholarPubMed
Cederholm, T (2017) Fish consumption and omega-3 fatty acid supplementation for prevention or treatment of cognitive decline, dementia or Alzheimer’s disease in older adults: any news? Curr Opin Clin Nutr Metab Care 20: 104–9.CrossRefGoogle ScholarPubMed
Cepoiu-Martin, M, Tam-Tham, H, Patten, S, et al. (2016) Predictors of long-term care placement in persons with dementia: a systematic review and metaanalysis. Int J Geriatr Psychiatry 31: 1151–71.CrossRefGoogle ScholarPubMed
Ercoli, L, Siddarth, P, Huang, SC, et al. (2006) Perceived loss of memory ability and cerebral metabolic decline in persons with the apolipoprotein E-IV genetic risk for Alzheimer disease. Arch Gen Psychiatry 63: 442–8.CrossRefGoogle ScholarPubMed
Gu, Y, Brickman, AM, Stern, Y, et al. (2015) Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology 85: 1744–51.CrossRefGoogle Scholar
Hardman, RJ, Kennedy, G, Macpherson, H, et al. (2016) Adherence to a Mediterranean-style diet and effects on cognition in adults: a qualitative evaluation and systematic review of longitudinal and prospective trials. Front Nutr 3: 113.CrossRefGoogle ScholarPubMed
Hinz, FI, Geschwind, DH (2017) Molecular genetics of neurodegenerative dementias. Cold Spring Harb Perspect Biol 9: a023705.CrossRefGoogle ScholarPubMed
Knight, A, Bryan, J, Murphy, K (2016) Is the Mediterranean diet a feasible approach to preserving cognitive function and reducing risk of dementia for older adults in Western countries? New insights and future directions. Ageing Res Rev 25: 85101.CrossRefGoogle ScholarPubMed
Kullmann, S, Heni, M, Hallschmid, M, et al. (2016) Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev 96: 1169–209.CrossRefGoogle ScholarPubMed
Larson, EB, Wang, L, Bowen, JD, et al. (2006) Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 144: 7381.CrossRefGoogle ScholarPubMed
Lee, HS, Park, SW, Park, YJ (2016) Effects of physical activity programs on the improvement of dementia symptom: a meta-analysis. Biomed Res Int 2016: 2920146.CrossRefGoogle ScholarPubMed
Lee, SH, Zabolotny, JM, Huang, H, et al. (2016) Insulin in the nervous system and the mind: functions in metabolism, memory, and mood. Mol Metab 5: 589601.CrossRefGoogle ScholarPubMed
Li, Y, Sekine, T, Funayama, M, et al. (2014) Clinicogenetic study of GBA mutations in patients with familial Parkinson’s disease. Neurobiol Aging 35: 935.e38.CrossRefGoogle ScholarPubMed
Lim, SY, Kim, EJ, Kim, A, et al. (2016) Nutritional factors affecting mental health. Clin Nutr Res 5: 143–52.CrossRefGoogle ScholarPubMed
Marcason, W (2015) What are the components of the MIND diet? J Acad Nutr Diet 115: 1744.CrossRefGoogle ScholarPubMed
Matsuzaki, T, Sasaki, K, Tanizaki, Y, et al. (2010) Insulin resistance is associated with the pathology of Alzheimer disease. Neurology 75: 764–70.CrossRefGoogle ScholarPubMed
Ngandu, T, Lehtisalo, J, Solomon, A, et al. (2015) A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomized controlled trial. Lancet 385: 2255–63.CrossRefGoogle Scholar
O’Donnell, CA, Browne, S, Pierce, M, et al. (2015) Reducing dementia risk by targeting modifiable risk factors in mid-life: study protocol for the Innovative Midlife Intervention for Dementia Deterrence (In-MINDD) randomized controlled feasibility trial. Pilot Feasibility Stud 1: 40.CrossRefGoogle Scholar
Olszewska, DA, Lonergan, R, Fallon, EM, et al. (2016) Genetics of frontotemporal dementia. Curr Neurol Neurosci Rep 16: 107.CrossRefGoogle ScholarPubMed
Petersson, SD, Philippou, E (2016) Mediterranean diet, cognitive function, and dementia: a systematic review of the evidence. Adv Nutr 7: 889904.CrossRefGoogle ScholarPubMed
Qosa, H, Mohamed, LA, Batarseh, YS, et al. (2015) Extra-virgin olive oil attenuates amyloid-β and tau pathologies in the brains of TgSwD1 mice. J Nutr Biochem 26: 1479–90.CrossRefGoogle ScholarPubMed
Rigacci, S (2015) Olive oil phenols as promising multi-targeting agents against Alzheimer’s disease. Adv Exp Med Biol 863: 120.CrossRefGoogle ScholarPubMed
Rosenberg, RN, Lambracht-Washington, D, Yu, G, et al. (2016) Genomics of Alzheimer disease: a review. JAMA Neurol 73: 867–74.CrossRefGoogle ScholarPubMed
Schellenberg, GD, Montine, TJ (2012) The genetics and neuropathology of Alzheimer’s disease. Acta Neuropathol 124: 305–23.CrossRefGoogle ScholarPubMed
Valenzuela, MJ, Matthews, FE, Brayne, C, et al. for the Medical Research Council Cognitive Function and Ageing Study (2012) Multiple biological pathways link cognitive lifestyle to protection from dementia. Biol Psychiatry 71: 783–91.Google Scholar
Yang, T, Sun, Y, Lu, Z, et al. (2017) The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Res Rev 34: 1529.CrossRefGoogle ScholarPubMed
Zillox, LA, Chadrasekaran, K, Kwan, JY, et al. (2016) Diabetes and cognitive impairment. Curr Diab Rep 16: 111.Google Scholar
Annus, A, Csati, A, Vecsei, L (2016) Prion diseases: new considerations. Clin Neurol Neurosurg 150: 125–32.CrossRefGoogle ScholarPubMed
Arai, T (2014) Significance and limitation of the pathological classification of TDP-43 proteinopathy. Neuropathology 34: 578–88.CrossRefGoogle ScholarPubMed
Arendt, T, Steiler, JT, Holzer, M (2016) Tau and tauopathies. Brain Res Bull 126: 238–92.CrossRefGoogle ScholarPubMed
Asken, BM, Sullan, MJ, Snyder, AR, et al. (2016) Factors influencing clinical correlates of chronic traumatic encephalopathy (CTE): a review. Neuropsychol Rev 26: 340–63.CrossRefGoogle ScholarPubMed
Atri, A (2016) Imaging of neurodegenerative cognitive and behavioral disorders: practical considerations for dementia clinical practice. Handb Clin Neurol 136: 971–84.CrossRefGoogle ScholarPubMed
Azizi, SA, Azizi, SA (2018) Synucleinopathies in neurodegenerative diseases: accomplices, an inside job and selective vulnerability. Neurosci Lett 672: 150–2.CrossRefGoogle ScholarPubMed
Ballard, C, Mobley W, Hardy J, Williams G, Corbett A (2016) Dementia in Down’s syndrome. Lancet Neurol 15: 622–36.CrossRefGoogle ScholarPubMed
Ballard, C, Ziabreva, I, Perry, R, et al. (2006) Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology 67: 1931–4.CrossRefGoogle ScholarPubMed
Benskey, MJ, Perez, RG, Manfredsson, FP (2016) The contribution of alpha synuclein to neuronal survival and function: implications for Parkinson’s disease. J Neurochemistry 137: 331–59.CrossRefGoogle ScholarPubMed
Bonifacio, G, Zamboni, G (2016) Brain imaging in dementia. Postgrad Med J 92: 333–40.CrossRefGoogle ScholarPubMed
Boxer, AL, Yu, JT, Golbe, LI, et al. (2017) Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol 166: 552–63.Google Scholar
Braak, H, Del Tredici, K, Rub, U, et al. (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24: 197211.CrossRefGoogle ScholarPubMed
Burchell, JT, Panegyres, PK (2016) Prion diseases: immunotargets and therapy. ImmunoTargets Ther 5: 5768.Google ScholarPubMed
Cheung, CY, Ikram, MK, Chen, C, et al. (2017) Imaging retina to study dementia and stroke. Prog Brain Retinal Eye Res 57: 89107.CrossRefGoogle ScholarPubMed
Chutinet, A, Rost, NS (2014) White matter disease as a biomarker for long-term cerebrovascular disease and dementia. Curr Treat Options Cardiovasc Med 16: 292.CrossRefGoogle ScholarPubMed
Dugger, BN, Dickson, DW (2017) Pathology of neurodegenerative diseases. Cold Springs Harb Perspect Biol 9: a028035.Google ScholarPubMed
Eddy, CM, Parkinson, EG, Rickards, HE (2016) Changes in mental state and behavior in Huntington’s disease. Lancet Psychiatry 3: 1079–86.CrossRefGoogle ScholarPubMed
Emre, M (2007) Treatment of dementia associated with Parkinson’s disease. Parkinsonism Relat Disord 13 (Suppl 3): S457–61.CrossRefGoogle ScholarPubMed
Eusebio, A, Koric, L, Felician, O, et al. (2016) Progressive supranuclear palsy and corticobasal degeneration: diagnostic challenges and clinicopathological considerations. Rev Neurol (Paris) 172: 488502.CrossRefGoogle ScholarPubMed
Foo, H, Mak, E, Yong, TT (2017) Progression of subcortical atrophy in mild Parkinson’s disease and its impact on cognition. Eur J Neurol 24: 341–8.CrossRefGoogle ScholarPubMed
Ford, AH (2016) Preventing delirium in dementia: managing risk factors. Maturitas 92: 3540.CrossRefGoogle ScholarPubMed
Galvin, JE (2015) Improving the clinical detection of Lewy body dementia with the Lewy Body Composite Risk Score. Alzheimers Dement (Amst) 1: 316–24.Google ScholarPubMed
Giri, M, Zhang, M, Lu, Y (2016) Genes associated with Alzheimer’s disease: an overview and current status. Clin Interv Aging 11: 665–81.Google ScholarPubMed
Goetz, CG, Emre, M, Dubois, B (2008) Parkinson’s disease dementia: definitions, guidelines, and research perspectives in diagnosis. Ann Neurol 64 (Suppl 2): S8192.CrossRefGoogle ScholarPubMed
Goodman, RA, Lochner, KA, Thambisetty, M, et al. (2017) Prevalence of dementia subtypes in United States Medicare fee-for-service beneficiaries, 2011-2013. Alzheimers Dement 13: 2837.CrossRefGoogle ScholarPubMed
Gordon, E, Rohrer, JD, Fox, NC (2016) Advances in neuroimaging in frontotemporal dementia. J Neurochem 138 (Suppl 1): 193210.CrossRefGoogle ScholarPubMed
Gray, SL, Hanlon, JT (2016) Anticholinergic medication use and dementia: latest evidence and clinical implications. Ther Adv Drug Saf 7: 217–24.CrossRefGoogle ScholarPubMed
Harper, L, Barkhof, F, Scheltens, P, et al. (2014) An algorithmic approach to structural imaging in dementia. J Neurol Neurosurg Psychiatry 85: 692–8.CrossRefGoogle ScholarPubMed
Hasegawa, M, Nonaka, T, Masuda-Suzukake, M (2017) Prion-like mechanisms and potential therapeutic targets in neurodegenerative disorders. Pharmacol Ther 172: 2233.CrossRefGoogle ScholarPubMed
Hithersay, R, Hamburg, S, Knight, B, et al. (2017) Cognitive decline and dementia in Down syndrome. Curr Opin Psychiatry 30: 102–7.CrossRefGoogle ScholarPubMed
Huey, ED, Putnam, KT, Grafman, J (2006) A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia. Neurology 66: 1722.CrossRefGoogle ScholarPubMed
Ince, PG, Perry, EK, Morris, CM (1998) Dementia with Lewy bodies: a distinct non-Alzheimer dementia syndrome? Brain Pathol 8: 299324.CrossRefGoogle ScholarPubMed
Jellinger, KA (2018) Dementia with Lewy bodies and Parkinson’s disease-dementia: current concepts and controversies. J Neural Transm 125: 615–50.CrossRefGoogle Scholar
Jena, A, Renjen, PN, Taneja, S, et al. (2015) Integrated (18)F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging ([18]F-FDG PET/MRI), a multimodality approach for comprehensive evaluation of dementia patients: a pictorial essay. Indian J Radiol Imaging 25: 342–52.Google ScholarPubMed
Jennings, LA, Palimaru, A, Corona, MG, et al. (2017) Patient and caregiver goals for dementia care. Qual Life Res 26: 685–93.CrossRefGoogle ScholarPubMed
Johnson, BP, Westlake, KP (2018) Link between Parkinson disease and rapid eye movement sleep behavior disorder with dream enactment: possible implications for early rehabilitation. Arch Phys Med Rehab 99: 410–15.CrossRefGoogle ScholarPubMed
Kapasi, A, DeCarli, C, Schneider, JA (2017) Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol 134: 171–86.CrossRefGoogle ScholarPubMed
Karantzoulis, S, Galvin, JE (2011) Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Rev Neurother 11: 1579–91.CrossRefGoogle Scholar
Kertesz, A, Munoz, DG (2002) Frontotemporal dementia. Med Clin North Am 86: 501–18.CrossRefGoogle ScholarPubMed
Knopman, DS, Kramer, JH, Boeve, BF, et al. (2008) Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain 131 (Pt 11): 2957–68.CrossRefGoogle ScholarPubMed
Kobylecki, C, Jones, M, Thompson, JC, et al. (2015) Cognitive-behavioural features of progressive supranuclear palsy syndrome overlap with frontotemporal dementia. J Neurol 262: 916–22.CrossRefGoogle ScholarPubMed
Kolb, HC, Andres, JI (2017) Tau positron emission tomography imaging. Cold Spring Harb Perspect Biol 9: a023721.CrossRefGoogle ScholarPubMed
Koronyo, Y, Biggs, D, Barron, E, et al. (2017) Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight 2: 93621.CrossRefGoogle ScholarPubMed
Landin-Romero, R, Tan, R, Hodges, HR, et al. (2016) An update on semantic dementia: genetics, imaging, and pathology. Alz Res Ther 8: 52.CrossRefGoogle ScholarPubMed
Levy, RH, Collins, C (2007) Risk and predictability of drug interactions in the elderly. Int Rev Neurobiol 81: 235–51.CrossRefGoogle ScholarPubMed
Ling, H (2016) Clinical approach to progressive supranuclear palsy. J Mov Disord 9: 313.CrossRefGoogle ScholarPubMed
Lippmann, S, Perugula, ML (2016) Delirium or dementia? Innov Clin Neurosci 13: 56–7.Google ScholarPubMed
Liscic, RM, Srulijes, K, Groger, A, et al. (2013) Differentiation of progressive supranuclear palsy: clinical, imaging and laboratory tools. Acta Neurol Scand 127: 361–70.CrossRefGoogle ScholarPubMed
Llorens, F, Karch, A, Golanska, E, et al. (2017) Cerebrospinal fluid biomarker-based diagnosis of sporadic Creutzfeldt–Jakob disease: a validation study for previously established cutoffs. Dement Geriatr Cogn Disord 43: 7180.CrossRefGoogle ScholarPubMed
Mackenzie, IR, Neumann, M (2016) Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. J Neurochem 138 (Suppl 1): 5470.CrossRefGoogle ScholarPubMed
Mackenzie, IR, Munoz, DG, Kusaka, H, et al. (2011) Distinct subtypes of FTLD-FUS. Acta Neuropathol 121: 207–18.CrossRefGoogle ScholarPubMed
Maloney, B, Lahiri, DK (2016) Epigenetics of dementia: understanding the disease as a transformation rather than a state. Lancet Neurol 15: 760–74.CrossRefGoogle ScholarPubMed
McCarter, S, St Louis, EK, Boeve, BF (2016) Sleep disturbances in frontotemporal dementia. Curr Neurol Neurosci Rep 16: 85.CrossRefGoogle ScholarPubMed
McCleery, J, Cohen, DA, Sharpley, AL (2016) Pharmacotherapies for sleep disturbances in dementia (review). Cochrane Database Syst Rev 11: CD009178.Google Scholar
McGirt, MJ, Woodworth, G, Coon, AL, et al. (2005) Diagnosis, treatment, and analysis of long-term outcomes in idiopathic normal-pressure hydrocephalus. Neurosurgery 57: 699705.CrossRefGoogle ScholarPubMed
McKeith, IG, Dickson, DW, Lowe, J, et al. (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology 65: 1863–72.CrossRefGoogle ScholarPubMed
Meyer, PT, Frings, L, Rucker, G, et al. (2017) 18F-FDG PET in Parkinsonism: differential diagnosis and evaluation of cognitive impairment. J Nucl Med 58: 1888–98.CrossRefGoogle ScholarPubMed
Michel, J-P (2016) Is it possible to delay or prevent age-related cognitive decline? Korean J Fam Med 37: 263–6.CrossRefGoogle ScholarPubMed
Mioshi, E, Flanagan, E, Knopman, D (2017) Detecting change with the CDR-FTLD: differences between FTLD and AD dementia. Int J Geriatr Psychiatry 32: 977–82.CrossRefGoogle ScholarPubMed
Mioshi, E, Hsieh, S, Savage, S, et al. (2010) Clinical staging and disease progression in frontotemporal dementia. Neurology 74: 1591–7.CrossRefGoogle ScholarPubMed
Montenigro, PH, Baugh, CM, Daneshvar, DH, et al. (2014) Clinical subtypes of chronic traumatic encephalopathy: literature review and proposed research diagnostic criteria for traumatic encephalopathy syndrome. Alz Res Ther 6: 68.CrossRefGoogle ScholarPubMed
Nalbandian, A, Donkervoort, S, Dec, E, et al. (2011) The multiple faces of valosin-containing protein-associated diseases: inclusion body myopathy with Paget’s disease of bone, frontotemporal dementia, and amyotrophic lateral sclerosis. J Mol Neurosci 45: 522–31.CrossRefGoogle ScholarPubMed
Noe, E, Marder, K, Bell, KL, et al. (2004) Comparison of dementia with Lewy bodies to Alzheimer’s disease and Parkinson’s disease with dementia. Movement Disorders 19: 60–7.CrossRefGoogle ScholarPubMed
Pandya, SY, Clem, MA, Silva, LM, et al. (2016) Does mild cognitive impairment always lead to dementia? A review. J Neurol Sci 369: 5862.CrossRefGoogle ScholarPubMed
Paoli, RA, Botturi, A, Ciammola, A, et al. (2017) Neuropsychiatric burden in Huntington’s disease. Brain Sci 7: 67.CrossRefGoogle ScholarPubMed
Park, HK, Park, KH, Yoon, B, et al. (2017) Clinical characteristics of parkinsonism in frontotemporal dementia according to subtypes. J Neurol Sci 372: 51–6.CrossRefGoogle ScholarPubMed
Purandare, N, Burns, A, Morris, J, et al. (2012) Association of cerebral emboli with accelerated cognitive deterioration in Alzheimer’s disease and vascular dementia. Am J Psychiatry 169: 300–8.CrossRefGoogle ScholarPubMed
Ransohoff, RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353: 777–83.CrossRefGoogle ScholarPubMed
Raz, L, Knoefel, J, Bhaskar, K (2016) The neuropathology and cerebrovascular mechanisms of dementia. J Cereb Blood Flow Metab 36: 179–86.CrossRefGoogle ScholarPubMed
Roalf, D, Moberg, MJ, Turetsky, BI, et al. (2017) A quantitative meta-analysis of olfactory dysfunction in mild cognitive impairment. J Neurol Neurosurg Psychiatry 88: 226–32.CrossRefGoogle ScholarPubMed
Sachdeva, A, Chandra, M, Choudhary, M, et al. (2016) Alcohol-related dementia and neurocognitive impairment: a review study. Int J High Risk Behav Addict 5: e27976.CrossRefGoogle ScholarPubMed
Sarro, L, Tosakulwong, N, Schwarz, CG, et al. (2017) An investigation of cerebrovascular lesions in dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimers Dement 13: 257–66.CrossRefGoogle ScholarPubMed
Schott, JM, Warren, JD, Barhof, F, et al. (2011) Suspected early dementia. BMJ 343: d5568.CrossRefGoogle ScholarPubMed
Schroek, JL, Ford, J, Conway, EL, et al. (2016) Review of safety and efficacy of sleep medicines in older adults. Clin Ther 38: 2340–72.Google Scholar
Schwartz, M, Deczkowska, A (2016) Neurological disease as a failure of brain-immune crosstalk: the multiple faces of neuroinflammation. Trends Immunol 37: 668–79.CrossRefGoogle ScholarPubMed
Stahl, SM (2017) Does treating hearing loss prevent or slow the progress of dementia? Hearing is not all in the ears, but who’s listening? CNS Spectrums 22: 247–50.CrossRefGoogle Scholar
Takada, LT, Kim, MO, Cleveland, RW, et al. (2017) Genetic prion disease: experience of a rapidly progressive dementia center in the United States and a review of the literature. Am J Med Genet B Neuropsychiatr Genet 174: 3669.CrossRefGoogle Scholar
Tartaglia, MC, Rosen, JH, Miller, BL (2011) Neuroimaging in dementia. Neurotherapeutics 8: 8292.CrossRefGoogle ScholarPubMed
Thomas, AJ, Attems, J, Colloby, SJ, et al. (2017) Autopsy validation of 123I-FP-CIT dopaminergic neuroimaging for the diagnosis of DLB. Neurology 88: 18.CrossRefGoogle ScholarPubMed
Thomas, AJ, Taylor, JP, McKeith, I, et al. (2017) Development of assessment toolkits for improving the diagnosis of Lewy body dementias: feasibility study within the DIAMOND Lewy study. Int J Geriatr Psychiatry 32: 1280–304.CrossRefGoogle ScholarPubMed
Todd, TW, Petrucelli, L (2016) Insights into the pathogenic mechanisms of chromosome 9 open reading frame 72 (C9orf72) repeat expansions. J Neurochem 138 (Suppl 1): 145–62.CrossRefGoogle ScholarPubMed
Togo, T, Isojima, D, Akatsu, H, et al. (2005) Clinical features of argyrophilic grain disease: a retrospective survey of cases with neuropsychiatric symptoms. Am J Geriatr Psychiatry 13: 1083–91.CrossRefGoogle ScholarPubMed
Tsai, RM, Boxer, AL (2016) Therapy and clinical trials in frontotemporal dementia: past, present, and future. J Neurochem 138 (Suppl 1): 211–21.CrossRefGoogle ScholarPubMed
Tyebi, S, Hannan, AJ (2017) Synaptopathic mechanisms of neurodegeneration and dementia: insights from Huntington’s disease. Prog Neurobiol 153: 1845.CrossRefGoogle Scholar
Weishaupt, JH, Hyman T, Dikic I (2016) Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia. Trends Mol Med 22: 769–83.CrossRefGoogle ScholarPubMed
Wenning, GK, Tison, F, Seppi, K, et al. (2004) Development and validation of the Unified Multiple System Atrophy Rating Scale (UMSARS). Mov Disord 19: 1391–402.CrossRefGoogle ScholarPubMed
Williams, DR, Holton, JL, Strand, C, et al. (2007) Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson’s syndrome. Brain 130 (Pt 6): 1566–76.CrossRefGoogle ScholarPubMed
Wimo, A, Guerchet M, Ali GC, et al. (2017) The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 13: 17.CrossRefGoogle ScholarPubMed
Xu, Y, Yang J, Shang H (2016) Meta-analysis of risk factors for Parkinson’s disease dementia. Transl Neurodegen 5: 18.CrossRefGoogle ScholarPubMed
Yang, L, Yan, J, Jin, X, et al. (2016) Screening for dementia in older adults: comparison of Mini-Mental State Examination, Min-Cog, Clock Drawing Test and AD8. PLOS ONE 11: e0168949.CrossRefGoogle ScholarPubMed
Yang, W, Yu, S (2017) Synucleinopathies: common features and hippocampal manifestations. Cell Mol Life Sci 74: 8466–80.CrossRefGoogle ScholarPubMed
Albert, MS, DeKosky, ST, Dickson, D, et al. (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging and Alzheimer’s Association Workgroup. Alzheimers Dement 7: 270–9.CrossRefGoogle Scholar
Arbor, SC, LaFontaine, M, Cumbay, M (2016) Amyloid-beta Alzheimer targets: protein processing, lipid rafts, and amyloid-beta pores. Yale J Biol Med 89: 521.Google ScholarPubMed
Bronzuoli, MR, Iacomino, A, Steardo, L, et al. (2016) Targeting neuroinflammation in Alzheimer’s disease. J Inflamm Res 9: 199208.CrossRefGoogle ScholarPubMed
Cardenas-Aguayo, M. del C, Silva-Lucero, M. del C, Cortes-Ortiz, M, et al. (2014) Physiological role of amyloid beta in neural cells: the cellular trophic activity. In Neurochemistry, Heinbockel, T (ed.) InTech Open Access Publisher, doi:10.5772/57398.Google Scholar
Chakraborty, A, de Wit, NM, van der Flier, WM, et al. (2017) The blood brain barrier in Alzheimer’s disease. Vasc Pharmacol 89: 1218.CrossRefGoogle ScholarPubMed
Chetelat, G, Villemagne, VL, Villain, N, et al. (2012) Accelerated cortical atrophy in cognitively normal elderly with high β-amyloid deposition. Neurology 78: 477–84.CrossRefGoogle ScholarPubMed
Citron, M (2004) β-Secretase inhibition for the treatment of Alzheimer’s disease: promise and challenge. Trends Pharmacol Services 25: 92–7.Google ScholarPubMed
Clark, CM, Schneider, JA, Bedell, BJ, et al. (2011) Use of florbetapir-PET for imaging β-amyloid pathology. JAMA 305: 275–83.Google ScholarPubMed
Cummings, JL (2011) Biomarkers in Alzheimer’s disease drug development. Alzheimers Dement 7: e1344.CrossRefGoogle ScholarPubMed
Cummings, J (2011) Alzheimer’s disease: clinical trials and the amyloid hypothesis. Ann Acad Med Singapore 40: 304–6.CrossRefGoogle ScholarPubMed
Deutsch, SI, Rosse, RB, Deutsch, LH (2006) Faulty regulation of tau phosphorylation by the reelin signal transduction pathway is a potential mechanism of pathogenesis and therapeutic target in Alzheimer’s disease. Eur Neuropsychopharmacol 16: 547–51.CrossRefGoogle ScholarPubMed
Dickerson, BC, Stoub, TR, Shah, RC, et al. (2011) Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology 76: 1395–402.CrossRefGoogle ScholarPubMed
Ewers, M, Sperling, RA, Klunk, WE, Weiner, MW, Hampel, H (2011) Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci 34: 430–42.CrossRefGoogle ScholarPubMed
Fajardo, VA, Fajardo, VA, LeBlanc, PJ, et al. (2018) Examining the relationship between trace lithium in drinking water and the rising rates of age-adjusted Alzheimer’s disease mortality in Texas. J Alzheimers Dis 61: 425–34.Google ScholarPubMed
Fleisher, AS, Chen, K, Liu, X, et al. (2011) Using positron emission tomography and florbetapir F 18 to image amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Arch Neurol 68: 1404–11.CrossRefGoogle ScholarPubMed
Forster, S, Grimmer, T, Miederer, I, et al. (2012) Regional expansion of hypometabolism in Alzheimer’s disease follows amyloid deposition with temporal delay. Biol Psychiatry 71: 792–7.CrossRefGoogle ScholarPubMed
Gehres, SW, Rocha, A, Leuzy, A, et al. (2016) Cognitive intervention as an early nonpharmacological strategy in Alzheimer’s disease: a translational perspective. Front Aging Neurosci 8: 14.CrossRefGoogle ScholarPubMed
Gitlin, LN, Hodgson, NA (2016) Who should assess the needs of and care for a dementia patient’s caregiver? AMA J Ethics 18: 1171–81.Google ScholarPubMed
Godyn, J, Jonczyk, J, Panek, D, et al. (2016) Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol Rep 68: 127–38.CrossRefGoogle ScholarPubMed
Gomar, JJ, Bobes-Bascaran, MT, Conejero-Goldberg, C, et al. (2011) Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer’s Disease Neuroimaging Initiative. Arch Gen Psychiatry 68: 961–9.CrossRefGoogle ScholarPubMed
Grimmer, T, Tholen, S, Yousefi, BH, et al (2010) Progression of cerebral amyloid load is associated with the apolipoprotein E ε4 genotype in Alzheimer’s disease. Biol Psychiatry 68: 879–84.CrossRefGoogle ScholarPubMed
Gurnani, AS, Gavett, BE (2017) The differential effects of Alzheimer’s disease and Lewy body pathology on cognitive performance: a meta-analysis. Neuropsychol Rev 27: 117.CrossRefGoogle ScholarPubMed
Harrison, JR, Owen, MJ (2016) Alzheimer’s disease: the amyloid hypothesis on trial. Br J Psychiatry 208: 13.CrossRefGoogle ScholarPubMed
Herukka, SK, Simonsen, AH, Andreasen, N, et al. (2017) Recommendations for CSF AD biomarkers in the diagnostic evaluation of MCI. Alzheimers Dement 13: 285–95.Google Scholar
Jack, CR Jr., Albsert, MS, Knopman, DS, et al. (2011) Introduction to the recommendations from the National Institute on Aging and the Alzheimer’s Association Workgroup on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7: 257–62.CrossRefGoogle Scholar
Jack, CR Jr., Lowe, VJ, Weigand, SD, et al. (2009) Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 132: 1355–65.CrossRefGoogle ScholarPubMed
Jonsson, T, Atwal, JK, Steinberg, S, et al. (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488: 96–9.CrossRefGoogle ScholarPubMed
Kokjohn, TA, Maarouf, CL, Roher, AE (2012) Is Alzheimer’s disease amyloidosis a result of a repair mechanism gone astray? Alzheimers Dement 8: 574–83.CrossRefGoogle ScholarPubMed
Kovari, E, Herrmann, FR, Hof, PR, et al. (2013) The relationship between cerebral amyloid angiopathy and cortical microinfarcts in brain ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 39: 498509.CrossRefGoogle ScholarPubMed
Li, Y, Li, Y, Li, X, et al. (2017) Head injury as a risk factor for dementia and Alzheimer’s disease: a systematic review and meta-analysis of 32 observational studies. PLOS ONE 12: e0169650.Google ScholarPubMed
Lieberman, A, Deep, A, Shi, J, et al. (2018) Downward finger displacement distinguishes Parkinson disease dementia from Alzheimer disease. Int J Neurosci 128: 151–4.CrossRefGoogle ScholarPubMed
Lim, JK, Li, QX, He, Z, et al. (2016) The eye as a biomarker for Alzheimer’s disease. Front Neurosci 10: 114.CrossRefGoogle ScholarPubMed
MacLeod, R, Hillert, EK, Cameron, RT, et al. (2015) The role and therapeutic targeting of α-, β-, and γ-secretase in Alzheimer’s disease. Future Sci OA 1: FS011.CrossRefGoogle ScholarPubMed
Mallik, A, Drzezga, A, Minoshima, S (2017) Clinical amyloid imaging. Semin Nucl Med 47: 3143.CrossRefGoogle ScholarPubMed
Marciani, DJ (2015) Alzheimer’s disease vaccine development: a new strategy focusing on immune modulation. J Neuroimmunol 287: 5463.CrossRefGoogle ScholarPubMed
McKhann, GM, Knopman, DS, Chertkow, H (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging and the Alzheimer’s Association Workgroup. Alzheimers Dement 7: 263–9.CrossRefGoogle Scholar
Mendiola-Precoma, J, Berumen, LC, Padilla, K, et al. (2016) Therapies for prevention and treatment of Alzheimer’s disease. BioMed Res Int 2016: 2589276.CrossRefGoogle ScholarPubMed
Panza, F, Solfrizzi, V, Seripa, D, et al. (2016) Tau-centric targets and drugs in clinical development for the treatment of Alzheimer’s disease. BioMed Res Int 2016: 3245935.CrossRefGoogle ScholarPubMed
Pascoal, TA, Mathotaarachchi, S, Shin, M, et al. (2017) Synergistic interaction between amyloid and tau predicts the progression to dementia. Alzheimers Dement 13: 644–53.CrossRefGoogle ScholarPubMed
Rabinovici, GD, Rosen, HJ, Alkalay, A, et al. (2011) Amyloid vs. FDG-PET in the differential diagnosis of AD and FTLD. Neurology 77: 2034–42.CrossRefGoogle ScholarPubMed
Rapp, MA, Schnaider-Beeri, M, Grossman, HT, et al. (2006) Increased hippocampal plaques and tangles in patients with Alzheimer disease with a lifetime history of major depression. Arch Gen Psychiatry 63: 161–7.CrossRefGoogle ScholarPubMed
Reisberg, B, Doody, R, Stöffle, A, et al. (2003) Memantine in moderate-to-severe Alzheimer’s disease. New Engl J Med 348: 1333–41.CrossRefGoogle ScholarPubMed
Ritter, AR, Leger, GC, Miller, JB, et al. (2017) Neuropsychological testing in pathologically verified Alzheimer’s disease and frontotemporal dementia. Alzheimer Dis Assoc Disord 31: 187–91.CrossRefGoogle ScholarPubMed
Rodrigue, KM, Kennedy, KM, Devous, MD Sr., et al. (2012) Β-Amyloid burden in healthy aging. Regional distribution and cognitive consequences. Neurology 78: 387–95.CrossRefGoogle ScholarPubMed
Ruthirakuhan, M, Herrmann, N, Seuridjan, I, et al. (2016) Beyond immunotherapy: new approaches for disease modifying treatments for early Alzheimer’s disease. Expert Opin Pharmacother 17: 2417–29.CrossRefGoogle ScholarPubMed
Sabbagh, MN, Schauble, B, Anand, K, et al. (2017) Histopathology and florbetaben PET in patients incorrectly diagnosed with Alzheimer’s disease. J Alzheimers Dis 56: 441–6.CrossRefGoogle ScholarPubMed
Scheinin, NM, Aalto, S, Kaprio, J, et al. (2011) Early detection of Alzheimer disease. Neurology 77: 453–60.CrossRefGoogle ScholarPubMed
Sharma, N, Singh, AN (2016) Exploring biomarkers for Alzheimer’s disease. J Clin Diag Res 10: KE0106.Google ScholarPubMed
Simonsen, AH, Herukka, SK, Andreasen, N, et al. (2017) Recommendations for CSF AD biomarkers in the diagnostic evaluation of dementia. Alzheimers Dement 13: 285–95.CrossRefGoogle ScholarPubMed
Sperling, RA, Aisen, PS, Beckett, LA, et al. (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging and the Alzheimer’s Association Workgroup. Alzheimers Dement 7: 280–92.CrossRefGoogle Scholar
Spies, PE, Claasen, JA, Peer, PG, et al. (2013) A prediction model to calculate probability of Alzheimer’s disease using cerebrospinal fluid biomarkers. Alzheimers Dement 9: 262–8.CrossRefGoogle ScholarPubMed
Spies, PE, Verbeek, MM, van Groen, T, et al. (2012) Reviewing reasons for the decreased CSF Abeta42 concentration in Alzheimer disease. Front Biosci (Landmark Ed) 17: 2024–34.CrossRefGoogle ScholarPubMed
Spira, AP, Gottesman, RF (2017) Sleep disturbance: an emerging opportunity for Alzheimer’s disease prevention? Int Psychogeriatr 29: 529–31.CrossRefGoogle ScholarPubMed
Tarawneh, R, Holtzman, DM (2012) The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harbor Perspect Med 2: a006148.CrossRefGoogle ScholarPubMed
Tariot, PN, Aisen, PS (2009) Can lithium or valproate untie tangles in Alzheimer’s disease? J Clin Psychiatry 70: 919–21.CrossRefGoogle ScholarPubMed
Uzun, S, Kozumplik, O, Folnegovic-Smalc, V (2011) Alzheimer’s dementia: current data review. Coll Antropol 35: 1333–7.Google ScholarPubMed
Venkataraman, A, Kalk, N, Sewell, G, et al. (2017) Alcohol and Alzheimer’s disease: does alcohol dependence contribute to beta-amyloid deposition, neuroinflammation and neurodegeneration in Alzheimer’s disease? Alcohol Alcoholism 52: 151–8.Google ScholarPubMed
Villemagne, VL, Doré, V, Bourgeat, P, et al. (2017) Aβ-amyloid and tau imaging in dementia. Semin Nucl Med 47: 7588.CrossRefGoogle ScholarPubMed
Wagner, M, Wolf, S, Reischies, FM, et al. (2012) Biomarker validation of a cued recall memory deficit in prodromal Alzheimer disease. Neurology 78: 379–86.CrossRefGoogle ScholarPubMed
Weintraub, S, Wicklund, AH, Salmon, DP (2012) The neuropsychological profile of Alzheimer disease. Cold Spring Harb Perspect Med 2 :a006171.CrossRefGoogle ScholarPubMed
Williams, MM, Xiong, C, Morris, JC, Galvin, JE (2006) Survival and mortality differences between dementia with Lewy bodies vs. Alzheimer’s disease. Neurology 67: 1935–41.CrossRefGoogle Scholar
Wishart, HA, Saykin, AJ, McAllister, TW, et al. (2006) Regional brain atrophy in cognitively intact adults with a single APOE ε4 allele. Neurology 67: 1221–4.CrossRefGoogle ScholarPubMed
Wolk, DA, Grachev, ID, Buckley, C, et al. (2011) Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology. Arch Neurol 68: 1398–403.CrossRefGoogle ScholarPubMed
Yaffe, K, Tocco, M, Petersen, RC, et al. (2012) The epidemiology of Alzheimer’s disease: laying the foundation for drug design, conduct, and analysis of clinical trials. Alzheimers Dement 8: 237–42.CrossRefGoogle ScholarPubMed
Yan, R (2016) Stepping closer to treating Alzheimer’s disease patients with BACE1 inhibitor drugs. Transl Neurodegen 5: 13.CrossRefGoogle ScholarPubMed
Yeh, HL, Tsai, SJ (2008) Lithium may be useful in the prevention of Alzheimer’s disease in individuals at risk of presenile familial Alzheimer’s disease. Med Hypotheses 71: 948–51.CrossRefGoogle ScholarPubMed
Alexopoulos, GS (2003) Role of executive function in late life depression. J Clin Psychiatry 64 (Suppl 14): 1823.Google ScholarPubMed
Ballard, C, Oyebode, F (1995) Psychotic symptoms in patients with dementia. Int J Geriatr Psychiatry 10: 743–52.Google Scholar
Ballard, C, Neill, D, O’Brien, J, et al. (2000) Anxiety, depression and psychosis in vascular dementia: prevalence and associations. J Affect Disord 59: 97106.CrossRefGoogle ScholarPubMed
Bao, AM, Meynen, G, Swaab, DF (2008) The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev 57: 531–53.CrossRefGoogle ScholarPubMed
Barnes, DE, Yaffe, K, Byers, AL, et al. (2012) Midlife vs. late-life depressive symptoms and risk of dementia. Arch Gen Psychiatry 6: 493–8.Google Scholar
Bassetti, CL, Bargiotas, P (2018) REM sleep behavior disorder. Front Neurol Neurosci 41: 104–16.CrossRefGoogle ScholarPubMed
Bennett, S, Thomas, AJ (2014) Depression and dementia: cause, consequence or coincidence? Maturita 79:184–90.CrossRefGoogle ScholarPubMed
Buoli, M, Serati, M, Caldiroli, A, et al. (2017) Pharmacological management of psychiatric symptoms in frontotemporal dementia: a systematic review. J Geriatr Psychiatry 30: 162–9.Google ScholarPubMed
Burns, A, Jacoby, R, Levy, R (1990) Psychiatric phenomena in Alzheimer’s disease. II: disorders of perception. Br J Psychiatry 157: 7681, 92–4.CrossRefGoogle ScholarPubMed
Canevelli, M, Valleta, M, Trebbastoni, A, et al. (2016) Sundowning in dementia: clinical relevance, pathophysiological determinants, and therapeutic approaches. Front Med (Lausanne) 3: 73.Google ScholarPubMed
Caraci, F, Copani, A, Nicoletti, F, et al. (2010) Depression and Alzheimer’s disease: neurobiological links and common pharmacological targets. Eur J Pharmacol 626: 6471.CrossRefGoogle ScholarPubMed
Cohen-Mansfield, J, Billig, N (1986) Agitated behaviors in the elderly. I. A conceptual review. J Am Geriatr Soc 34: 711–21.CrossRefGoogle Scholar
Corcoran, C, Wong, ML, O’Keane, V (2004) Bupropion in the management of apathy. J Psychopharm 18: 133–5.CrossRefGoogle ScholarPubMed
Cummings, J, Kohegyi, E, Mergel, V, et al. (2018) Efficacy and safety of flexibly dosed brexpiprazole for the treatment of agitation in Alzheimer type dementia: a randomized, double blind fixed dose 12 week placebo controlled global clinical trial. Abstract for the American Association of Geriatric Psychiatry, Honolulu, Hawaii.Google Scholar
Cummings, JL, Lyketsos, CG, Peskind, ER, et al. (2015) Effect of dextromethorphan–quinidine on agitation in patients with Alzheimer’s disease dementia: a randomized clinical trial. JAMA 314: 1242–54.CrossRefGoogle ScholarPubMed
Dennis, M, Shine, L, John, A, et al. (2017) Risk of adverse outcomes for older people with dementia prescribed antipsychotic medication: a population based e-cohort study. Neurol Ther 6: 5777.CrossRefGoogle ScholarPubMed
Ducharme, S, Price, BH, Dickerson, BC (2018) Apathy: a neurocircuitry model based on frontotemporal dementia. J Neural Neurosurg Psychiatry 89: 389–96.CrossRefGoogle Scholar
Evan, C, Weintraub, D (2010) Case for and against specificity of depression in Alzheimer’s disease. Psychiatry Clin Neurosci 64: 358–66.Google Scholar
Farina, N, Morrell, L, Banerjee, S (2017) What is the therapeutic value of antidepressants in dementia? A narrative review. Geriatr Psychiatry 32: 3249.CrossRefGoogle ScholarPubMed
Fernandez-Matarrubia, M, Matias-Guiu, JA, Cabrera-Martin, MN, et al. (2018) Different apathy clinical profile and neural correlates in behavioral variant frontotemporal dementia and Alzheimer’s disease. Int J Geriatr Psychiatry 33: 141–50.CrossRefGoogle ScholarPubMed
Fernandez-Matarrubia, M, Matias-Guiu, JA, Moreno-Ramos, T, et al. (2016) Validation of the Lille’s Apathy Rating Scale in very mild to moderate dementia. Am J Geriatr Psychiatry 24: 517–27.CrossRefGoogle ScholarPubMed
Ford, AH, Almeida, OP (2017) Management of depression in patients with dementia: is pharmacological treatment justified? Drugs Aging 34: 8995.CrossRefGoogle ScholarPubMed
Fraker, J, Kales, HC, Blazek, M (2014) The role of the occupational therapist in the management of neuropsychiatric symptoms of dementia in clinical settings. Occup Ther Health Care 28: 420.CrossRefGoogle ScholarPubMed
Frakey, LL, Salloway, S, Buelow, M, Malloy, P (2012) A randomized, double-blind, placebo-controlled trial of modafinil for the treatment of apathy in individuals with mild-to-moderate Alzheimer’s disease. J Clin Psychiatry 73: 796801.CrossRefGoogle ScholarPubMed
Garay, RP, Grossberg, GT (2017) AVP-786 for the treatment of agitation in dementia of the Alzheimer’s type. Expert Opin Invest Drugs 26: 121–32.CrossRefGoogle ScholarPubMed
Geerlings, MI, den Hijer, T, Koudstaal, PJ, et al. (2008) History of depression, depressive symptoms, and medial temporal lobe atrophy and the risk of Alzheimer’s disease. Neurology 70: 1258–64.CrossRefGoogle Scholar
Gessing, LV, Sondergard, L, Forman, JL, et al. (2009) Antidepressants and dementia. J Affect Disord 117: 24–9.Google Scholar
Goldman, JG, Holden, S (2014) Treatment of psychosis and dementia in Parkinson’s disease. Curr Treat Options Neurol 16: 281.CrossRefGoogle ScholarPubMed
Goodarzi, Z, Mele, B, Guo, S, et al. (2016) Guidelines for dementia or Parkinson’s disease with depression or anxiety: a systematic review. BMC Neurol 16(1): 244.CrossRefGoogle ScholarPubMed
Grossberg, G, Kohegyi, E, Amatniek, J, et al. (2018) Efficacy and safety of fixed dose brexpiprazole for the treatment of agitation in Alzheimer type dementia: a randomized, double blind fixed dose 12-week placebo controlled global clinical trial. Abstract for the American Association of Geriatric Psychiatry, Honolulu, Hawaii.Google Scholar
Hacksell, U, Burstein, ES, McFarland, K, et al. (2014) On the discovery and development of pimavanserin: a novel drug candidate for Parkinson’s disease. Neurochem Res 39: 2008–17.CrossRefGoogle Scholar
Hongiston, K, Hallikainen, I, Seldander, T, et al. (2018) Quality of life in relation to neuropsychiatric symptoms in Alzheimer’s disease: 5-year prospective ALSOVA cohort study. Int J Geriatr Psychiatry 33: 4757.CrossRefGoogle Scholar
Jr. CR, Jack, Wiste, HJ, Weigland, SD, et al. (2017) Defining imaging biomarker cut point for brain aging and Alzheimer’s disease. Alzheimers Dement 13: 205–16.Google Scholar
Johnson, DK, Watts, AS, Chapin, BA, et al. (2011) Neuropsychiatric profiles in dementia. Alzheimer Dis Assoc Disord 25: 326–32.CrossRefGoogle ScholarPubMed
Kales, HC, Kim, HM, Zivin, K, et al. (2012) Risk of mortality among individual antipsychotics in patients with dementia. Am J Psychiatry 169: 71–9.CrossRefGoogle ScholarPubMed
Kales, HC, Lyketsos, CG, Miller, EM, et al. (2019) Management of behavioral and psychological symptoms in people with Alzheimer’s disease: an international Delphi consensus. Int Psychogeriatr 31: 8390.CrossRefGoogle ScholarPubMed
Kok, RM, Reynolds, CF (2017) Management of depression in older adults: a review. JAMA 317: 2114–22.CrossRefGoogle ScholarPubMed
Kong, EH (2005) Agitation in dementia: concept clarification. J Adv Nurs 52: 526–36.CrossRefGoogle ScholarPubMed
Kumfor, F, Zhen, A, Hodges, JR, et al. (2018) Apathy in Alzheimer’s disease and frontotemporal dementia: distinct clinical profiles and neural correlates. Cortex 103: 350–9.CrossRefGoogle ScholarPubMed
Lanctot, KL, Amatniek, J, Ancoli-Israel, S, et al. (2017) Neuropsychiatric signs and symptoms of Alzheimer’s disease: new treatment paradigms. Alzheimers Dement (NY) 3: 440–9.Google ScholarPubMed
Lee, GJ, Lu, PH, Hua, X, et al. (2012) Depressive symptoms in mild cognitive impairment predict greater atrophy in Alzheimer’s disease-related regions. Biol Psychiatry 71: 81421.CrossRefGoogle ScholarPubMed
Leroi, I, Voulgari, A, Breitner, JC, et al. (2003) The epidemiology of psychosis in dementia. Am J Geriatr Psychiatry 11: 8391.CrossRefGoogle ScholarPubMed
Lochhead, JD, Nelson, MA, Maguire, GA (2016) The treatment of behavioral disturbances and psychosis associated with dementia. Psychiatr Pol 50: 311–22.CrossRefGoogle ScholarPubMed
Lopez, OL, Becker, JT, Sweet, RA, et al. (2003) Psychiatric symptoms vary with the severity of dementia in probable Alzheimer’s disease. J Neuropsychiatry Clin Neurosci 15: 346–53.CrossRefGoogle ScholarPubMed
Lyketsos, CG, Carillo, MC, Ryan, JM, et al. (2011) Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement 7: 532–9.CrossRefGoogle ScholarPubMed
Lyketsos, CG, Lopez, O, Jones, B, et al. (2002) Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the cardiovascular health study. JAMA 288: 1475–83.CrossRefGoogle ScholarPubMed
Lyketsos, CG, Steinberg, M, Tschanz, JT, et al. (2000) Mental and behavioral disturbances in dementia: findings from the Cache County Study on memory in aging. Am J Psychiatry 157: 704–7.CrossRefGoogle Scholar
Macfarlane, S, O’Connor, D (2016) Managing behavioural and psychological symptoms in dementia. Aust Prescr 39: 123–5.CrossRefGoogle ScholarPubMed
Marin, RS, Fogel, BS, Hawkins, J, et al. (1995) Apathy: a treatable symptom. J Neuropsychiatry 7: 2330.Google Scholar
Maust, DT, Kim, HM, Seyfried, LS, et al. (2015) Antipsychotics, other psychotropics, and the risk of death in patients with dementia: number needed to harm. JAMA Psychiatry 72: 438–45.CrossRefGoogle ScholarPubMed
Moraros, J, Nwankwo, C, Patten, SB, et al. (2017) The association of antidepressant drug usage with cognitive impairment or dementia, including Alzheimer disease: a systematic review and meta-analysis. Depress Anxiety 34: 217–26.CrossRefGoogle ScholarPubMed
Mossello, E, Boncinelli, M, Caleri, V, et al. (2008) Is antidepressant treatment associated with reduced cognitive decline in Alzheimer’s disease? Dement Geriatr Cogn Disord 25: 372–9.CrossRefGoogle ScholarPubMed
Norgaard, A, Jensen-Dahm, C, Gasse, C, et al. (2017) Psychotropic polypharmacy in patients with dementia: prevalence and predictors. J Alz Dis 56: 707–16.Google ScholarPubMed
O’Gorman, C (2020) Advance 1 phase 2/3 trial of AXS-05 in Alzheimer’s disease agitation, personal communication.Google Scholar
Porsteinsson, AP, Antonsdottir, IM (2017) An update on the advancements in the treatment of agitation in Alzheimer’s disease. Expert Opin Pharmacother 18: 611–20.CrossRefGoogle ScholarPubMed
Preuss, UW, Wong, JW, Koller, G (2016) Treatment of behavioral and psychological symptoms of dementia: a systematic review. Psychiatr Pol 50: 679715.CrossRefGoogle ScholarPubMed
Rosenberg, PB, Nowrangi, MA, Lyketsos, CG (2015) Neuropsychiatric symptoms in Alzheimer’s disease: what might be associated brain circuits? Mol Aspects Med 43–44: 2537.CrossRefGoogle ScholarPubMed
Sadowsky, CH, Galvin, JE (2012) Guidelines for the management of cognitive and behavioral problems in dementia. J Am Board Fam Med 25: 350–66.CrossRefGoogle ScholarPubMed
Schneider, LS, Dagerman, KS, Insel, P (2005) Risk of death with atypical antipsychotic drug treatment for dementia. JAMA 294: 1935–43.CrossRefGoogle ScholarPubMed
Siever, LJ (2008) Neurobiology of aggression and violence. Am J Psychiatry 165: 429–42.CrossRefGoogle ScholarPubMed
Sink, KM, Holden, KF, Yaffe, K (2005) Pharmacological treatment of neuropsychiatric symptoms of dementia. JAMA 293: 596608.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Parkinson’s disease psychosis as a serotonin-dopamine imbalance syndrome. CNS Spectrums 21: 271–5.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Mechanism of action of pimavanserin in Parkinson’s disease psychosis: targeting serotonin 5HT2A and 5HT2C receptors. CNS Spectrums 21: 271–5.CrossRefGoogle ScholarPubMed
Stahl, SM (2018) New hope for Alzheimer’s dementia as prospects for disease modification fade: symptomatic treatments for agitation and psychosis. CNS Spectrums 23: 291–7.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA, Cummings, M, et al. (2014) California State Hospital violence assessment and treatment (Cal-VAT) guidelines. CNS Spectrums 19: 449–65.CrossRefGoogle ScholarPubMed
Torrisi, M, Cacciola, A, Marra, A, et al. (2017) Inappropriate behaviors and hypersexuality in individuals with dementia: an overview of a neglected issue. Geriatr Gerontol Int 17: 865–74.CrossRefGoogle ScholarPubMed
Tsuno, N, Homma, A (2009) What is the association between depression and Alzheimer’s disease? Exp Rev Neurother 9: 1667–76.CrossRefGoogle ScholarPubMed
Van der Linde, RM, Dening, T, Stephan, BC, et al. (2016) Longitudinal course of behavioural and psychological symptoms of dementia: systematic review. Br J Psychiatry 209: 366–77.CrossRefGoogle ScholarPubMed
Van der Spek, K, Gerritsen, DL, Smallbrugge, M, et al. (2016) Only 10% of the psychotropic drug use for neuropsychiatric symptoms in patients with dementia is fully appropriate: the PROPER I-study. Int Psychogeriatr 28: 1589–95.CrossRefGoogle ScholarPubMed
Vigen, CLP, Mack, WJ, Keefe, RSE, et al. (2011) Cognitive effects of atypical antipsychotic medications in patients with Alzheimer’s disease: outcomes from CATIE-AD. Am J Psychiatry 168: 831–9.CrossRefGoogle ScholarPubMed
Volicer, L, Citrome, L, Volavka, J (2017) Measurement of agitation and aggression in adult and aged neuropsychiatric patients: review of definitions and frequently used measurement scales. CNS Spectrums 22: 407–14.CrossRefGoogle ScholarPubMed
Wisniewski, T, Drummond, E (2016) Developing therapeutic vaccines against Alzheimer’s disease. Expert Rev Vaccines 15: 401–15.CrossRefGoogle ScholarPubMed
Wuwongse, S, Chang, RC, Law, AC (2010) The putative neurodegenerative links between depression and Alzheimer’s disease. Prog Neurobiol 92: 362–75.Google Scholar
Zhang, Y, Cai, J, An, L, et al. (2017) Does music therapy enhance behavioral and cognitive function in elderly dementia patients? A systematic review and metaanalysis.Ageing Res Rev 35: 111.CrossRefGoogle ScholarPubMed
Bacher, I, Rabin, R, Woznica, A, Sacvco, KA, George, TP (2010) Nicotinic receptor mechanisms in neuropsychiatric disorders: therapeutic implications. Prim Psychiatry 17: 3541.Google Scholar
Fryer, AD, Christopoulos, A, Nathanson, NM (eds.) (2012) Muscarinic Receptors. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Geldmacher, DS, Provenano, G, McRae, T, et al. (2003) Donepezil is associated with delayed nursing home placement in patients with Alzheimer’s disease. J Am Geriatr Soc 51: 937–44.CrossRefGoogle ScholarPubMed
Grothe, M, Heinsen, H, Teipel, SF (2012) Atrophy of the cholinergic basal forebrain over the adult age range and in early states of Alzheimer’s disease. Biol Psychiatry 71: 805–13.CrossRefGoogle ScholarPubMed
Hasselmo, ME, Sarter, M (2011) Nodes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36: 5273.CrossRefGoogle Scholar
Lane, RM, Potkin, SG, Enz, A (2006) Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 9: 101–24.Google ScholarPubMed
Ohta, Y, Darwish, M, Hishikawa, N, et al. (2017) Therapeutic effects of drug switching between acetylcholinesterase inhibitors in patients with Alzheimer’s disease. Geriatr Gerontol Int 17: 1843–8.CrossRefGoogle ScholarPubMed
Pepeu, G, Giovannini, M (2017) The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res 1670: 173–84.CrossRefGoogle ScholarPubMed
Tariot, PN, Farlow, MR, Grossberg, GT, et al. (2004) Memantine treatment in patients with moderate to severe Alzheimer’s disease already receiving donepezil. JAMA 291: 317–24.CrossRefGoogle ScholarPubMed
Anastasiou, CA, Yannakoulia, M, Kosmidis, MH, et al. (2017) Mediterranean diet and cognitive health: initial results from the Hellenic Longitudinal Investigation of ageing and diet. PLOS ONE 12: e0182048.CrossRefGoogle ScholarPubMed
Aridi, YS, Walker, JL, Wright, ORL (2017) The association between the Mediterranean dietary pattern and cognitive health: a systematic review. Nutrients 9: E674.CrossRefGoogle ScholarPubMed
Ballard, C, Khan, Z, Clack, H, et al. (2011) Nonpharmacological treatment of Alzheimer disease. Can J Psychiatry 56: 589–95.CrossRefGoogle ScholarPubMed
Buchman, AS, Boyle, PA, Yu, L, et al. (2012) Total daily physical activity and the risk of AD and cognitive decline in older adults. Neurology 78: 1323–9.CrossRefGoogle ScholarPubMed
Burmester, B, Leathem, J, Merrick, P (2016) Subjective cognitive complaints and objective cognitive function in aging: a systematic review and meta-analysis of recent cross-sectional findings. Neuropsychol Rev 26: 376–93.CrossRefGoogle ScholarPubMed
Cederholm, T (2017) Fish consumption and omega-3 fatty acid supplementation for prevention or treatment of cognitive decline, dementia or Alzheimer’s disease in older adults: any news? Curr Opin Clin Nutr Metab Care 20: 104–9.CrossRefGoogle ScholarPubMed
Cepoiu-Martin, M, Tam-Tham, H, Patten, S, et al. (2016) Predictors of long-term care placement in persons with dementia: a systematic review and metaanalysis. Int J Geriatr Psychiatry 31: 1151–71.CrossRefGoogle ScholarPubMed
Ercoli, L, Siddarth, P, Huang, SC, et al. (2006) Perceived loss of memory ability and cerebral metabolic decline in persons with the apolipoprotein E-IV genetic risk for Alzheimer disease. Arch Gen Psychiatry 63: 442–8.CrossRefGoogle ScholarPubMed
Gu, Y, Brickman, AM, Stern, Y, et al. (2015) Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology 85: 1744–51.CrossRefGoogle Scholar
Hardman, RJ, Kennedy, G, Macpherson, H, et al. (2016) Adherence to a Mediterranean-style diet and effects on cognition in adults: a qualitative evaluation and systematic review of longitudinal and prospective trials. Front Nutr 3: 113.CrossRefGoogle ScholarPubMed
Hinz, FI, Geschwind, DH (2017) Molecular genetics of neurodegenerative dementias. Cold Spring Harb Perspect Biol 9: a023705.CrossRefGoogle ScholarPubMed
Knight, A, Bryan, J, Murphy, K (2016) Is the Mediterranean diet a feasible approach to preserving cognitive function and reducing risk of dementia for older adults in Western countries? New insights and future directions. Ageing Res Rev 25: 85101.CrossRefGoogle ScholarPubMed
Kullmann, S, Heni, M, Hallschmid, M, et al. (2016) Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev 96: 1169–209.CrossRefGoogle ScholarPubMed
Larson, EB, Wang, L, Bowen, JD, et al. (2006) Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 144: 7381.CrossRefGoogle ScholarPubMed
Lee, HS, Park, SW, Park, YJ (2016) Effects of physical activity programs on the improvement of dementia symptom: a meta-analysis. Biomed Res Int 2016: 2920146.CrossRefGoogle ScholarPubMed
Lee, SH, Zabolotny, JM, Huang, H, et al. (2016) Insulin in the nervous system and the mind: functions in metabolism, memory, and mood. Mol Metab 5: 589601.CrossRefGoogle ScholarPubMed
Li, Y, Sekine, T, Funayama, M, et al. (2014) Clinicogenetic study of GBA mutations in patients with familial Parkinson’s disease. Neurobiol Aging 35: 935.e38.CrossRefGoogle ScholarPubMed
Lim, SY, Kim, EJ, Kim, A, et al. (2016) Nutritional factors affecting mental health. Clin Nutr Res 5: 143–52.CrossRefGoogle ScholarPubMed
Marcason, W (2015) What are the components of the MIND diet? J Acad Nutr Diet 115: 1744.CrossRefGoogle ScholarPubMed
Matsuzaki, T, Sasaki, K, Tanizaki, Y, et al. (2010) Insulin resistance is associated with the pathology of Alzheimer disease. Neurology 75: 764–70.CrossRefGoogle ScholarPubMed
Ngandu, T, Lehtisalo, J, Solomon, A, et al. (2015) A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomized controlled trial. Lancet 385: 2255–63.CrossRefGoogle Scholar
O’Donnell, CA, Browne, S, Pierce, M, et al. (2015) Reducing dementia risk by targeting modifiable risk factors in mid-life: study protocol for the Innovative Midlife Intervention for Dementia Deterrence (In-MINDD) randomized controlled feasibility trial. Pilot Feasibility Stud 1: 40.CrossRefGoogle Scholar
Olszewska, DA, Lonergan, R, Fallon, EM, et al. (2016) Genetics of frontotemporal dementia. Curr Neurol Neurosci Rep 16: 107.CrossRefGoogle ScholarPubMed
Petersson, SD, Philippou, E (2016) Mediterranean diet, cognitive function, and dementia: a systematic review of the evidence. Adv Nutr 7: 889904.CrossRefGoogle ScholarPubMed
Qosa, H, Mohamed, LA, Batarseh, YS, et al. (2015) Extra-virgin olive oil attenuates amyloid-β and tau pathologies in the brains of TgSwD1 mice. J Nutr Biochem 26: 1479–90.CrossRefGoogle ScholarPubMed
Rigacci, S (2015) Olive oil phenols as promising multi-targeting agents against Alzheimer’s disease. Adv Exp Med Biol 863: 120.CrossRefGoogle ScholarPubMed
Rosenberg, RN, Lambracht-Washington, D, Yu, G, et al. (2016) Genomics of Alzheimer disease: a review. JAMA Neurol 73: 867–74.CrossRefGoogle ScholarPubMed
Schellenberg, GD, Montine, TJ (2012) The genetics and neuropathology of Alzheimer’s disease. Acta Neuropathol 124: 305–23.CrossRefGoogle ScholarPubMed
Valenzuela, MJ, Matthews, FE, Brayne, C, et al. for the Medical Research Council Cognitive Function and Ageing Study (2012) Multiple biological pathways link cognitive lifestyle to protection from dementia. Biol Psychiatry 71: 783–91.Google Scholar
Yang, T, Sun, Y, Lu, Z, et al. (2017) The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Res Rev 34: 1529.CrossRefGoogle ScholarPubMed
Zillox, LA, Chadrasekaran, K, Kwan, JY, et al. (2016) Diabetes and cognitive impairment. Curr Diab Rep 16: 111.Google Scholar
Annus, A, Csati, A, Vecsei, L (2016) Prion diseases: new considerations. Clin Neurol Neurosurg 150: 125–32.CrossRefGoogle ScholarPubMed
Arai, T (2014) Significance and limitation of the pathological classification of TDP-43 proteinopathy. Neuropathology 34: 578–88.CrossRefGoogle ScholarPubMed
Arendt, T, Steiler, JT, Holzer, M (2016) Tau and tauopathies. Brain Res Bull 126: 238–92.CrossRefGoogle ScholarPubMed
Asken, BM, Sullan, MJ, Snyder, AR, et al. (2016) Factors influencing clinical correlates of chronic traumatic encephalopathy (CTE): a review. Neuropsychol Rev 26: 340–63.CrossRefGoogle ScholarPubMed
Atri, A (2016) Imaging of neurodegenerative cognitive and behavioral disorders: practical considerations for dementia clinical practice. Handb Clin Neurol 136: 971–84.CrossRefGoogle ScholarPubMed
Azizi, SA, Azizi, SA (2018) Synucleinopathies in neurodegenerative diseases: accomplices, an inside job and selective vulnerability. Neurosci Lett 672: 150–2.CrossRefGoogle ScholarPubMed
Ballard, C, Mobley W, Hardy J, Williams G, Corbett A (2016) Dementia in Down’s syndrome. Lancet Neurol 15: 622–36.CrossRefGoogle ScholarPubMed
Ballard, C, Ziabreva, I, Perry, R, et al. (2006) Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology 67: 1931–4.CrossRefGoogle ScholarPubMed
Benskey, MJ, Perez, RG, Manfredsson, FP (2016) The contribution of alpha synuclein to neuronal survival and function: implications for Parkinson’s disease. J Neurochemistry 137: 331–59.CrossRefGoogle ScholarPubMed
Bonifacio, G, Zamboni, G (2016) Brain imaging in dementia. Postgrad Med J 92: 333–40.CrossRefGoogle ScholarPubMed
Boxer, AL, Yu, JT, Golbe, LI, et al. (2017) Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol 166: 552–63.Google Scholar
Braak, H, Del Tredici, K, Rub, U, et al. (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24: 197211.CrossRefGoogle ScholarPubMed
Burchell, JT, Panegyres, PK (2016) Prion diseases: immunotargets and therapy. ImmunoTargets Ther 5: 5768.Google ScholarPubMed
Cheung, CY, Ikram, MK, Chen, C, et al. (2017) Imaging retina to study dementia and stroke. Prog Brain Retinal Eye Res 57: 89107.CrossRefGoogle ScholarPubMed
Chutinet, A, Rost, NS (2014) White matter disease as a biomarker for long-term cerebrovascular disease and dementia. Curr Treat Options Cardiovasc Med 16: 292.CrossRefGoogle ScholarPubMed
Dugger, BN, Dickson, DW (2017) Pathology of neurodegenerative diseases. Cold Springs Harb Perspect Biol 9: a028035.Google ScholarPubMed
Eddy, CM, Parkinson, EG, Rickards, HE (2016) Changes in mental state and behavior in Huntington’s disease. Lancet Psychiatry 3: 1079–86.CrossRefGoogle ScholarPubMed
Emre, M (2007) Treatment of dementia associated with Parkinson’s disease. Parkinsonism Relat Disord 13 (Suppl 3): S457–61.CrossRefGoogle ScholarPubMed
Eusebio, A, Koric, L, Felician, O, et al. (2016) Progressive supranuclear palsy and corticobasal degeneration: diagnostic challenges and clinicopathological considerations. Rev Neurol (Paris) 172: 488502.CrossRefGoogle ScholarPubMed
Foo, H, Mak, E, Yong, TT (2017) Progression of subcortical atrophy in mild Parkinson’s disease and its impact on cognition. Eur J Neurol 24: 341–8.CrossRefGoogle ScholarPubMed
Ford, AH (2016) Preventing delirium in dementia: managing risk factors. Maturitas 92: 3540.CrossRefGoogle ScholarPubMed
Galvin, JE (2015) Improving the clinical detection of Lewy body dementia with the Lewy Body Composite Risk Score. Alzheimers Dement (Amst) 1: 316–24.Google ScholarPubMed
Giri, M, Zhang, M, Lu, Y (2016) Genes associated with Alzheimer’s disease: an overview and current status. Clin Interv Aging 11: 665–81.Google ScholarPubMed
Goetz, CG, Emre, M, Dubois, B (2008) Parkinson’s disease dementia: definitions, guidelines, and research perspectives in diagnosis. Ann Neurol 64 (Suppl 2): S8192.CrossRefGoogle ScholarPubMed
Goodman, RA, Lochner, KA, Thambisetty, M, et al. (2017) Prevalence of dementia subtypes in United States Medicare fee-for-service beneficiaries, 2011-2013. Alzheimers Dement 13: 2837.CrossRefGoogle ScholarPubMed
Gordon, E, Rohrer, JD, Fox, NC (2016) Advances in neuroimaging in frontotemporal dementia. J Neurochem 138 (Suppl 1): 193210.CrossRefGoogle ScholarPubMed
Gray, SL, Hanlon, JT (2016) Anticholinergic medication use and dementia: latest evidence and clinical implications. Ther Adv Drug Saf 7: 217–24.CrossRefGoogle ScholarPubMed
Harper, L, Barkhof, F, Scheltens, P, et al. (2014) An algorithmic approach to structural imaging in dementia. J Neurol Neurosurg Psychiatry 85: 692–8.CrossRefGoogle ScholarPubMed
Hasegawa, M, Nonaka, T, Masuda-Suzukake, M (2017) Prion-like mechanisms and potential therapeutic targets in neurodegenerative disorders. Pharmacol Ther 172: 2233.CrossRefGoogle ScholarPubMed
Hithersay, R, Hamburg, S, Knight, B, et al. (2017) Cognitive decline and dementia in Down syndrome. Curr Opin Psychiatry 30: 102–7.CrossRefGoogle ScholarPubMed
Huey, ED, Putnam, KT, Grafman, J (2006) A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia. Neurology 66: 1722.CrossRefGoogle ScholarPubMed
Ince, PG, Perry, EK, Morris, CM (1998) Dementia with Lewy bodies: a distinct non-Alzheimer dementia syndrome? Brain Pathol 8: 299324.CrossRefGoogle ScholarPubMed
Jellinger, KA (2018) Dementia with Lewy bodies and Parkinson’s disease-dementia: current concepts and controversies. J Neural Transm 125: 615–50.CrossRefGoogle Scholar
Jena, A, Renjen, PN, Taneja, S, et al. (2015) Integrated (18)F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging ([18]F-FDG PET/MRI), a multimodality approach for comprehensive evaluation of dementia patients: a pictorial essay. Indian J Radiol Imaging 25: 342–52.Google ScholarPubMed
Jennings, LA, Palimaru, A, Corona, MG, et al. (2017) Patient and caregiver goals for dementia care. Qual Life Res 26: 685–93.CrossRefGoogle ScholarPubMed
Johnson, BP, Westlake, KP (2018) Link between Parkinson disease and rapid eye movement sleep behavior disorder with dream enactment: possible implications for early rehabilitation. Arch Phys Med Rehab 99: 410–15.CrossRefGoogle ScholarPubMed
Kapasi, A, DeCarli, C, Schneider, JA (2017) Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol 134: 171–86.CrossRefGoogle ScholarPubMed
Karantzoulis, S, Galvin, JE (2011) Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Rev Neurother 11: 1579–91.CrossRefGoogle Scholar
Kertesz, A, Munoz, DG (2002) Frontotemporal dementia. Med Clin North Am 86: 501–18.CrossRefGoogle ScholarPubMed
Knopman, DS, Kramer, JH, Boeve, BF, et al. (2008) Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain 131 (Pt 11): 2957–68.CrossRefGoogle ScholarPubMed
Kobylecki, C, Jones, M, Thompson, JC, et al. (2015) Cognitive-behavioural features of progressive supranuclear palsy syndrome overlap with frontotemporal dementia. J Neurol 262: 916–22.CrossRefGoogle ScholarPubMed
Kolb, HC, Andres, JI (2017) Tau positron emission tomography imaging. Cold Spring Harb Perspect Biol 9: a023721.CrossRefGoogle ScholarPubMed
Koronyo, Y, Biggs, D, Barron, E, et al. (2017) Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight 2: 93621.CrossRefGoogle ScholarPubMed
Landin-Romero, R, Tan, R, Hodges, HR, et al. (2016) An update on semantic dementia: genetics, imaging, and pathology. Alz Res Ther 8: 52.CrossRefGoogle ScholarPubMed
Levy, RH, Collins, C (2007) Risk and predictability of drug interactions in the elderly. Int Rev Neurobiol 81: 235–51.CrossRefGoogle ScholarPubMed
Ling, H (2016) Clinical approach to progressive supranuclear palsy. J Mov Disord 9: 313.CrossRefGoogle ScholarPubMed
Lippmann, S, Perugula, ML (2016) Delirium or dementia? Innov Clin Neurosci 13: 56–7.Google ScholarPubMed
Liscic, RM, Srulijes, K, Groger, A, et al. (2013) Differentiation of progressive supranuclear palsy: clinical, imaging and laboratory tools. Acta Neurol Scand 127: 361–70.CrossRefGoogle ScholarPubMed
Llorens, F, Karch, A, Golanska, E, et al. (2017) Cerebrospinal fluid biomarker-based diagnosis of sporadic Creutzfeldt–Jakob disease: a validation study for previously established cutoffs. Dement Geriatr Cogn Disord 43: 7180.CrossRefGoogle ScholarPubMed
Mackenzie, IR, Neumann, M (2016) Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. J Neurochem 138 (Suppl 1): 5470.CrossRefGoogle ScholarPubMed
Mackenzie, IR, Munoz, DG, Kusaka, H, et al. (2011) Distinct subtypes of FTLD-FUS. Acta Neuropathol 121: 207–18.CrossRefGoogle ScholarPubMed
Maloney, B, Lahiri, DK (2016) Epigenetics of dementia: understanding the disease as a transformation rather than a state. Lancet Neurol 15: 760–74.CrossRefGoogle ScholarPubMed
McCarter, S, St Louis, EK, Boeve, BF (2016) Sleep disturbances in frontotemporal dementia. Curr Neurol Neurosci Rep 16: 85.CrossRefGoogle ScholarPubMed
McCleery, J, Cohen, DA, Sharpley, AL (2016) Pharmacotherapies for sleep disturbances in dementia (review). Cochrane Database Syst Rev 11: CD009178.Google Scholar
McGirt, MJ, Woodworth, G, Coon, AL, et al. (2005) Diagnosis, treatment, and analysis of long-term outcomes in idiopathic normal-pressure hydrocephalus. Neurosurgery 57: 699705.CrossRefGoogle ScholarPubMed
McKeith, IG, Dickson, DW, Lowe, J, et al. (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology 65: 1863–72.CrossRefGoogle ScholarPubMed
Meyer, PT, Frings, L, Rucker, G, et al. (2017) 18F-FDG PET in Parkinsonism: differential diagnosis and evaluation of cognitive impairment. J Nucl Med 58: 1888–98.CrossRefGoogle ScholarPubMed
Michel, J-P (2016) Is it possible to delay or prevent age-related cognitive decline? Korean J Fam Med 37: 263–6.CrossRefGoogle ScholarPubMed
Mioshi, E, Flanagan, E, Knopman, D (2017) Detecting change with the CDR-FTLD: differences between FTLD and AD dementia. Int J Geriatr Psychiatry 32: 977–82.CrossRefGoogle ScholarPubMed
Mioshi, E, Hsieh, S, Savage, S, et al. (2010) Clinical staging and disease progression in frontotemporal dementia. Neurology 74: 1591–7.CrossRefGoogle ScholarPubMed
Montenigro, PH, Baugh, CM, Daneshvar, DH, et al. (2014) Clinical subtypes of chronic traumatic encephalopathy: literature review and proposed research diagnostic criteria for traumatic encephalopathy syndrome. Alz Res Ther 6: 68.CrossRefGoogle ScholarPubMed
Nalbandian, A, Donkervoort, S, Dec, E, et al. (2011) The multiple faces of valosin-containing protein-associated diseases: inclusion body myopathy with Paget’s disease of bone, frontotemporal dementia, and amyotrophic lateral sclerosis. J Mol Neurosci 45: 522–31.CrossRefGoogle ScholarPubMed
Noe, E, Marder, K, Bell, KL, et al. (2004) Comparison of dementia with Lewy bodies to Alzheimer’s disease and Parkinson’s disease with dementia. Movement Disorders 19: 60–7.CrossRefGoogle ScholarPubMed
Pandya, SY, Clem, MA, Silva, LM, et al. (2016) Does mild cognitive impairment always lead to dementia? A review. J Neurol Sci 369: 5862.CrossRefGoogle ScholarPubMed
Paoli, RA, Botturi, A, Ciammola, A, et al. (2017) Neuropsychiatric burden in Huntington’s disease. Brain Sci 7: 67.CrossRefGoogle ScholarPubMed
Park, HK, Park, KH, Yoon, B, et al. (2017) Clinical characteristics of parkinsonism in frontotemporal dementia according to subtypes. J Neurol Sci 372: 51–6.CrossRefGoogle ScholarPubMed
Purandare, N, Burns, A, Morris, J, et al. (2012) Association of cerebral emboli with accelerated cognitive deterioration in Alzheimer’s disease and vascular dementia. Am J Psychiatry 169: 300–8.CrossRefGoogle ScholarPubMed
Ransohoff, RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353: 777–83.CrossRefGoogle ScholarPubMed
Raz, L, Knoefel, J, Bhaskar, K (2016) The neuropathology and cerebrovascular mechanisms of dementia. J Cereb Blood Flow Metab 36: 179–86.CrossRefGoogle ScholarPubMed
Roalf, D, Moberg, MJ, Turetsky, BI, et al. (2017) A quantitative meta-analysis of olfactory dysfunction in mild cognitive impairment. J Neurol Neurosurg Psychiatry 88: 226–32.CrossRefGoogle ScholarPubMed
Sachdeva, A, Chandra, M, Choudhary, M, et al. (2016) Alcohol-related dementia and neurocognitive impairment: a review study. Int J High Risk Behav Addict 5: e27976.CrossRefGoogle ScholarPubMed
Sarro, L, Tosakulwong, N, Schwarz, CG, et al. (2017) An investigation of cerebrovascular lesions in dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimers Dement 13: 257–66.CrossRefGoogle ScholarPubMed
Schott, JM, Warren, JD, Barhof, F, et al. (2011) Suspected early dementia. BMJ 343: d5568.CrossRefGoogle ScholarPubMed
Schroek, JL, Ford, J, Conway, EL, et al. (2016) Review of safety and efficacy of sleep medicines in older adults. Clin Ther 38: 2340–72.Google Scholar
Schwartz, M, Deczkowska, A (2016) Neurological disease as a failure of brain-immune crosstalk: the multiple faces of neuroinflammation. Trends Immunol 37: 668–79.CrossRefGoogle ScholarPubMed
Stahl, SM (2017) Does treating hearing loss prevent or slow the progress of dementia? Hearing is not all in the ears, but who’s listening? CNS Spectrums 22: 247–50.CrossRefGoogle Scholar
Takada, LT, Kim, MO, Cleveland, RW, et al. (2017) Genetic prion disease: experience of a rapidly progressive dementia center in the United States and a review of the literature. Am J Med Genet B Neuropsychiatr Genet 174: 3669.CrossRefGoogle Scholar
Tartaglia, MC, Rosen, JH, Miller, BL (2011) Neuroimaging in dementia. Neurotherapeutics 8: 8292.CrossRefGoogle ScholarPubMed
Thomas, AJ, Attems, J, Colloby, SJ, et al. (2017) Autopsy validation of 123I-FP-CIT dopaminergic neuroimaging for the diagnosis of DLB. Neurology 88: 18.CrossRefGoogle ScholarPubMed
Thomas, AJ, Taylor, JP, McKeith, I, et al. (2017) Development of assessment toolkits for improving the diagnosis of Lewy body dementias: feasibility study within the DIAMOND Lewy study. Int J Geriatr Psychiatry 32: 1280–304.CrossRefGoogle ScholarPubMed
Todd, TW, Petrucelli, L (2016) Insights into the pathogenic mechanisms of chromosome 9 open reading frame 72 (C9orf72) repeat expansions. J Neurochem 138 (Suppl 1): 145–62.CrossRefGoogle ScholarPubMed
Togo, T, Isojima, D, Akatsu, H, et al. (2005) Clinical features of argyrophilic grain disease: a retrospective survey of cases with neuropsychiatric symptoms. Am J Geriatr Psychiatry 13: 1083–91.CrossRefGoogle ScholarPubMed
Tsai, RM, Boxer, AL (2016) Therapy and clinical trials in frontotemporal dementia: past, present, and future. J Neurochem 138 (Suppl 1): 211–21.CrossRefGoogle ScholarPubMed
Tyebi, S, Hannan, AJ (2017) Synaptopathic mechanisms of neurodegeneration and dementia: insights from Huntington’s disease. Prog Neurobiol 153: 1845.CrossRefGoogle Scholar
Weishaupt, JH, Hyman T, Dikic I (2016) Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia. Trends Mol Med 22: 769–83.CrossRefGoogle ScholarPubMed
Wenning, GK, Tison, F, Seppi, K, et al. (2004) Development and validation of the Unified Multiple System Atrophy Rating Scale (UMSARS). Mov Disord 19: 1391–402.CrossRefGoogle ScholarPubMed
Williams, DR, Holton, JL, Strand, C, et al. (2007) Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson’s syndrome. Brain 130 (Pt 6): 1566–76.CrossRefGoogle ScholarPubMed
Wimo, A, Guerchet M, Ali GC, et al. (2017) The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 13: 17.CrossRefGoogle ScholarPubMed
Xu, Y, Yang J, Shang H (2016) Meta-analysis of risk factors for Parkinson’s disease dementia. Transl Neurodegen 5: 18.CrossRefGoogle ScholarPubMed
Yang, L, Yan, J, Jin, X, et al. (2016) Screening for dementia in older adults: comparison of Mini-Mental State Examination, Min-Cog, Clock Drawing Test and AD8. PLOS ONE 11: e0168949.CrossRefGoogle ScholarPubMed
Yang, W, Yu, S (2017) Synucleinopathies: common features and hippocampal manifestations. Cell Mol Life Sci 74: 8466–80.CrossRefGoogle ScholarPubMed
Albert, MS, DeKosky, ST, Dickson, D, et al. (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging and Alzheimer’s Association Workgroup. Alzheimers Dement 7: 270–9.CrossRefGoogle Scholar
Arbor, SC, LaFontaine, M, Cumbay, M (2016) Amyloid-beta Alzheimer targets: protein processing, lipid rafts, and amyloid-beta pores. Yale J Biol Med 89: 521.Google ScholarPubMed
Bronzuoli, MR, Iacomino, A, Steardo, L, et al. (2016) Targeting neuroinflammation in Alzheimer’s disease. J Inflamm Res 9: 199208.CrossRefGoogle ScholarPubMed
Cardenas-Aguayo, M. del C, Silva-Lucero, M. del C, Cortes-Ortiz, M, et al. (2014) Physiological role of amyloid beta in neural cells: the cellular trophic activity. In Neurochemistry, Heinbockel, T (ed.) InTech Open Access Publisher, doi:10.5772/57398.Google Scholar
Chakraborty, A, de Wit, NM, van der Flier, WM, et al. (2017) The blood brain barrier in Alzheimer’s disease. Vasc Pharmacol 89: 1218.CrossRefGoogle ScholarPubMed
Chetelat, G, Villemagne, VL, Villain, N, et al. (2012) Accelerated cortical atrophy in cognitively normal elderly with high β-amyloid deposition. Neurology 78: 477–84.CrossRefGoogle ScholarPubMed
Citron, M (2004) β-Secretase inhibition for the treatment of Alzheimer’s disease: promise and challenge. Trends Pharmacol Services 25: 92–7.Google ScholarPubMed
Clark, CM, Schneider, JA, Bedell, BJ, et al. (2011) Use of florbetapir-PET for imaging β-amyloid pathology. JAMA 305: 275–83.Google ScholarPubMed
Cummings, JL (2011) Biomarkers in Alzheimer’s disease drug development. Alzheimers Dement 7: e1344.CrossRefGoogle ScholarPubMed
Cummings, J (2011) Alzheimer’s disease: clinical trials and the amyloid hypothesis. Ann Acad Med Singapore 40: 304–6.CrossRefGoogle ScholarPubMed
Deutsch, SI, Rosse, RB, Deutsch, LH (2006) Faulty regulation of tau phosphorylation by the reelin signal transduction pathway is a potential mechanism of pathogenesis and therapeutic target in Alzheimer’s disease. Eur Neuropsychopharmacol 16: 547–51.CrossRefGoogle ScholarPubMed
Dickerson, BC, Stoub, TR, Shah, RC, et al. (2011) Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology 76: 1395–402.CrossRefGoogle ScholarPubMed
Ewers, M, Sperling, RA, Klunk, WE, Weiner, MW, Hampel, H (2011) Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci 34: 430–42.CrossRefGoogle ScholarPubMed
Fajardo, VA, Fajardo, VA, LeBlanc, PJ, et al. (2018) Examining the relationship between trace lithium in drinking water and the rising rates of age-adjusted Alzheimer’s disease mortality in Texas. J Alzheimers Dis 61: 425–34.Google ScholarPubMed
Fleisher, AS, Chen, K, Liu, X, et al. (2011) Using positron emission tomography and florbetapir F 18 to image amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Arch Neurol 68: 1404–11.CrossRefGoogle ScholarPubMed
Forster, S, Grimmer, T, Miederer, I, et al. (2012) Regional expansion of hypometabolism in Alzheimer’s disease follows amyloid deposition with temporal delay. Biol Psychiatry 71: 792–7.CrossRefGoogle ScholarPubMed
Gehres, SW, Rocha, A, Leuzy, A, et al. (2016) Cognitive intervention as an early nonpharmacological strategy in Alzheimer’s disease: a translational perspective. Front Aging Neurosci 8: 14.CrossRefGoogle ScholarPubMed
Gitlin, LN, Hodgson, NA (2016) Who should assess the needs of and care for a dementia patient’s caregiver? AMA J Ethics 18: 1171–81.Google ScholarPubMed
Godyn, J, Jonczyk, J, Panek, D, et al. (2016) Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol Rep 68: 127–38.CrossRefGoogle ScholarPubMed
Gomar, JJ, Bobes-Bascaran, MT, Conejero-Goldberg, C, et al. (2011) Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer’s Disease Neuroimaging Initiative. Arch Gen Psychiatry 68: 961–9.CrossRefGoogle ScholarPubMed
Grimmer, T, Tholen, S, Yousefi, BH, et al (2010) Progression of cerebral amyloid load is associated with the apolipoprotein E ε4 genotype in Alzheimer’s disease. Biol Psychiatry 68: 879–84.CrossRefGoogle ScholarPubMed
Gurnani, AS, Gavett, BE (2017) The differential effects of Alzheimer’s disease and Lewy body pathology on cognitive performance: a meta-analysis. Neuropsychol Rev 27: 117.CrossRefGoogle ScholarPubMed
Harrison, JR, Owen, MJ (2016) Alzheimer’s disease: the amyloid hypothesis on trial. Br J Psychiatry 208: 13.CrossRefGoogle ScholarPubMed
Herukka, SK, Simonsen, AH, Andreasen, N, et al. (2017) Recommendations for CSF AD biomarkers in the diagnostic evaluation of MCI. Alzheimers Dement 13: 285–95.Google Scholar
Jack, CR Jr., Albsert, MS, Knopman, DS, et al. (2011) Introduction to the recommendations from the National Institute on Aging and the Alzheimer’s Association Workgroup on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7: 257–62.CrossRefGoogle Scholar
Jack, CR Jr., Lowe, VJ, Weigand, SD, et al. (2009) Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 132: 1355–65.CrossRefGoogle ScholarPubMed
Jonsson, T, Atwal, JK, Steinberg, S, et al. (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488: 96–9.CrossRefGoogle ScholarPubMed
Kokjohn, TA, Maarouf, CL, Roher, AE (2012) Is Alzheimer’s disease amyloidosis a result of a repair mechanism gone astray? Alzheimers Dement 8: 574–83.CrossRefGoogle ScholarPubMed
Kovari, E, Herrmann, FR, Hof, PR, et al. (2013) The relationship between cerebral amyloid angiopathy and cortical microinfarcts in brain ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 39: 498509.CrossRefGoogle ScholarPubMed
Li, Y, Li, Y, Li, X, et al. (2017) Head injury as a risk factor for dementia and Alzheimer’s disease: a systematic review and meta-analysis of 32 observational studies. PLOS ONE 12: e0169650.Google ScholarPubMed
Lieberman, A, Deep, A, Shi, J, et al. (2018) Downward finger displacement distinguishes Parkinson disease dementia from Alzheimer disease. Int J Neurosci 128: 151–4.CrossRefGoogle ScholarPubMed
Lim, JK, Li, QX, He, Z, et al. (2016) The eye as a biomarker for Alzheimer’s disease. Front Neurosci 10: 114.CrossRefGoogle ScholarPubMed
MacLeod, R, Hillert, EK, Cameron, RT, et al. (2015) The role and therapeutic targeting of α-, β-, and γ-secretase in Alzheimer’s disease. Future Sci OA 1: FS011.CrossRefGoogle ScholarPubMed
Mallik, A, Drzezga, A, Minoshima, S (2017) Clinical amyloid imaging. Semin Nucl Med 47: 3143.CrossRefGoogle ScholarPubMed
Marciani, DJ (2015) Alzheimer’s disease vaccine development: a new strategy focusing on immune modulation. J Neuroimmunol 287: 5463.CrossRefGoogle ScholarPubMed
McKhann, GM, Knopman, DS, Chertkow, H (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging and the Alzheimer’s Association Workgroup. Alzheimers Dement 7: 263–9.CrossRefGoogle Scholar
Mendiola-Precoma, J, Berumen, LC, Padilla, K, et al. (2016) Therapies for prevention and treatment of Alzheimer’s disease. BioMed Res Int 2016: 2589276.CrossRefGoogle ScholarPubMed
Panza, F, Solfrizzi, V, Seripa, D, et al. (2016) Tau-centric targets and drugs in clinical development for the treatment of Alzheimer’s disease. BioMed Res Int 2016: 3245935.CrossRefGoogle ScholarPubMed
Pascoal, TA, Mathotaarachchi, S, Shin, M, et al. (2017) Synergistic interaction between amyloid and tau predicts the progression to dementia. Alzheimers Dement 13: 644–53.CrossRefGoogle ScholarPubMed
Rabinovici, GD, Rosen, HJ, Alkalay, A, et al. (2011) Amyloid vs. FDG-PET in the differential diagnosis of AD and FTLD. Neurology 77: 2034–42.CrossRefGoogle ScholarPubMed
Rapp, MA, Schnaider-Beeri, M, Grossman, HT, et al. (2006) Increased hippocampal plaques and tangles in patients with Alzheimer disease with a lifetime history of major depression. Arch Gen Psychiatry 63: 161–7.CrossRefGoogle ScholarPubMed
Reisberg, B, Doody, R, Stöffle, A, et al. (2003) Memantine in moderate-to-severe Alzheimer’s disease. New Engl J Med 348: 1333–41.CrossRefGoogle ScholarPubMed
Ritter, AR, Leger, GC, Miller, JB, et al. (2017) Neuropsychological testing in pathologically verified Alzheimer’s disease and frontotemporal dementia. Alzheimer Dis Assoc Disord 31: 187–91.CrossRefGoogle ScholarPubMed
Rodrigue, KM, Kennedy, KM, Devous, MD Sr., et al. (2012) Β-Amyloid burden in healthy aging. Regional distribution and cognitive consequences. Neurology 78: 387–95.CrossRefGoogle ScholarPubMed
Ruthirakuhan, M, Herrmann, N, Seuridjan, I, et al. (2016) Beyond immunotherapy: new approaches for disease modifying treatments for early Alzheimer’s disease. Expert Opin Pharmacother 17: 2417–29.CrossRefGoogle ScholarPubMed
Sabbagh, MN, Schauble, B, Anand, K, et al. (2017) Histopathology and florbetaben PET in patients incorrectly diagnosed with Alzheimer’s disease. J Alzheimers Dis 56: 441–6.CrossRefGoogle ScholarPubMed
Scheinin, NM, Aalto, S, Kaprio, J, et al. (2011) Early detection of Alzheimer disease. Neurology 77: 453–60.CrossRefGoogle ScholarPubMed
Sharma, N, Singh, AN (2016) Exploring biomarkers for Alzheimer’s disease. J Clin Diag Res 10: KE0106.Google ScholarPubMed
Simonsen, AH, Herukka, SK, Andreasen, N, et al. (2017) Recommendations for CSF AD biomarkers in the diagnostic evaluation of dementia. Alzheimers Dement 13: 285–95.CrossRefGoogle ScholarPubMed
Sperling, RA, Aisen, PS, Beckett, LA, et al. (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging and the Alzheimer’s Association Workgroup. Alzheimers Dement 7: 280–92.CrossRefGoogle Scholar
Spies, PE, Claasen, JA, Peer, PG, et al. (2013) A prediction model to calculate probability of Alzheimer’s disease using cerebrospinal fluid biomarkers. Alzheimers Dement 9: 262–8.CrossRefGoogle ScholarPubMed
Spies, PE, Verbeek, MM, van Groen, T, et al. (2012) Reviewing reasons for the decreased CSF Abeta42 concentration in Alzheimer disease. Front Biosci (Landmark Ed) 17: 2024–34.CrossRefGoogle ScholarPubMed
Spira, AP, Gottesman, RF (2017) Sleep disturbance: an emerging opportunity for Alzheimer’s disease prevention? Int Psychogeriatr 29: 529–31.CrossRefGoogle ScholarPubMed
Tarawneh, R, Holtzman, DM (2012) The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harbor Perspect Med 2: a006148.CrossRefGoogle ScholarPubMed
Tariot, PN, Aisen, PS (2009) Can lithium or valproate untie tangles in Alzheimer’s disease? J Clin Psychiatry 70: 919–21.CrossRefGoogle ScholarPubMed
Uzun, S, Kozumplik, O, Folnegovic-Smalc, V (2011) Alzheimer’s dementia: current data review. Coll Antropol 35: 1333–7.Google ScholarPubMed
Venkataraman, A, Kalk, N, Sewell, G, et al. (2017) Alcohol and Alzheimer’s disease: does alcohol dependence contribute to beta-amyloid deposition, neuroinflammation and neurodegeneration in Alzheimer’s disease? Alcohol Alcoholism 52: 151–8.Google ScholarPubMed
Villemagne, VL, Doré, V, Bourgeat, P, et al. (2017) Aβ-amyloid and tau imaging in dementia. Semin Nucl Med 47: 7588.CrossRefGoogle ScholarPubMed
Wagner, M, Wolf, S, Reischies, FM, et al. (2012) Biomarker validation of a cued recall memory deficit in prodromal Alzheimer disease. Neurology 78: 379–86.CrossRefGoogle ScholarPubMed
Weintraub, S, Wicklund, AH, Salmon, DP (2012) The neuropsychological profile of Alzheimer disease. Cold Spring Harb Perspect Med 2 :a006171.CrossRefGoogle ScholarPubMed
Williams, MM, Xiong, C, Morris, JC, Galvin, JE (2006) Survival and mortality differences between dementia with Lewy bodies vs. Alzheimer’s disease. Neurology 67: 1935–41.CrossRefGoogle Scholar
Wishart, HA, Saykin, AJ, McAllister, TW, et al. (2006) Regional brain atrophy in cognitively intact adults with a single APOE ε4 allele. Neurology 67: 1221–4.CrossRefGoogle ScholarPubMed
Wolk, DA, Grachev, ID, Buckley, C, et al. (2011) Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology. Arch Neurol 68: 1398–403.CrossRefGoogle ScholarPubMed
Yaffe, K, Tocco, M, Petersen, RC, et al. (2012) The epidemiology of Alzheimer’s disease: laying the foundation for drug design, conduct, and analysis of clinical trials. Alzheimers Dement 8: 237–42.CrossRefGoogle ScholarPubMed
Yan, R (2016) Stepping closer to treating Alzheimer’s disease patients with BACE1 inhibitor drugs. Transl Neurodegen 5: 13.CrossRefGoogle ScholarPubMed
Yeh, HL, Tsai, SJ (2008) Lithium may be useful in the prevention of Alzheimer’s disease in individuals at risk of presenile familial Alzheimer’s disease. Med Hypotheses 71: 948–51.CrossRefGoogle ScholarPubMed
Alexopoulos, GS (2003) Role of executive function in late life depression. J Clin Psychiatry 64 (Suppl 14): 1823.Google ScholarPubMed
Ballard, C, Oyebode, F (1995) Psychotic symptoms in patients with dementia. Int J Geriatr Psychiatry 10: 743–52.Google Scholar
Ballard, C, Neill, D, O’Brien, J, et al. (2000) Anxiety, depression and psychosis in vascular dementia: prevalence and associations. J Affect Disord 59: 97106.CrossRefGoogle ScholarPubMed
Bao, AM, Meynen, G, Swaab, DF (2008) The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev 57: 531–53.CrossRefGoogle ScholarPubMed
Barnes, DE, Yaffe, K, Byers, AL, et al. (2012) Midlife vs. late-life depressive symptoms and risk of dementia. Arch Gen Psychiatry 6: 493–8.Google Scholar
Bassetti, CL, Bargiotas, P (2018) REM sleep behavior disorder. Front Neurol Neurosci 41: 104–16.CrossRefGoogle ScholarPubMed
Bennett, S, Thomas, AJ (2014) Depression and dementia: cause, consequence or coincidence? Maturita 79:184–90.CrossRefGoogle ScholarPubMed
Buoli, M, Serati, M, Caldiroli, A, et al. (2017) Pharmacological management of psychiatric symptoms in frontotemporal dementia: a systematic review. J Geriatr Psychiatry 30: 162–9.Google ScholarPubMed
Burns, A, Jacoby, R, Levy, R (1990) Psychiatric phenomena in Alzheimer’s disease. II: disorders of perception. Br J Psychiatry 157: 7681, 92–4.CrossRefGoogle ScholarPubMed
Canevelli, M, Valleta, M, Trebbastoni, A, et al. (2016) Sundowning in dementia: clinical relevance, pathophysiological determinants, and therapeutic approaches. Front Med (Lausanne) 3: 73.Google ScholarPubMed
Caraci, F, Copani, A, Nicoletti, F, et al. (2010) Depression and Alzheimer’s disease: neurobiological links and common pharmacological targets. Eur J Pharmacol 626: 6471.CrossRefGoogle ScholarPubMed
Cohen-Mansfield, J, Billig, N (1986) Agitated behaviors in the elderly. I. A conceptual review. J Am Geriatr Soc 34: 711–21.CrossRefGoogle Scholar
Corcoran, C, Wong, ML, O’Keane, V (2004) Bupropion in the management of apathy. J Psychopharm 18: 133–5.CrossRefGoogle ScholarPubMed
Cummings, J, Kohegyi, E, Mergel, V, et al. (2018) Efficacy and safety of flexibly dosed brexpiprazole for the treatment of agitation in Alzheimer type dementia: a randomized, double blind fixed dose 12 week placebo controlled global clinical trial. Abstract for the American Association of Geriatric Psychiatry, Honolulu, Hawaii.Google Scholar
Cummings, JL, Lyketsos, CG, Peskind, ER, et al. (2015) Effect of dextromethorphan–quinidine on agitation in patients with Alzheimer’s disease dementia: a randomized clinical trial. JAMA 314: 1242–54.CrossRefGoogle ScholarPubMed
Dennis, M, Shine, L, John, A, et al. (2017) Risk of adverse outcomes for older people with dementia prescribed antipsychotic medication: a population based e-cohort study. Neurol Ther 6: 5777.CrossRefGoogle ScholarPubMed
Ducharme, S, Price, BH, Dickerson, BC (2018) Apathy: a neurocircuitry model based on frontotemporal dementia. J Neural Neurosurg Psychiatry 89: 389–96.CrossRefGoogle Scholar
Evan, C, Weintraub, D (2010) Case for and against specificity of depression in Alzheimer’s disease. Psychiatry Clin Neurosci 64: 358–66.Google Scholar
Farina, N, Morrell, L, Banerjee, S (2017) What is the therapeutic value of antidepressants in dementia? A narrative review. Geriatr Psychiatry 32: 3249.CrossRefGoogle ScholarPubMed
Fernandez-Matarrubia, M, Matias-Guiu, JA, Cabrera-Martin, MN, et al. (2018) Different apathy clinical profile and neural correlates in behavioral variant frontotemporal dementia and Alzheimer’s disease. Int J Geriatr Psychiatry 33: 141–50.CrossRefGoogle ScholarPubMed
Fernandez-Matarrubia, M, Matias-Guiu, JA, Moreno-Ramos, T, et al. (2016) Validation of the Lille’s Apathy Rating Scale in very mild to moderate dementia. Am J Geriatr Psychiatry 24: 517–27.CrossRefGoogle ScholarPubMed
Ford, AH, Almeida, OP (2017) Management of depression in patients with dementia: is pharmacological treatment justified? Drugs Aging 34: 8995.CrossRefGoogle ScholarPubMed
Fraker, J, Kales, HC, Blazek, M (2014) The role of the occupational therapist in the management of neuropsychiatric symptoms of dementia in clinical settings. Occup Ther Health Care 28: 420.CrossRefGoogle ScholarPubMed
Frakey, LL, Salloway, S, Buelow, M, Malloy, P (2012) A randomized, double-blind, placebo-controlled trial of modafinil for the treatment of apathy in individuals with mild-to-moderate Alzheimer’s disease. J Clin Psychiatry 73: 796801.CrossRefGoogle ScholarPubMed
Garay, RP, Grossberg, GT (2017) AVP-786 for the treatment of agitation in dementia of the Alzheimer’s type. Expert Opin Invest Drugs 26: 121–32.CrossRefGoogle ScholarPubMed
Geerlings, MI, den Hijer, T, Koudstaal, PJ, et al. (2008) History of depression, depressive symptoms, and medial temporal lobe atrophy and the risk of Alzheimer’s disease. Neurology 70: 1258–64.CrossRefGoogle Scholar
Gessing, LV, Sondergard, L, Forman, JL, et al. (2009) Antidepressants and dementia. J Affect Disord 117: 24–9.Google Scholar
Goldman, JG, Holden, S (2014) Treatment of psychosis and dementia in Parkinson’s disease. Curr Treat Options Neurol 16: 281.CrossRefGoogle ScholarPubMed
Goodarzi, Z, Mele, B, Guo, S, et al. (2016) Guidelines for dementia or Parkinson’s disease with depression or anxiety: a systematic review. BMC Neurol 16(1): 244.CrossRefGoogle ScholarPubMed
Grossberg, G, Kohegyi, E, Amatniek, J, et al. (2018) Efficacy and safety of fixed dose brexpiprazole for the treatment of agitation in Alzheimer type dementia: a randomized, double blind fixed dose 12-week placebo controlled global clinical trial. Abstract for the American Association of Geriatric Psychiatry, Honolulu, Hawaii.Google Scholar
Hacksell, U, Burstein, ES, McFarland, K, et al. (2014) On the discovery and development of pimavanserin: a novel drug candidate for Parkinson’s disease. Neurochem Res 39: 2008–17.CrossRefGoogle Scholar
Hongiston, K, Hallikainen, I, Seldander, T, et al. (2018) Quality of life in relation to neuropsychiatric symptoms in Alzheimer’s disease: 5-year prospective ALSOVA cohort study. Int J Geriatr Psychiatry 33: 4757.CrossRefGoogle Scholar
Jr. CR, Jack, Wiste, HJ, Weigland, SD, et al. (2017) Defining imaging biomarker cut point for brain aging and Alzheimer’s disease. Alzheimers Dement 13: 205–16.Google Scholar
Johnson, DK, Watts, AS, Chapin, BA, et al. (2011) Neuropsychiatric profiles in dementia. Alzheimer Dis Assoc Disord 25: 326–32.CrossRefGoogle ScholarPubMed
Kales, HC, Kim, HM, Zivin, K, et al. (2012) Risk of mortality among individual antipsychotics in patients with dementia. Am J Psychiatry 169: 71–9.CrossRefGoogle ScholarPubMed
Kales, HC, Lyketsos, CG, Miller, EM, et al. (2019) Management of behavioral and psychological symptoms in people with Alzheimer’s disease: an international Delphi consensus. Int Psychogeriatr 31: 8390.CrossRefGoogle ScholarPubMed
Kok, RM, Reynolds, CF (2017) Management of depression in older adults: a review. JAMA 317: 2114–22.CrossRefGoogle ScholarPubMed
Kong, EH (2005) Agitation in dementia: concept clarification. J Adv Nurs 52: 526–36.CrossRefGoogle ScholarPubMed
Kumfor, F, Zhen, A, Hodges, JR, et al. (2018) Apathy in Alzheimer’s disease and frontotemporal dementia: distinct clinical profiles and neural correlates. Cortex 103: 350–9.CrossRefGoogle ScholarPubMed
Lanctot, KL, Amatniek, J, Ancoli-Israel, S, et al. (2017) Neuropsychiatric signs and symptoms of Alzheimer’s disease: new treatment paradigms. Alzheimers Dement (NY) 3: 440–9.Google ScholarPubMed
Lee, GJ, Lu, PH, Hua, X, et al. (2012) Depressive symptoms in mild cognitive impairment predict greater atrophy in Alzheimer’s disease-related regions. Biol Psychiatry 71: 81421.CrossRefGoogle ScholarPubMed
Leroi, I, Voulgari, A, Breitner, JC, et al. (2003) The epidemiology of psychosis in dementia. Am J Geriatr Psychiatry 11: 8391.CrossRefGoogle ScholarPubMed
Lochhead, JD, Nelson, MA, Maguire, GA (2016) The treatment of behavioral disturbances and psychosis associated with dementia. Psychiatr Pol 50: 311–22.CrossRefGoogle ScholarPubMed
Lopez, OL, Becker, JT, Sweet, RA, et al. (2003) Psychiatric symptoms vary with the severity of dementia in probable Alzheimer’s disease. J Neuropsychiatry Clin Neurosci 15: 346–53.CrossRefGoogle ScholarPubMed
Lyketsos, CG, Carillo, MC, Ryan, JM, et al. (2011) Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement 7: 532–9.CrossRefGoogle ScholarPubMed
Lyketsos, CG, Lopez, O, Jones, B, et al. (2002) Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the cardiovascular health study. JAMA 288: 1475–83.CrossRefGoogle ScholarPubMed
Lyketsos, CG, Steinberg, M, Tschanz, JT, et al. (2000) Mental and behavioral disturbances in dementia: findings from the Cache County Study on memory in aging. Am J Psychiatry 157: 704–7.CrossRefGoogle Scholar
Macfarlane, S, O’Connor, D (2016) Managing behavioural and psychological symptoms in dementia. Aust Prescr 39: 123–5.CrossRefGoogle ScholarPubMed
Marin, RS, Fogel, BS, Hawkins, J, et al. (1995) Apathy: a treatable symptom. J Neuropsychiatry 7: 2330.Google Scholar
Maust, DT, Kim, HM, Seyfried, LS, et al. (2015) Antipsychotics, other psychotropics, and the risk of death in patients with dementia: number needed to harm. JAMA Psychiatry 72: 438–45.CrossRefGoogle ScholarPubMed
Moraros, J, Nwankwo, C, Patten, SB, et al. (2017) The association of antidepressant drug usage with cognitive impairment or dementia, including Alzheimer disease: a systematic review and meta-analysis. Depress Anxiety 34: 217–26.CrossRefGoogle ScholarPubMed
Mossello, E, Boncinelli, M, Caleri, V, et al. (2008) Is antidepressant treatment associated with reduced cognitive decline in Alzheimer’s disease? Dement Geriatr Cogn Disord 25: 372–9.CrossRefGoogle ScholarPubMed
Norgaard, A, Jensen-Dahm, C, Gasse, C, et al. (2017) Psychotropic polypharmacy in patients with dementia: prevalence and predictors. J Alz Dis 56: 707–16.Google ScholarPubMed
O’Gorman, C (2020) Advance 1 phase 2/3 trial of AXS-05 in Alzheimer’s disease agitation, personal communication.Google Scholar
Porsteinsson, AP, Antonsdottir, IM (2017) An update on the advancements in the treatment of agitation in Alzheimer’s disease. Expert Opin Pharmacother 18: 611–20.CrossRefGoogle ScholarPubMed
Preuss, UW, Wong, JW, Koller, G (2016) Treatment of behavioral and psychological symptoms of dementia: a systematic review. Psychiatr Pol 50: 679715.CrossRefGoogle ScholarPubMed
Rosenberg, PB, Nowrangi, MA, Lyketsos, CG (2015) Neuropsychiatric symptoms in Alzheimer’s disease: what might be associated brain circuits? Mol Aspects Med 43–44: 2537.CrossRefGoogle ScholarPubMed
Sadowsky, CH, Galvin, JE (2012) Guidelines for the management of cognitive and behavioral problems in dementia. J Am Board Fam Med 25: 350–66.CrossRefGoogle ScholarPubMed
Schneider, LS, Dagerman, KS, Insel, P (2005) Risk of death with atypical antipsychotic drug treatment for dementia. JAMA 294: 1935–43.CrossRefGoogle ScholarPubMed
Siever, LJ (2008) Neurobiology of aggression and violence. Am J Psychiatry 165: 429–42.CrossRefGoogle ScholarPubMed
Sink, KM, Holden, KF, Yaffe, K (2005) Pharmacological treatment of neuropsychiatric symptoms of dementia. JAMA 293: 596608.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Parkinson’s disease psychosis as a serotonin-dopamine imbalance syndrome. CNS Spectrums 21: 271–5.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Mechanism of action of pimavanserin in Parkinson’s disease psychosis: targeting serotonin 5HT2A and 5HT2C receptors. CNS Spectrums 21: 271–5.CrossRefGoogle ScholarPubMed
Stahl, SM (2018) New hope for Alzheimer’s dementia as prospects for disease modification fade: symptomatic treatments for agitation and psychosis. CNS Spectrums 23: 291–7.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA, Cummings, M, et al. (2014) California State Hospital violence assessment and treatment (Cal-VAT) guidelines. CNS Spectrums 19: 449–65.CrossRefGoogle ScholarPubMed
Torrisi, M, Cacciola, A, Marra, A, et al. (2017) Inappropriate behaviors and hypersexuality in individuals with dementia: an overview of a neglected issue. Geriatr Gerontol Int 17: 865–74.CrossRefGoogle ScholarPubMed
Tsuno, N, Homma, A (2009) What is the association between depression and Alzheimer’s disease? Exp Rev Neurother 9: 1667–76.CrossRefGoogle ScholarPubMed
Van der Linde, RM, Dening, T, Stephan, BC, et al. (2016) Longitudinal course of behavioural and psychological symptoms of dementia: systematic review. Br J Psychiatry 209: 366–77.CrossRefGoogle ScholarPubMed
Van der Spek, K, Gerritsen, DL, Smallbrugge, M, et al. (2016) Only 10% of the psychotropic drug use for neuropsychiatric symptoms in patients with dementia is fully appropriate: the PROPER I-study. Int Psychogeriatr 28: 1589–95.CrossRefGoogle ScholarPubMed
Vigen, CLP, Mack, WJ, Keefe, RSE, et al. (2011) Cognitive effects of atypical antipsychotic medications in patients with Alzheimer’s disease: outcomes from CATIE-AD. Am J Psychiatry 168: 831–9.CrossRefGoogle ScholarPubMed
Volicer, L, Citrome, L, Volavka, J (2017) Measurement of agitation and aggression in adult and aged neuropsychiatric patients: review of definitions and frequently used measurement scales. CNS Spectrums 22: 407–14.CrossRefGoogle ScholarPubMed
Wisniewski, T, Drummond, E (2016) Developing therapeutic vaccines against Alzheimer’s disease. Expert Rev Vaccines 15: 401–15.CrossRefGoogle ScholarPubMed
Wuwongse, S, Chang, RC, Law, AC (2010) The putative neurodegenerative links between depression and Alzheimer’s disease. Prog Neurobiol 92: 362–75.Google Scholar
Zhang, Y, Cai, J, An, L, et al. (2017) Does music therapy enhance behavioral and cognitive function in elderly dementia patients? A systematic review and metaanalysis.Ageing Res Rev 35: 111.CrossRefGoogle ScholarPubMed
Bloch, MH, Wasylink, S, Landeros, A, et al. (2012) Effects of ketamine in treatment refractory obsessive compulsive disorder. Biol Psychiatry 72: 964–70.CrossRefGoogle ScholarPubMed
Chamberlain, SR, Menzies, L, Hampshire, A, et al. (2008) Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Science 321: 421–2.CrossRefGoogle ScholarPubMed
Dougherty, DD, Brennan, BP, Stewart, SE, et al. (2018) Neuroscientifically informed formulation and treatment planning for patients with obsessive compulsive disorder: a review. JAMA Psychiatry 75: 1081–7.CrossRefGoogle ScholarPubMed
Fineberg, NA, Potenza, MN, Chamberlain, SR, et al. (2010) Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 35: 591604.CrossRefGoogle ScholarPubMed
Gillan, CM, Papmeyer, M, Morein-Zamir, S, et al. (2011) Disruption in the balance between goal-directed behavior and habit learning in obsessive–compulsive disorder. Am J Psychiatry 168: 719–26.CrossRefGoogle ScholarPubMed
Greenberg, BD, Malone, DA, Friehs, GM, et al. (2006) Three year outcomes in deep brain stimulation for highly resistant obsessive–compulsive disorder. Neuropsychopharmacology 31: 2384–93.Google ScholarPubMed
Greenberg, BD, Rauch, SL, Haber, SN (2010) Invasive circuitry-based neurotherapeutics: stereotactic ablation and deep brain stimulation for OCD. Neuropsychopharmacology 35: 317–36.CrossRefGoogle ScholarPubMed
Greeven, A, van Balkom, AJLM, van Rood, YR, van Oppen, P, Spinhoven, P (2006) The boundary between hypochondriasis and obsessive–compulsive disorder: a cross-sectional study from the Netherlands. J Clin Psychiatry 67: 1682–9.CrossRefGoogle ScholarPubMed
Kisely, S, Hall, K, Siskind, D, et al. (2014) Deep brain stimulation for obsessive compulsive disorder: a systematic review and meta analysis. Psychol Med 44: 3533–42.CrossRefGoogle ScholarPubMed
Menzies, L, Chamberlain, SR, Laird, AR, et al. (2008) Integrating evidence from neuroimaging and neuropsychological studies of obsessive–compulsive disorder: the orbito-fronto-striatal model revisited. Neurosci Biobehav Rev 32: 525–49.CrossRefGoogle Scholar
Milad, MR, Rauch, SL (2012) Obsessive–compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci 16: 4351.CrossRefGoogle ScholarPubMed
Rasmussen, SA, Noren, G, Greenberg, BD (2018) Gamma ventral capsulotomy in intractable obsessive–compulsive disorder. Biol Psychiatry 84: 355–64.CrossRefGoogle ScholarPubMed
Richter, MA, de Jesus, DR, Hoppenbrouwers, S, et al. (2012) Evidence for cortical inhibitory and excitatory dysfunction in obsessive compulsive disorder. Neuropsychopharmacology 37: 1144–51.CrossRefGoogle ScholarPubMed
Wilhelm, S, Buhlmann, U, Tolin, DF (2008) Augmentation of behavior therapy with D-cycloserine for obsessive compulsive disorder. Am J Psychiatry 165: 335–41.CrossRefGoogle ScholarPubMed
Yin, D, Zhang, C, Lv, Q, et al. (2018) Dissociable frontostriatal connectivity: mechanism and predictor of the clinical efficacy of capsulotomy in obsessive compulsive disorder. Biol Psychiatry 84: 926–36.CrossRefGoogle ScholarPubMed
Bedi, G (2018) 3, 4-Methylenedioxymethamphetamine as a psychiatric treatment. JAMA Psychiatry 75: 419–20.CrossRefGoogle ScholarPubMed
Clark, L, Robbins, TW, Ersche, KD, Sahakian, BJ (2006) Reflection impulsivity in current and former substance users. Biol Psychiatry 60: 515–22.CrossRefGoogle ScholarPubMed
Dalley, JW, Everitt, BJ (2009) Dopamine receptors in the learning, memory and drug reward circuitry. Semin Cell Dev Biol 20: 403–10.CrossRefGoogle ScholarPubMed
Ersche, KD, Turton, AJ, Pradhan, S, Bullmore, ET, Robbins, TW (2010) Drug addiction endophenotypes: impulsive versus sensation-seeking personality traits. Biol Psychiatry 68: 770–3.CrossRefGoogle ScholarPubMed
Field, M, Marhe, R, Franken, I (2014) The clinical relevance of attentional bias in substance use disorders. CNS Spectrums 19: 225–30.CrossRefGoogle ScholarPubMed
Haber, SN, Knutson, B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35: 426.CrossRefGoogle ScholarPubMed
Koob, GF, Le Moal, M (2008) Addiction and the brain antireward system. Ann Rev Psychol 59: 2953.CrossRefGoogle ScholarPubMed
Koob, GF, Volkow, ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35: 217–38.Google ScholarPubMed
Mandyam, CD, Koob, GF (2012) The addicted brain craves new neurons: putative role for adult-born progenitors in promoting recovery. Trends Neurosci 35: 250–60.CrossRefGoogle ScholarPubMed
Nestler, EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 11: 1445–9.Google Scholar
Nutt, DJ, Hughes, AL, Erritzoe, D, et al. (2015) The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci 16: 305–22.CrossRefGoogle Scholar
Schneider, S, Peters, J, Bromberg, U, et al. (2012) Risk taking and the adolescent reward system: a potential common link to substance abuse. Am J Psychiatry 169: 3946.CrossRefGoogle ScholarPubMed
Solway, A, Gu, X, Montague, PR (2017) Forgetting to be addicted: reconsolidation and the disconnection of things past. Biol Psychiatry 82: 774–5CrossRefGoogle ScholarPubMed
Volkow, ND, Wang, GJ, Fowler, JS, Tomasi, D, Telang, F (2011) Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci USA 108: 15037–42.CrossRefGoogle ScholarPubMed
Anton, RF, O’Malley, SS, Ciraulo, DA, et al. (2006) Combined pharmacotherapies and behavioral interventions for alcohol dependence. The combine study: a randomized controlled trial. JAMA 295: 2003–17.CrossRefGoogle ScholarPubMed
Anton, RF, Pettinati, H, Zweben, A, et al. (2004) A multi site dose ranging study of nalmefene in the treatment of alcohol dependence. J Clin Psychopharmacol 24: 421–8.CrossRefGoogle ScholarPubMed
Braus, DH, Schumann, G, Machulla, HJ, Bares, R, Mann, K (2005) Correlation of stable elevations in striatal μ-opioid receptor availability in detoxified alcoholic patients with alcohol craving. A positron emission tomography study using carbon 11-labeled carfentanil. Arch Gen Psychiatry 62: 5764.Google Scholar
Crevecoeur, D, Cousins, SJ, Denering, L, et al. (2018) Effectiveness of extended release naltrexone to reduce alcohol cravings and use behaviors during treatment and at follow-up. J Subst Abuse Treat 85: 105–8.Google Scholar
Dahchour, A, DeWitte, P (2003) Effects of acamprosate on excitatory amino acids during multiple ethanol withdrawal periods. Alcohol Clin Exp Res 3: 465–70.Google Scholar
Dakwar, E, Levin, F, Hart, CL, et al. (2020) A single ketamine infusion combined with motivational enhancement therapy for alcohol use disorder: a randomized midazolam controlled pilot study. Am J Psychiatry 172: 125–33.Google Scholar
DeWitte, P (2004) Imbalance between neuroexcitatory and neuroinhibitory amino acids causes craving for ethanol. Addict Behav 29: 1325–39.Google Scholar
DeWitte, P, Littleton, J, Parot, P, Koob, G (2005) Neuroprotective and abstinence-promoting effects of acamprosate. Elucidating the mechanism of action. CNS Drugs 6: 517–37.Google Scholar
Garbutt, JC, Kranzler, HR, O’Malley, SS, et al. (2005) Efficacy and tolerability of long-acting injectable naltrexone for alcohol dependence. A randomized controlled trial. JAMA 293: 1617–25.CrossRefGoogle ScholarPubMed
Kiefer, F, Wiedemann, K (2004) Combined therapy: what does acamprosate and naltrexone combination tell us? Alcohol Alcohol 39: 542–7.CrossRefGoogle ScholarPubMed
Kiefer, F, Jahn, H, Tarnaske, T, et al. (2003) Comparing and combining naltrexone and acamprosate in relapse prevention of alcoholism. Arch Gen Psychiatry 60: 92–9.CrossRefGoogle ScholarPubMed
Mann, K, Bladstrom, A, Torup, T, et al. (2013) Extending the treatment options in alcohol dependence: a randomized controlled study of as-needed nalmefene. Biol Psychiatry 73: 706–13.CrossRefGoogle ScholarPubMed
Martinez, D, Gil, R, Slifstein, M, et al. (2005) Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum. Biol Psychiatry 58: 779–86.CrossRefGoogle ScholarPubMed
Mason, BJ (2003) Acamprosate and naltrexone treatment for alcohol dependence: an evidence-based risk-benefits assessment. Eur Neuropsychopharmacol 13: 469–75.CrossRefGoogle ScholarPubMed
Mason, BJ (2005) Acamprosate in the treatment of alcohol dependence. Expert Opin Pharmacother 6: 2103–15.CrossRefGoogle ScholarPubMed
Mason, BJ, Goodman, AM, Chabac, S, Lehert, P (2006) Effect of oral acamprosate on abstinence in patients with alcohol dependence in a double-blind, placebo-controlled trial: the role of patient motivation. J Psychiatr Res 40: 382–92.CrossRefGoogle Scholar
Netzeband, JG, Gruol, DL (1995) Modulatory effects of acute ethanol on metabotropic glutamate responses in cultured Purkinje neurons. Brain Res 688: 105–13.CrossRefGoogle ScholarPubMed
O’Brien, CO (2015) In treating alcohol use disorders, why not use evidence-based treatment? Am J Psychiatry 172: 305–7.CrossRefGoogle Scholar
Palpacuer, C, Duprez, R, Huneau, A, et al. (2017) Pharmacologically controlled drinking in the treatment of alcohol dependence or alcohol use disorders: a systematic review with direct and network meta analyses on nalmefene, naltrexone, acamprosate, baclofen and topiramate. Addiction 113: 220–37.Google ScholarPubMed
Petrakis, IL, Poling, J, Levinson, C (2005) Naltrexone and disulfiram in patients with alcohol dependence and comorbid psychiatric disorders. Biol Psychiatry 57: 1128–37.CrossRefGoogle ScholarPubMed
Pettinati, HM, O’Brien, CP, Rabinowitz, AR (2006) The status of naltrexone in the treatment of alcohol dependence. Specific effects on heavy drinking. J Clin Psychopharmacol 26: 610–25.CrossRefGoogle ScholarPubMed
Roozen, HG, de Waart, R, van der Windt, DAW, et al. (2005) A systematic review of the effectiveness of naltrexone in the maintenance treatment of opioid and alcohol dependence. Eur Neuropsychopharmacol 16: 311–23.Google ScholarPubMed
Smith-Bernardin, S, Rowe, C, Behar, E, et al. (2018) Low threshold extended release naltrexone for high utilizers of public services with severe alcohol use disorder: a pilot study. J Subst Abuse Treat 85: 109–15.CrossRefGoogle ScholarPubMed
Soyka, M (2014) Nalmefene for the treatment of alcohol dependence: a current update. Int J Neuropsychopharmacol 17: 675–84.CrossRefGoogle ScholarPubMed
Van Amsterdam, J, van den Brink, W (2013) Reduced risk drinking as a viable treatment goal in problematic alcohol use and alcohol dependence. J Psychopharmacol 27: 987–97.CrossRefGoogle ScholarPubMed
Wiers, CE, Stelzel, C, Gladwin, TE, et al. (2015) Effects of cognitive bias modification training on neural alcohol cue reactivity in alcohol dependence. Am J Psychiatry 172: 334–43.CrossRefGoogle ScholarPubMed
Black, N, Stockings, E, Campbell, G, et al. (2019) Cannabinoids for the treatment of mental disorders and symptoms of mental disorders: a systematic review and meta analysis. Lancet Psychiatry 6: 9951010.CrossRefGoogle ScholarPubMed
Haney, M, Hill, MN (2018) Cannabis and cannabinoids: from synapse to society. Neuropsychopharm Rev 43: 1212.CrossRefGoogle ScholarPubMed
Hindley, G, Beck, K, Borgan, B (2020) Psychiatric symptoms caused by cannabis constituents: a systematic review and meta-analysis. Lancet Psychiatry 7: 344–53.CrossRefGoogle ScholarPubMed
Hines, LA, Freeman, TP, Gage, SH, et al. (2020) Association of high potency cannabis use with mental and substance use in adolescence. JAMA Psychiatry 77: 1044–51.CrossRefGoogle ScholarPubMed
Hurd, YL, Spriggs, S, Alishayev, J, et al. (2019) Cannabidiol for the reduction of cue-induced craving and anxiety in drug abstinent individuals with heroin use disorder: a double blind randomized placebo controlled trial. Am J Psychiatry 176: 911–22.CrossRefGoogle ScholarPubMed
James, S (2020) A Clinician’s Guide to Cannabinoid Science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kovacs, FE, Knop, T, Urbanski, MJ, et al. (2012) Exogenous and endogenous cannabinoids suppress inhibitory neurotransmission in the human neocortex. Neuropsychopharmacology 37: 1104–14.CrossRefGoogle ScholarPubMed
Mason, BJ, Crean, R, Goodell, V, et al. (2012) A proof-of-concept randomized controlled study of gabapentin: effects on cannabis use, withdrawal and executive function deficits in cannabis-dependent adults. Neuropsychopharmacology 37: 1689–98.CrossRefGoogle ScholarPubMed
Nugent, SM, Morasco, BJ, O’Neil, ME, et al. (2017) The effects of cannabis among adults with chronic pain and an overview of general harms: a systematic review. Ann Intern Med 167: 319–31.CrossRefGoogle Scholar
Akkus, F, Ametamey, SM, Treyer, V, et al. (2013) Market global reduction in mGlutR5 receptor binding in smokers and ex smokers determined by 11C-ABP688 positron emission tomography. Proc Natl Acad Sci USA 10: 737–42.Google Scholar
Akkus, F, Treyer, V, Johayem, A, et al. (2016) Association of long-term nicotine abstinence with normal metabotropic glutamate receptor 5 binding. Biol Psychiatry 79: 474–80.CrossRefGoogle Scholar
Crunelle, CL, Miller, ML, Booij, J, van den Rink, W (2010) The nicotinic acetylcholine receptor partial agonist varenicline and the treatment of drug dependence: a review. Eur Neuropsychopharmacol 20: 6979.CrossRefGoogle ScholarPubMed
Culbertson, CS, Bramen, J, Cohen, MS (2011) Effect of bupropion treatment on brain activation induced by cigarette-related cues in smokers. Arch Gen Psychiatry 68: 505–15.CrossRefGoogle ScholarPubMed
Evins, AE, Culhane, MA, Alpert, JE, et al. (2008) A controlled trial of bupropion added to nicotine patch and behavioral therapy for smoking cessation in adults with unipolar depressive disorders. J Clin Psychopharmacol 28: 660–6.CrossRefGoogle ScholarPubMed
Franklin, T, Wang, Z, Suh, JJ, et al. (2011) Effects of varenicline on smoking cue-triggered neural and craving responses. Arch Gen Psychiatry 68: 516–26.CrossRefGoogle ScholarPubMed
King, DP, Paciga, S, Pickering, E, et al. (2012) Smoking cessation pharmacogenetics: analysis of varenicline and bupropion in placebo-controlled clinical trials. Neuropsychopharmacology 37: 641–50.CrossRefGoogle ScholarPubMed
Lotipour, S, Mandelkern, M, Alvarez-Estrada, M, Brody, AL (2012) A single administration of low-dose varenicline saturates α4β2* nicotinic acetylcholine receptors in the human brain. Neuropsychopharmacology 37: 1738–48.Google Scholar
Steinberg, MB, Greenhaus, S, Schmelzer, AC, et al. (2009) Triple-combination pharmacotherapy for medically ill smokers. A randomized trial. Ann Intern Med 150: 447–54.CrossRefGoogle ScholarPubMed
Bell, J, Strang, J (2020) Medication treatment of opioid use disorder. Biol Psychiatry 87: 82–8.CrossRefGoogle ScholarPubMed
Chutuape, MA, Jasinski, DR, Finerhood, MI, Stitzer, ML (2001) One-, three-, and six-month outcomes after brief inpatient opioid detoxification. Am J Drug Alcohol Abuse 27: 1944.CrossRefGoogle ScholarPubMed
Davids, E, Gastpar, M (2004) Buprenorphine in the treatment of opioid dependence. Eur Neuropsychopharmacol 14: 209–16.CrossRefGoogle ScholarPubMed
Elkader, A, Sproule, B (2005) Buprenorphine: clinical pharmacokinetics in the treatment of opioid dependence. Clin Pharmacokinet 44: 661–80.CrossRefGoogle ScholarPubMed
Han, B, Compton, WM, Blanco, C, et al. (2017) Prescription opioid use, misuse and use disorders in US adults: 2015 national survey on drug use and health. Ann Intern Med 167: 293301.CrossRefGoogle ScholarPubMed
Johansson, J, Hirvonen, J, Lovro, Z, et al. (2019) Intranasal naloxone rapidly occupies brain mu opioid receptors in human subjects. Neuropsychopharmacology 44: 1667–73.CrossRefGoogle ScholarPubMed
Kowalczyk, WJ, Phillips, KA, Jobes, ML, et al. (2015) Clonidine maintenance prolongs opioid abstinence and decouples stress from craving in daily life: a randomized controlled trial with ecological momentary assessment. Am J Psychiatry 172: 760–7.CrossRefGoogle ScholarPubMed
Krupitsky, E, Nunes, EV, Ling, W, et al. (2011) Injectable extended-release naltrexone for opioid dependence: a double-blind, placebo-controlled, multicenter randomized trial. Lancet 377: 1506–13.CrossRefGoogle Scholar
Lee, JD, Nunes, EV, Novo, P, et al. (2018) Comparative effectiveness of extended-release naltrexone versus buprenorphine–naloxone for opioid relapse prevention (X:BOT): a multicentre, open label, randomized controlled trial. Lancet 391: 309–18.CrossRefGoogle Scholar
Marquet, P (2002) Pharmacology of high-dose buprenorphine. In Buprenorphine Therapy of Opiate Addiction, Kintz, P and Marquet, P (eds.), Totawa, NJ: Humana Press, 111.Google Scholar
National Institute on Drug Abuse. Drugs, brains, and behavior. www.drugabuse.gov/sites/default/files/soa_2014.pdf. Accessed January 2018.Google Scholar
Patel, B, Koston, TR (2019) Keeping up with clinical advances: opioid use disorder. CNS Spectrums 24: 1723.Google ScholarPubMed
Saanijoki, T, Tuominen, L, Tuulari, JJ et al. (2018) Opioid release after high intensity interval training in healthy human subjects. Neuropsychopharmacology 43: 246–54.CrossRefGoogle ScholarPubMed
Smyth, BP, Barry, J, Keenan, E, Ducray, K (2010) Lapse and relapse following inpatient treatment of opiate dependence. Ir Med J 103: 176–9.Google ScholarPubMed
Spagnolo, PA, Kimes, A, Schwandt, ML, et al. (2019) Striatal dopamine release in response to morphine: a 11C-raclopride positron emission tomography study in healthy men. Biol Psychiatry 86: 356–64.CrossRefGoogle Scholar
Stahl, SM (2018) Antagonist treatment is just as effective as replacement therapy for opioid addition but neither is used often enough. CNS Spectrums 23: 113–16.CrossRefGoogle Scholar
Substance Abuse and Mental Health Services Administration. Key substance use and mental health indicators in the United States: results from the 2016 National Survey on Drug Use and Health. www.samhsa.gov/data/sites/default/files/NSDUH-FFR1-2016/NSDUH-FFR1-2016.htm#opioid1. Accessed January 2018.Google Scholar
Sullivan, MA, Bisage, A, Bavlicova, M, et al. (2019) A randomized trial comparing extended release injectable suspension and oral naltrexone, both combined with behavioral therapy, for the treatment of opioid use disorder. Am J Psychiatry 176: 129–37.CrossRefGoogle ScholarPubMed
Tanum, L, Solli, KK, Latif, ZE, et al. (2017) Effectiveness of injectable extended-release naltrexone vs. daily buprenorphine–naloxone for opioid dependence: a randomized clinical noninferiority trial. JAMA Psychiatry 74: 1197–205.CrossRefGoogle ScholarPubMed
Tiihonen, J, Krupitsky, E, Verbitskaya, E, et al. (2012) Naltrexone implant for the treatment of polydrug dependence: a randomized controlled trial. Am J Psychiatry 169: 531–6.CrossRefGoogle ScholarPubMed
Volkow, ND (2014) America’s addiction to opioids: Heroin and prescription drug abuse. Presented at the Senate Caucus on International Narcotics Control. https://archives.drugabuse.gov/testimonies/2014/americas-addiction-to-opioids-heroin-prescription-drug-abuse.Google Scholar
Volkow, ND, Frieden, TR, Hyde, PS, Cha, SS (2014) Medication-assisted therapies: tackling the opioid-overdose epidemic. N Engl J Med 370: 2063–6.CrossRefGoogle ScholarPubMed
World Health Organization (2009) Guidelines for the Psychosocially Assisted Pharmacological Treatment of Opioid Dependence. Geneva: World Health Organization.Google Scholar
Bauman, MH, Ayestas, MA Jr., Partilla, JS, et al. (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37, 1192–203.Google Scholar
Bradberry, CW (2002) Dose-dependent effect of ethanol on extracellular dopamine in mesolimbic striatum of awake rhesus monkeys: comparison with cocaine across individuals. Psychopharmacology 165: 6776.CrossRefGoogle ScholarPubMed
Collins, GT, Narasimhan, D, Cunningham, AR, et al. (2012) Long-lasting effects of a PEGylated mutant cocaine esterase (CocE) on the reinforcing and discriminative stimulus effects of cocaine in rats. Neuropsychopharmacology 37: 1092–103.CrossRefGoogle ScholarPubMed
Dakwar, E, Nunes, EV, Hart, CL, et al. (2019) A single ketamine infusion combined with mindfulness based behavioral modification to treat cocaine dependence: a randomized clinical trial. Am J Psychiatry 176: 923–30.CrossRefGoogle ScholarPubMed
Ersche, KD, Bullmore, ET, Craig, KJ, et al. (2010) Influence of compulsivity of drug abuse on dopaminergic modulation of attentional bias in stimulant dependence. Arch Gen Psychiatry 67: 632–44.CrossRefGoogle ScholarPubMed
Ersche, KD, Jones, PS, Williams, GB, et al. (2012) Abnormal brain structure implicated in stimulant drug addiction. Science 335: 601–4.CrossRefGoogle ScholarPubMed
Ferris, MJ, Calipari, ES, Mateo, Y, et al. (2012) Cocaine self-administration produces pharmacodynamic tolerance: differential effects on the potency of dopamine transporter blockers, releasers, and methylphenidate. Neuropsychopharmacology 37: 1708–16.CrossRefGoogle ScholarPubMed
Hart, CL, Marvin, CB, Silver, R, Smith, EE (2012) Is cognitive functioning impaired in methamphetamine users? A critical review. Neuropsychopharmacology 37: 586608.CrossRefGoogle ScholarPubMed
Heinz, A, Reimold, M, Wrase, J, et al. (2005) Stimulant actions in rodents: implications for attention-deficit/hyperactivity disorder treatment and potential substance abuse. Biol Psychiatry 57: 1391–6.Google Scholar
Leyton, M, Boileau, I, Benkelfat, C, et al. (2002) Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11 C]raclopride study in healthy men. Neuropsychopharmacology 27: 1027–35.CrossRefGoogle Scholar
Lindsey, KP, Wilcox, KM, Votaw, JR, et al. (2004) Effect of dopamine transporter inhibitors on cocaine self-administration in rhesus monkeys: relationship to transporter occupancy determined by positron emission tomography neuroimaging. J Pharmacol Exp Ther 309: 959–69.CrossRefGoogle ScholarPubMed
Little, KY, Krolewski, DM, Zhang, L, Cassin, BJ (2003) Loss of striatal vesicular monoamine transporter protein (VMAT2) in human cocaine users. Am J Psychiatry 160: 4755.CrossRefGoogle ScholarPubMed
Livni, E, Parasrampuria, DA, Fischman, AJ (2006) PET study examining pharmacokinetics, detection and likeability, and dopamine transporter receptor occupancy of short- and long-acting oral methylphenidate. Am J Psychiatry 163: 387–95.Google Scholar
Martinez, D, Narendran, R, Foltin, RW, et al. (2007) Amphetamine-induced dopamine release: markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine. Am J Psychiatry 164: 622–9.CrossRefGoogle ScholarPubMed
Narendran, R, Lopresti, BJ, Martinez, D, et al. (2012) In vivo evidence for low striatal vesicular monoamine transporter 2 (VMAT2) availability in cocaine abusers. Am J Psychiatry 169: 5563.CrossRefGoogle ScholarPubMed
Overtoom, CCE, Bekker, EM, van der Molen, MW, et al. (2009) Methylphenidate restores link between stop-signal sensory impact and successful stopping in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 65: 614–19.CrossRefGoogle ScholarPubMed
Peng, XO, Xi, ZX, Li, X, et al. (2010) Is slow-onset long-acting monoamine transport blockade to cocaine as methadone is to heroin? Implication for anti-addiction medications. Neuropsychopharmacology 35: 2564–78.CrossRefGoogle ScholarPubMed
Santos, MD, Salery, M, Forget, B, et al. (2017) Rapid synaptogenesis in the nucleus accumbens is induced by a single cocaine administration and stabilized by mitogen-activated protein kinase interacting kinase-1 activity. Biol Psychiatry 82: 806–18.Google ScholarPubMed
Selzer, J (2006) Buprenorphine: reflections of an addictions psychiatrist. J Clin Psychiatry 67: 1466–7.CrossRefGoogle ScholarPubMed
Spencer, TJ, Biederman, J, Ciccone, PE, et al. (2006) Stimulant medications: how to minimize their reinforcing effects? Am J Psychiatry 163: 359–61.Google Scholar
Wee, S, Hicks, MJ, De, BP, et al. (2012) Novel cocaine vaccine linked to a disrupted adenovirus gene transfer vector blocks cocaine psychostimulant and reinforcing effects. Neuropsychopharmacology 37: 1083–91.CrossRefGoogle ScholarPubMed
Brawley, P, Dufield, JC (1972) The pharmacology of hallucinogens. Pharmacol Rev 34: 3166.Google Scholar
Carhart-Harris, RL, Goodwin, GM (2017) The therapeutic potential of psychedelic drugs: past, present and future. Neuropsychopharmacology 42: 2105–13.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Bolstridge, M, Day, CMG, et al. (2018) Psilocybin with psychological support for treatment-resistant depression: six month follow up. Psychopharmacology 235: 399408.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Bolstridge, M, Rucker, J, et al. (2016) Psilocybin with psychological support for treatment-resistant depression: an open label feasibility study. Lancet Psychiatry 3: 619–27.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Erritzoe, D, Williams, T, et al. (2012) Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc Natl Acad Sci USA 109: 2138–43.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Leech, R, Williams, TM, et al. (2012) Implications for psychedelic assisted psychotherapy: a functional magnetic resonance imaging study with psilocybin. Br J Psychiatry 200: 238–44.CrossRefGoogle ScholarPubMed
DiIorio, CR, Watkins, TJ, Dietrich, MS (2012) Evidence for chronically altered serotonin function in the cerebral cortex of female 3,4-methylenedioxymethamphetamine polydrug users. Arch Gen Psychiatry 69: 399409.Google Scholar
Erritzoe, D, Frokjaer, VG, Holst, KK, et al. (2011) In vivo imaging of cerebral serotonin transporter and serotonin 2a receptor binding in 3,4-methylenedioxymethamphetamine (MDMA or “Ecstasy”) and hallucinogen users. Arch Gen Psychiatry 68: 562–76.CrossRefGoogle ScholarPubMed
Fantegrossi, WE, Murnane, KS, Reissig, CJ (2008) The behavioral pharmacology of hallucinogens. Biochem Pharmacol 25: 1733.CrossRefGoogle Scholar
Feduccia, AA, Mithoefer, MC (2018) MDMA-assisted psychotherapy for PTSD: are memory reconsolidation and fear extinction underlying mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 84: 221–8.CrossRefGoogle ScholarPubMed
Liechti, ME (2017) Modern clinical research on LSD. Neuropsychopharmacology 42: 2114–27.CrossRefGoogle ScholarPubMed
Madsen, MK, Fisher, PM, Burmester, D, et al. (2019) Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology 44: 1328–34.Google ScholarPubMed
Mithoefer, MC, Wagner, MT, Mithoefer, AT, et al. (2011) The safety and efficacy of {+/−} 3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol 25: 439–52.CrossRefGoogle ScholarPubMed
Passie, T, Halpern, JH, Stichtenoth, DO, et al. (2008) The pharmacology of lysergic acid diethylamide: a review. CNS Neurosci Ther 14: 295314.CrossRefGoogle ScholarPubMed
Pitts, EG, Minerva, AR, Chandler, EB, et al. (2017) 3,4-Methylenedioxymethamphetamine increases affiliative behaviors in squirrel moneys in a serotonin 2A receptor dependent manner. Neuropsychopharmacology 42: 1962–71.CrossRefGoogle Scholar
Quednow, BB, Komeer, M, Geyer, MA, et al. (2012) Psilocybin induced deficits in autonomic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacology 37: 630–40.CrossRefGoogle Scholar
Schmid, Y, Enzler, F, Gasser, P, et al. (2015) Acute effects of lysergic acid diethylamine in healthy subjects. Biol Psychiatry 78: 544–53.CrossRefGoogle Scholar
Titeler, M, Lyon, RA, Gleenon, RA (1988) Radioligand binding evidence implicates the brain 5HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology 94: 213–16.CrossRefGoogle ScholarPubMed
Urban, NBL, Girgis, RR, Talbot, PS, et al. (2012) Sustained recreational use of Ecstasy is associated with altered pre and postsynaptic markers of serotonin transmission in neocortical areas: a PET study with [11C]DASB and [11C]MDL 100907. Neuropsychopharmacology 37: 1465–73.CrossRefGoogle Scholar
Balodis, IM, Kober, H, Worhunsky, PD, et al. (2012) Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry 71: 749–57.CrossRefGoogle ScholarPubMed
Gearhardt, AN, Yokum, S, Orr, PT, et al. (2011) Neural correlates of food addiction. Arch Gen Psychiatry 68: 808–16.CrossRefGoogle ScholarPubMed
Grant, JE, Kim, SW, Hartman, BK (2008) A double-blind, placebo-controlled study of the opiate antagonist naltrexone in the treatment of pathological gambling urges. J Clin Psychiatry 69: 783–9.CrossRefGoogle ScholarPubMed
Lawrence, AJ, Luty, J, Bogdan, NA, Sahakian, BJ, Clark, L (2009) Impulsivity and response inhibition in alcohol dependence and problem gambling. Psychopharmacology 207: 163–72.CrossRefGoogle ScholarPubMed
Lobo, DSS, Kennedy, JL (2006) The genetics of gambling and behavioral addictions. CNS Spectrums 11: 931–9.CrossRefGoogle ScholarPubMed
McElroy, SL, Hudson, JI, Capece, JA, et al. (2007) Topiramate for the treatment of binge eating disorder associated with obesity: a placebo-controlled study. Biol Psychiatry 61: 1039–48.CrossRefGoogle ScholarPubMed
Miedl, SF, Peters, J, Buchel, C (2012) Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Arch Gen Psychiatry 69: 177–86.CrossRefGoogle ScholarPubMed
Salamone, JD, Correa, M, Mingote, S, Weber, SM (2002) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther 305: 18.CrossRefGoogle Scholar
Van Holst, RJ, Veltman, DJ, Buchel, C, van den Brink, W, Goudriaan, AE. (2012) Distorted expectancy coding in problem gambling: is the addictive in the anticipation? Biol Psychiatry 71: 741–8.CrossRefGoogle ScholarPubMed
Zack, M, Poulos, CX (2007) A D1 antagonist enhances the rewarding and priming effects of a gambling episode in pathological gamblers. Neuropsychopharmacology 32: 1678–86.CrossRefGoogle Scholar
Berlin, HA, Rolls, ET, Iversen, SD (2005) Borderline personality disorder, impulsivity, and the orbitofrontal cortex. Am J Psychiatry 162: 2360–73.CrossRefGoogle ScholarPubMed
Chamberlain, SR, del Campo, N, Dowson, J, et al. (2007) Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 62: 977–84.CrossRefGoogle ScholarPubMed
Chamberlain, SR, Muller, U, Blackwell, AD, et al. (2006) Neurochemical modulation of response inhibition and probabilistic learning in humans. Science 311: 861–3.CrossRefGoogle ScholarPubMed
Chamberlain, SR, Robbins, TW, Winder-Rhodes, S, et al. (2011) Translational approaches to frontostriatal dysfunction in attention-deficit/hyperactivity disorder using a computerized neuropsychological battery. Biol Psychiatry 69: 1192–203.CrossRefGoogle ScholarPubMed
Dalley, JW, Everitt, BJ, Robbins, TW (2011) Impulsivity, compulsivity, and top-down cognitive control. Neuron 69: 680–94.CrossRefGoogle ScholarPubMed
Dalley, JW, Mar, AC, Economidou, D, Robbins, TW (2008) Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav 90: 250–60.CrossRefGoogle ScholarPubMed
Fineberg, NA, Chamberlain, SR, Goudriaan, AR (2014) New developments in human neurocognition: clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectrums 19: 6989.CrossRefGoogle ScholarPubMed
Lodge, DJ, Grace, AA (2006) The hippocampus modulates dopamine neuron responsivity by regulating the intensity of phasic neuron activation. Neuropsychopharmacology 31: 1356–61.CrossRefGoogle ScholarPubMed
Robbins, TW, Gillan, CM, Smith, DG, de Wit, S, Ersche, KD (2012) Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn Sci 16: 8191.CrossRefGoogle ScholarPubMed
Shaw, P, Gilliam, M, Liverpool, M, et al. (2011) Cortical development in typically developing children with symptoms of hyperactivity and impulsivity: support for a dimensional view of attention deficit hyperactivity disorder. Am J Psychiatry 168: 143–51.CrossRefGoogle ScholarPubMed
Sugam, JA, Day, JJ, Wightman, RM, Carelki, RM (2012) Phasic nucleus accumbens dopamine encodes risk-based decision-making behavior. Biol Psychiatry 71: 199205.CrossRefGoogle ScholarPubMed
Weathers, JD, Stringaris, AR, Deveney, CM, et al. (2012) A development study of the neural circuitry mediating motor inhibition in bipolar disorder. Am J Psychiatry 16: 633–41.Google Scholar
Bloch, MH, Wasylink, S, Landeros, A, et al. (2012) Effects of ketamine in treatment refractory obsessive compulsive disorder. Biol Psychiatry 72: 964–70.CrossRefGoogle ScholarPubMed
Chamberlain, SR, Menzies, L, Hampshire, A, et al. (2008) Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Science 321: 421–2.CrossRefGoogle ScholarPubMed
Dougherty, DD, Brennan, BP, Stewart, SE, et al. (2018) Neuroscientifically informed formulation and treatment planning for patients with obsessive compulsive disorder: a review. JAMA Psychiatry 75: 1081–7.CrossRefGoogle ScholarPubMed
Fineberg, NA, Potenza, MN, Chamberlain, SR, et al. (2010) Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 35: 591604.CrossRefGoogle ScholarPubMed
Gillan, CM, Papmeyer, M, Morein-Zamir, S, et al. (2011) Disruption in the balance between goal-directed behavior and habit learning in obsessive–compulsive disorder. Am J Psychiatry 168: 719–26.CrossRefGoogle ScholarPubMed
Greenberg, BD, Malone, DA, Friehs, GM, et al. (2006) Three year outcomes in deep brain stimulation for highly resistant obsessive–compulsive disorder. Neuropsychopharmacology 31: 2384–93.Google ScholarPubMed
Greenberg, BD, Rauch, SL, Haber, SN (2010) Invasive circuitry-based neurotherapeutics: stereotactic ablation and deep brain stimulation for OCD. Neuropsychopharmacology 35: 317–36.CrossRefGoogle ScholarPubMed
Greeven, A, van Balkom, AJLM, van Rood, YR, van Oppen, P, Spinhoven, P (2006) The boundary between hypochondriasis and obsessive–compulsive disorder: a cross-sectional study from the Netherlands. J Clin Psychiatry 67: 1682–9.CrossRefGoogle ScholarPubMed
Kisely, S, Hall, K, Siskind, D, et al. (2014) Deep brain stimulation for obsessive compulsive disorder: a systematic review and meta analysis. Psychol Med 44: 3533–42.CrossRefGoogle ScholarPubMed
Menzies, L, Chamberlain, SR, Laird, AR, et al. (2008) Integrating evidence from neuroimaging and neuropsychological studies of obsessive–compulsive disorder: the orbito-fronto-striatal model revisited. Neurosci Biobehav Rev 32: 525–49.CrossRefGoogle Scholar
Milad, MR, Rauch, SL (2012) Obsessive–compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci 16: 4351.CrossRefGoogle ScholarPubMed
Rasmussen, SA, Noren, G, Greenberg, BD (2018) Gamma ventral capsulotomy in intractable obsessive–compulsive disorder. Biol Psychiatry 84: 355–64.CrossRefGoogle ScholarPubMed
Richter, MA, de Jesus, DR, Hoppenbrouwers, S, et al. (2012) Evidence for cortical inhibitory and excitatory dysfunction in obsessive compulsive disorder. Neuropsychopharmacology 37: 1144–51.CrossRefGoogle ScholarPubMed
Wilhelm, S, Buhlmann, U, Tolin, DF (2008) Augmentation of behavior therapy with D-cycloserine for obsessive compulsive disorder. Am J Psychiatry 165: 335–41.CrossRefGoogle ScholarPubMed
Yin, D, Zhang, C, Lv, Q, et al. (2018) Dissociable frontostriatal connectivity: mechanism and predictor of the clinical efficacy of capsulotomy in obsessive compulsive disorder. Biol Psychiatry 84: 926–36.CrossRefGoogle ScholarPubMed
Bedi, G (2018) 3, 4-Methylenedioxymethamphetamine as a psychiatric treatment. JAMA Psychiatry 75: 419–20.CrossRefGoogle ScholarPubMed
Clark, L, Robbins, TW, Ersche, KD, Sahakian, BJ (2006) Reflection impulsivity in current and former substance users. Biol Psychiatry 60: 515–22.CrossRefGoogle ScholarPubMed
Dalley, JW, Everitt, BJ (2009) Dopamine receptors in the learning, memory and drug reward circuitry. Semin Cell Dev Biol 20: 403–10.CrossRefGoogle ScholarPubMed
Ersche, KD, Turton, AJ, Pradhan, S, Bullmore, ET, Robbins, TW (2010) Drug addiction endophenotypes: impulsive versus sensation-seeking personality traits. Biol Psychiatry 68: 770–3.CrossRefGoogle ScholarPubMed
Field, M, Marhe, R, Franken, I (2014) The clinical relevance of attentional bias in substance use disorders. CNS Spectrums 19: 225–30.CrossRefGoogle ScholarPubMed
Haber, SN, Knutson, B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35: 426.CrossRefGoogle ScholarPubMed
Koob, GF, Le Moal, M (2008) Addiction and the brain antireward system. Ann Rev Psychol 59: 2953.CrossRefGoogle ScholarPubMed
Koob, GF, Volkow, ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35: 217–38.Google ScholarPubMed
Mandyam, CD, Koob, GF (2012) The addicted brain craves new neurons: putative role for adult-born progenitors in promoting recovery. Trends Neurosci 35: 250–60.CrossRefGoogle ScholarPubMed
Nestler, EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 11: 1445–9.Google Scholar
Nutt, DJ, Hughes, AL, Erritzoe, D, et al. (2015) The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci 16: 305–22.CrossRefGoogle Scholar
Schneider, S, Peters, J, Bromberg, U, et al. (2012) Risk taking and the adolescent reward system: a potential common link to substance abuse. Am J Psychiatry 169: 3946.CrossRefGoogle ScholarPubMed
Solway, A, Gu, X, Montague, PR (2017) Forgetting to be addicted: reconsolidation and the disconnection of things past. Biol Psychiatry 82: 774–5CrossRefGoogle ScholarPubMed
Volkow, ND, Wang, GJ, Fowler, JS, Tomasi, D, Telang, F (2011) Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci USA 108: 15037–42.CrossRefGoogle ScholarPubMed
Anton, RF, O’Malley, SS, Ciraulo, DA, et al. (2006) Combined pharmacotherapies and behavioral interventions for alcohol dependence. The combine study: a randomized controlled trial. JAMA 295: 2003–17.CrossRefGoogle ScholarPubMed
Anton, RF, Pettinati, H, Zweben, A, et al. (2004) A multi site dose ranging study of nalmefene in the treatment of alcohol dependence. J Clin Psychopharmacol 24: 421–8.CrossRefGoogle ScholarPubMed
Braus, DH, Schumann, G, Machulla, HJ, Bares, R, Mann, K (2005) Correlation of stable elevations in striatal μ-opioid receptor availability in detoxified alcoholic patients with alcohol craving. A positron emission tomography study using carbon 11-labeled carfentanil. Arch Gen Psychiatry 62: 5764.Google Scholar
Crevecoeur, D, Cousins, SJ, Denering, L, et al. (2018) Effectiveness of extended release naltrexone to reduce alcohol cravings and use behaviors during treatment and at follow-up. J Subst Abuse Treat 85: 105–8.Google Scholar
Dahchour, A, DeWitte, P (2003) Effects of acamprosate on excitatory amino acids during multiple ethanol withdrawal periods. Alcohol Clin Exp Res 3: 465–70.Google Scholar
Dakwar, E, Levin, F, Hart, CL, et al. (2020) A single ketamine infusion combined with motivational enhancement therapy for alcohol use disorder: a randomized midazolam controlled pilot study. Am J Psychiatry 172: 125–33.Google Scholar
DeWitte, P (2004) Imbalance between neuroexcitatory and neuroinhibitory amino acids causes craving for ethanol. Addict Behav 29: 1325–39.Google Scholar
DeWitte, P, Littleton, J, Parot, P, Koob, G (2005) Neuroprotective and abstinence-promoting effects of acamprosate. Elucidating the mechanism of action. CNS Drugs 6: 517–37.Google Scholar
Garbutt, JC, Kranzler, HR, O’Malley, SS, et al. (2005) Efficacy and tolerability of long-acting injectable naltrexone for alcohol dependence. A randomized controlled trial. JAMA 293: 1617–25.CrossRefGoogle ScholarPubMed
Kiefer, F, Wiedemann, K (2004) Combined therapy: what does acamprosate and naltrexone combination tell us? Alcohol Alcohol 39: 542–7.CrossRefGoogle ScholarPubMed
Kiefer, F, Jahn, H, Tarnaske, T, et al. (2003) Comparing and combining naltrexone and acamprosate in relapse prevention of alcoholism. Arch Gen Psychiatry 60: 92–9.CrossRefGoogle ScholarPubMed
Mann, K, Bladstrom, A, Torup, T, et al. (2013) Extending the treatment options in alcohol dependence: a randomized controlled study of as-needed nalmefene. Biol Psychiatry 73: 706–13.CrossRefGoogle ScholarPubMed
Martinez, D, Gil, R, Slifstein, M, et al. (2005) Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum. Biol Psychiatry 58: 779–86.CrossRefGoogle ScholarPubMed
Mason, BJ (2003) Acamprosate and naltrexone treatment for alcohol dependence: an evidence-based risk-benefits assessment. Eur Neuropsychopharmacol 13: 469–75.CrossRefGoogle ScholarPubMed
Mason, BJ (2005) Acamprosate in the treatment of alcohol dependence. Expert Opin Pharmacother 6: 2103–15.CrossRefGoogle ScholarPubMed
Mason, BJ, Goodman, AM, Chabac, S, Lehert, P (2006) Effect of oral acamprosate on abstinence in patients with alcohol dependence in a double-blind, placebo-controlled trial: the role of patient motivation. J Psychiatr Res 40: 382–92.CrossRefGoogle Scholar
Netzeband, JG, Gruol, DL (1995) Modulatory effects of acute ethanol on metabotropic glutamate responses in cultured Purkinje neurons. Brain Res 688: 105–13.CrossRefGoogle ScholarPubMed
O’Brien, CO (2015) In treating alcohol use disorders, why not use evidence-based treatment? Am J Psychiatry 172: 305–7.CrossRefGoogle Scholar
Palpacuer, C, Duprez, R, Huneau, A, et al. (2017) Pharmacologically controlled drinking in the treatment of alcohol dependence or alcohol use disorders: a systematic review with direct and network meta analyses on nalmefene, naltrexone, acamprosate, baclofen and topiramate. Addiction 113: 220–37.Google ScholarPubMed
Petrakis, IL, Poling, J, Levinson, C (2005) Naltrexone and disulfiram in patients with alcohol dependence and comorbid psychiatric disorders. Biol Psychiatry 57: 1128–37.CrossRefGoogle ScholarPubMed
Pettinati, HM, O’Brien, CP, Rabinowitz, AR (2006) The status of naltrexone in the treatment of alcohol dependence. Specific effects on heavy drinking. J Clin Psychopharmacol 26: 610–25.CrossRefGoogle ScholarPubMed
Roozen, HG, de Waart, R, van der Windt, DAW, et al. (2005) A systematic review of the effectiveness of naltrexone in the maintenance treatment of opioid and alcohol dependence. Eur Neuropsychopharmacol 16: 311–23.Google ScholarPubMed
Smith-Bernardin, S, Rowe, C, Behar, E, et al. (2018) Low threshold extended release naltrexone for high utilizers of public services with severe alcohol use disorder: a pilot study. J Subst Abuse Treat 85: 109–15.CrossRefGoogle ScholarPubMed
Soyka, M (2014) Nalmefene for the treatment of alcohol dependence: a current update. Int J Neuropsychopharmacol 17: 675–84.CrossRefGoogle ScholarPubMed
Van Amsterdam, J, van den Brink, W (2013) Reduced risk drinking as a viable treatment goal in problematic alcohol use and alcohol dependence. J Psychopharmacol 27: 987–97.CrossRefGoogle ScholarPubMed
Wiers, CE, Stelzel, C, Gladwin, TE, et al. (2015) Effects of cognitive bias modification training on neural alcohol cue reactivity in alcohol dependence. Am J Psychiatry 172: 334–43.CrossRefGoogle ScholarPubMed
Black, N, Stockings, E, Campbell, G, et al. (2019) Cannabinoids for the treatment of mental disorders and symptoms of mental disorders: a systematic review and meta analysis. Lancet Psychiatry 6: 9951010.CrossRefGoogle ScholarPubMed
Haney, M, Hill, MN (2018) Cannabis and cannabinoids: from synapse to society. Neuropsychopharm Rev 43: 1212.CrossRefGoogle ScholarPubMed
Hindley, G, Beck, K, Borgan, B (2020) Psychiatric symptoms caused by cannabis constituents: a systematic review and meta-analysis. Lancet Psychiatry 7: 344–53.CrossRefGoogle ScholarPubMed
Hines, LA, Freeman, TP, Gage, SH, et al. (2020) Association of high potency cannabis use with mental and substance use in adolescence. JAMA Psychiatry 77: 1044–51.CrossRefGoogle ScholarPubMed
Hurd, YL, Spriggs, S, Alishayev, J, et al. (2019) Cannabidiol for the reduction of cue-induced craving and anxiety in drug abstinent individuals with heroin use disorder: a double blind randomized placebo controlled trial. Am J Psychiatry 176: 911–22.CrossRefGoogle ScholarPubMed
James, S (2020) A Clinician’s Guide to Cannabinoid Science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kovacs, FE, Knop, T, Urbanski, MJ, et al. (2012) Exogenous and endogenous cannabinoids suppress inhibitory neurotransmission in the human neocortex. Neuropsychopharmacology 37: 1104–14.CrossRefGoogle ScholarPubMed
Mason, BJ, Crean, R, Goodell, V, et al. (2012) A proof-of-concept randomized controlled study of gabapentin: effects on cannabis use, withdrawal and executive function deficits in cannabis-dependent adults. Neuropsychopharmacology 37: 1689–98.CrossRefGoogle ScholarPubMed
Nugent, SM, Morasco, BJ, O’Neil, ME, et al. (2017) The effects of cannabis among adults with chronic pain and an overview of general harms: a systematic review. Ann Intern Med 167: 319–31.CrossRefGoogle Scholar
Akkus, F, Ametamey, SM, Treyer, V, et al. (2013) Market global reduction in mGlutR5 receptor binding in smokers and ex smokers determined by 11C-ABP688 positron emission tomography. Proc Natl Acad Sci USA 10: 737–42.Google Scholar
Akkus, F, Treyer, V, Johayem, A, et al. (2016) Association of long-term nicotine abstinence with normal metabotropic glutamate receptor 5 binding. Biol Psychiatry 79: 474–80.CrossRefGoogle Scholar
Crunelle, CL, Miller, ML, Booij, J, van den Rink, W (2010) The nicotinic acetylcholine receptor partial agonist varenicline and the treatment of drug dependence: a review. Eur Neuropsychopharmacol 20: 6979.CrossRefGoogle ScholarPubMed
Culbertson, CS, Bramen, J, Cohen, MS (2011) Effect of bupropion treatment on brain activation induced by cigarette-related cues in smokers. Arch Gen Psychiatry 68: 505–15.CrossRefGoogle ScholarPubMed
Evins, AE, Culhane, MA, Alpert, JE, et al. (2008) A controlled trial of bupropion added to nicotine patch and behavioral therapy for smoking cessation in adults with unipolar depressive disorders. J Clin Psychopharmacol 28: 660–6.CrossRefGoogle ScholarPubMed
Franklin, T, Wang, Z, Suh, JJ, et al. (2011) Effects of varenicline on smoking cue-triggered neural and craving responses. Arch Gen Psychiatry 68: 516–26.CrossRefGoogle ScholarPubMed
King, DP, Paciga, S, Pickering, E, et al. (2012) Smoking cessation pharmacogenetics: analysis of varenicline and bupropion in placebo-controlled clinical trials. Neuropsychopharmacology 37: 641–50.CrossRefGoogle ScholarPubMed
Lotipour, S, Mandelkern, M, Alvarez-Estrada, M, Brody, AL (2012) A single administration of low-dose varenicline saturates α4β2* nicotinic acetylcholine receptors in the human brain. Neuropsychopharmacology 37: 1738–48.Google Scholar
Steinberg, MB, Greenhaus, S, Schmelzer, AC, et al. (2009) Triple-combination pharmacotherapy for medically ill smokers. A randomized trial. Ann Intern Med 150: 447–54.CrossRefGoogle ScholarPubMed
Bell, J, Strang, J (2020) Medication treatment of opioid use disorder. Biol Psychiatry 87: 82–8.CrossRefGoogle ScholarPubMed
Chutuape, MA, Jasinski, DR, Finerhood, MI, Stitzer, ML (2001) One-, three-, and six-month outcomes after brief inpatient opioid detoxification. Am J Drug Alcohol Abuse 27: 1944.CrossRefGoogle ScholarPubMed
Davids, E, Gastpar, M (2004) Buprenorphine in the treatment of opioid dependence. Eur Neuropsychopharmacol 14: 209–16.CrossRefGoogle ScholarPubMed
Elkader, A, Sproule, B (2005) Buprenorphine: clinical pharmacokinetics in the treatment of opioid dependence. Clin Pharmacokinet 44: 661–80.CrossRefGoogle ScholarPubMed
Han, B, Compton, WM, Blanco, C, et al. (2017) Prescription opioid use, misuse and use disorders in US adults: 2015 national survey on drug use and health. Ann Intern Med 167: 293301.CrossRefGoogle ScholarPubMed
Johansson, J, Hirvonen, J, Lovro, Z, et al. (2019) Intranasal naloxone rapidly occupies brain mu opioid receptors in human subjects. Neuropsychopharmacology 44: 1667–73.CrossRefGoogle ScholarPubMed
Kowalczyk, WJ, Phillips, KA, Jobes, ML, et al. (2015) Clonidine maintenance prolongs opioid abstinence and decouples stress from craving in daily life: a randomized controlled trial with ecological momentary assessment. Am J Psychiatry 172: 760–7.CrossRefGoogle ScholarPubMed
Krupitsky, E, Nunes, EV, Ling, W, et al. (2011) Injectable extended-release naltrexone for opioid dependence: a double-blind, placebo-controlled, multicenter randomized trial. Lancet 377: 1506–13.CrossRefGoogle Scholar
Lee, JD, Nunes, EV, Novo, P, et al. (2018) Comparative effectiveness of extended-release naltrexone versus buprenorphine–naloxone for opioid relapse prevention (X:BOT): a multicentre, open label, randomized controlled trial. Lancet 391: 309–18.CrossRefGoogle Scholar
Marquet, P (2002) Pharmacology of high-dose buprenorphine. In Buprenorphine Therapy of Opiate Addiction, Kintz, P and Marquet, P (eds.), Totawa, NJ: Humana Press, 111.Google Scholar
National Institute on Drug Abuse. Drugs, brains, and behavior. www.drugabuse.gov/sites/default/files/soa_2014.pdf. Accessed January 2018.Google Scholar
Patel, B, Koston, TR (2019) Keeping up with clinical advances: opioid use disorder. CNS Spectrums 24: 1723.Google ScholarPubMed
Saanijoki, T, Tuominen, L, Tuulari, JJ et al. (2018) Opioid release after high intensity interval training in healthy human subjects. Neuropsychopharmacology 43: 246–54.CrossRefGoogle ScholarPubMed
Smyth, BP, Barry, J, Keenan, E, Ducray, K (2010) Lapse and relapse following inpatient treatment of opiate dependence. Ir Med J 103: 176–9.Google ScholarPubMed
Spagnolo, PA, Kimes, A, Schwandt, ML, et al. (2019) Striatal dopamine release in response to morphine: a 11C-raclopride positron emission tomography study in healthy men. Biol Psychiatry 86: 356–64.CrossRefGoogle Scholar
Stahl, SM (2018) Antagonist treatment is just as effective as replacement therapy for opioid addition but neither is used often enough. CNS Spectrums 23: 113–16.CrossRefGoogle Scholar
Substance Abuse and Mental Health Services Administration. Key substance use and mental health indicators in the United States: results from the 2016 National Survey on Drug Use and Health. www.samhsa.gov/data/sites/default/files/NSDUH-FFR1-2016/NSDUH-FFR1-2016.htm#opioid1. Accessed January 2018.Google Scholar
Sullivan, MA, Bisage, A, Bavlicova, M, et al. (2019) A randomized trial comparing extended release injectable suspension and oral naltrexone, both combined with behavioral therapy, for the treatment of opioid use disorder. Am J Psychiatry 176: 129–37.CrossRefGoogle ScholarPubMed
Tanum, L, Solli, KK, Latif, ZE, et al. (2017) Effectiveness of injectable extended-release naltrexone vs. daily buprenorphine–naloxone for opioid dependence: a randomized clinical noninferiority trial. JAMA Psychiatry 74: 1197–205.CrossRefGoogle ScholarPubMed
Tiihonen, J, Krupitsky, E, Verbitskaya, E, et al. (2012) Naltrexone implant for the treatment of polydrug dependence: a randomized controlled trial. Am J Psychiatry 169: 531–6.CrossRefGoogle ScholarPubMed
Volkow, ND (2014) America’s addiction to opioids: Heroin and prescription drug abuse. Presented at the Senate Caucus on International Narcotics Control. https://archives.drugabuse.gov/testimonies/2014/americas-addiction-to-opioids-heroin-prescription-drug-abuse.Google Scholar
Volkow, ND, Frieden, TR, Hyde, PS, Cha, SS (2014) Medication-assisted therapies: tackling the opioid-overdose epidemic. N Engl J Med 370: 2063–6.CrossRefGoogle ScholarPubMed
World Health Organization (2009) Guidelines for the Psychosocially Assisted Pharmacological Treatment of Opioid Dependence. Geneva: World Health Organization.Google Scholar
Bauman, MH, Ayestas, MA Jr., Partilla, JS, et al. (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37, 1192–203.Google Scholar
Bradberry, CW (2002) Dose-dependent effect of ethanol on extracellular dopamine in mesolimbic striatum of awake rhesus monkeys: comparison with cocaine across individuals. Psychopharmacology 165: 6776.CrossRefGoogle ScholarPubMed
Collins, GT, Narasimhan, D, Cunningham, AR, et al. (2012) Long-lasting effects of a PEGylated mutant cocaine esterase (CocE) on the reinforcing and discriminative stimulus effects of cocaine in rats. Neuropsychopharmacology 37: 1092–103.CrossRefGoogle ScholarPubMed
Dakwar, E, Nunes, EV, Hart, CL, et al. (2019) A single ketamine infusion combined with mindfulness based behavioral modification to treat cocaine dependence: a randomized clinical trial. Am J Psychiatry 176: 923–30.CrossRefGoogle ScholarPubMed
Ersche, KD, Bullmore, ET, Craig, KJ, et al. (2010) Influence of compulsivity of drug abuse on dopaminergic modulation of attentional bias in stimulant dependence. Arch Gen Psychiatry 67: 632–44.CrossRefGoogle ScholarPubMed
Ersche, KD, Jones, PS, Williams, GB, et al. (2012) Abnormal brain structure implicated in stimulant drug addiction. Science 335: 601–4.CrossRefGoogle ScholarPubMed
Ferris, MJ, Calipari, ES, Mateo, Y, et al. (2012) Cocaine self-administration produces pharmacodynamic tolerance: differential effects on the potency of dopamine transporter blockers, releasers, and methylphenidate. Neuropsychopharmacology 37: 1708–16.CrossRefGoogle ScholarPubMed
Hart, CL, Marvin, CB, Silver, R, Smith, EE (2012) Is cognitive functioning impaired in methamphetamine users? A critical review. Neuropsychopharmacology 37: 586608.CrossRefGoogle ScholarPubMed
Heinz, A, Reimold, M, Wrase, J, et al. (2005) Stimulant actions in rodents: implications for attention-deficit/hyperactivity disorder treatment and potential substance abuse. Biol Psychiatry 57: 1391–6.Google Scholar
Leyton, M, Boileau, I, Benkelfat, C, et al. (2002) Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11 C]raclopride study in healthy men. Neuropsychopharmacology 27: 1027–35.CrossRefGoogle Scholar
Lindsey, KP, Wilcox, KM, Votaw, JR, et al. (2004) Effect of dopamine transporter inhibitors on cocaine self-administration in rhesus monkeys: relationship to transporter occupancy determined by positron emission tomography neuroimaging. J Pharmacol Exp Ther 309: 959–69.CrossRefGoogle ScholarPubMed
Little, KY, Krolewski, DM, Zhang, L, Cassin, BJ (2003) Loss of striatal vesicular monoamine transporter protein (VMAT2) in human cocaine users. Am J Psychiatry 160: 4755.CrossRefGoogle ScholarPubMed
Livni, E, Parasrampuria, DA, Fischman, AJ (2006) PET study examining pharmacokinetics, detection and likeability, and dopamine transporter receptor occupancy of short- and long-acting oral methylphenidate. Am J Psychiatry 163: 387–95.Google Scholar
Martinez, D, Narendran, R, Foltin, RW, et al. (2007) Amphetamine-induced dopamine release: markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine. Am J Psychiatry 164: 622–9.CrossRefGoogle ScholarPubMed
Narendran, R, Lopresti, BJ, Martinez, D, et al. (2012) In vivo evidence for low striatal vesicular monoamine transporter 2 (VMAT2) availability in cocaine abusers. Am J Psychiatry 169: 5563.CrossRefGoogle ScholarPubMed
Overtoom, CCE, Bekker, EM, van der Molen, MW, et al. (2009) Methylphenidate restores link between stop-signal sensory impact and successful stopping in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 65: 614–19.CrossRefGoogle ScholarPubMed
Peng, XO, Xi, ZX, Li, X, et al. (2010) Is slow-onset long-acting monoamine transport blockade to cocaine as methadone is to heroin? Implication for anti-addiction medications. Neuropsychopharmacology 35: 2564–78.CrossRefGoogle ScholarPubMed
Santos, MD, Salery, M, Forget, B, et al. (2017) Rapid synaptogenesis in the nucleus accumbens is induced by a single cocaine administration and stabilized by mitogen-activated protein kinase interacting kinase-1 activity. Biol Psychiatry 82: 806–18.Google ScholarPubMed
Selzer, J (2006) Buprenorphine: reflections of an addictions psychiatrist. J Clin Psychiatry 67: 1466–7.CrossRefGoogle ScholarPubMed
Spencer, TJ, Biederman, J, Ciccone, PE, et al. (2006) Stimulant medications: how to minimize their reinforcing effects? Am J Psychiatry 163: 359–61.Google Scholar
Wee, S, Hicks, MJ, De, BP, et al. (2012) Novel cocaine vaccine linked to a disrupted adenovirus gene transfer vector blocks cocaine psychostimulant and reinforcing effects. Neuropsychopharmacology 37: 1083–91.CrossRefGoogle ScholarPubMed
Brawley, P, Dufield, JC (1972) The pharmacology of hallucinogens. Pharmacol Rev 34: 3166.Google Scholar
Carhart-Harris, RL, Goodwin, GM (2017) The therapeutic potential of psychedelic drugs: past, present and future. Neuropsychopharmacology 42: 2105–13.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Bolstridge, M, Day, CMG, et al. (2018) Psilocybin with psychological support for treatment-resistant depression: six month follow up. Psychopharmacology 235: 399408.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Bolstridge, M, Rucker, J, et al. (2016) Psilocybin with psychological support for treatment-resistant depression: an open label feasibility study. Lancet Psychiatry 3: 619–27.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Erritzoe, D, Williams, T, et al. (2012) Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc Natl Acad Sci USA 109: 2138–43.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Leech, R, Williams, TM, et al. (2012) Implications for psychedelic assisted psychotherapy: a functional magnetic resonance imaging study with psilocybin. Br J Psychiatry 200: 238–44.CrossRefGoogle ScholarPubMed
DiIorio, CR, Watkins, TJ, Dietrich, MS (2012) Evidence for chronically altered serotonin function in the cerebral cortex of female 3,4-methylenedioxymethamphetamine polydrug users. Arch Gen Psychiatry 69: 399409.Google Scholar
Erritzoe, D, Frokjaer, VG, Holst, KK, et al. (2011) In vivo imaging of cerebral serotonin transporter and serotonin 2a receptor binding in 3,4-methylenedioxymethamphetamine (MDMA or “Ecstasy”) and hallucinogen users. Arch Gen Psychiatry 68: 562–76.CrossRefGoogle ScholarPubMed
Fantegrossi, WE, Murnane, KS, Reissig, CJ (2008) The behavioral pharmacology of hallucinogens. Biochem Pharmacol 25: 1733.CrossRefGoogle Scholar
Feduccia, AA, Mithoefer, MC (2018) MDMA-assisted psychotherapy for PTSD: are memory reconsolidation and fear extinction underlying mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 84: 221–8.CrossRefGoogle ScholarPubMed
Liechti, ME (2017) Modern clinical research on LSD. Neuropsychopharmacology 42: 2114–27.CrossRefGoogle ScholarPubMed
Madsen, MK, Fisher, PM, Burmester, D, et al. (2019) Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology 44: 1328–34.Google ScholarPubMed
Mithoefer, MC, Wagner, MT, Mithoefer, AT, et al. (2011) The safety and efficacy of {+/−} 3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol 25: 439–52.CrossRefGoogle ScholarPubMed
Passie, T, Halpern, JH, Stichtenoth, DO, et al. (2008) The pharmacology of lysergic acid diethylamide: a review. CNS Neurosci Ther 14: 295314.CrossRefGoogle ScholarPubMed
Pitts, EG, Minerva, AR, Chandler, EB, et al. (2017) 3,4-Methylenedioxymethamphetamine increases affiliative behaviors in squirrel moneys in a serotonin 2A receptor dependent manner. Neuropsychopharmacology 42: 1962–71.CrossRefGoogle Scholar
Quednow, BB, Komeer, M, Geyer, MA, et al. (2012) Psilocybin induced deficits in autonomic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacology 37: 630–40.CrossRefGoogle Scholar
Schmid, Y, Enzler, F, Gasser, P, et al. (2015) Acute effects of lysergic acid diethylamine in healthy subjects. Biol Psychiatry 78: 544–53.CrossRefGoogle Scholar
Titeler, M, Lyon, RA, Gleenon, RA (1988) Radioligand binding evidence implicates the brain 5HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology 94: 213–16.CrossRefGoogle ScholarPubMed
Urban, NBL, Girgis, RR, Talbot, PS, et al. (2012) Sustained recreational use of Ecstasy is associated with altered pre and postsynaptic markers of serotonin transmission in neocortical areas: a PET study with [11C]DASB and [11C]MDL 100907. Neuropsychopharmacology 37: 1465–73.CrossRefGoogle Scholar
Balodis, IM, Kober, H, Worhunsky, PD, et al. (2012) Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry 71: 749–57.CrossRefGoogle ScholarPubMed
Gearhardt, AN, Yokum, S, Orr, PT, et al. (2011) Neural correlates of food addiction. Arch Gen Psychiatry 68: 808–16.CrossRefGoogle ScholarPubMed
Grant, JE, Kim, SW, Hartman, BK (2008) A double-blind, placebo-controlled study of the opiate antagonist naltrexone in the treatment of pathological gambling urges. J Clin Psychiatry 69: 783–9.CrossRefGoogle ScholarPubMed
Lawrence, AJ, Luty, J, Bogdan, NA, Sahakian, BJ, Clark, L (2009) Impulsivity and response inhibition in alcohol dependence and problem gambling. Psychopharmacology 207: 163–72.CrossRefGoogle ScholarPubMed
Lobo, DSS, Kennedy, JL (2006) The genetics of gambling and behavioral addictions. CNS Spectrums 11: 931–9.CrossRefGoogle ScholarPubMed
McElroy, SL, Hudson, JI, Capece, JA, et al. (2007) Topiramate for the treatment of binge eating disorder associated with obesity: a placebo-controlled study. Biol Psychiatry 61: 1039–48.CrossRefGoogle ScholarPubMed
Miedl, SF, Peters, J, Buchel, C (2012) Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Arch Gen Psychiatry 69: 177–86.CrossRefGoogle ScholarPubMed
Salamone, JD, Correa, M, Mingote, S, Weber, SM (2002) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther 305: 18.CrossRefGoogle Scholar
Van Holst, RJ, Veltman, DJ, Buchel, C, van den Brink, W, Goudriaan, AE. (2012) Distorted expectancy coding in problem gambling: is the addictive in the anticipation? Biol Psychiatry 71: 741–8.CrossRefGoogle ScholarPubMed
Zack, M, Poulos, CX (2007) A D1 antagonist enhances the rewarding and priming effects of a gambling episode in pathological gamblers. Neuropsychopharmacology 32: 1678–86.CrossRefGoogle Scholar
Berlin, HA, Rolls, ET, Iversen, SD (2005) Borderline personality disorder, impulsivity, and the orbitofrontal cortex. Am J Psychiatry 162: 2360–73.CrossRefGoogle ScholarPubMed
Chamberlain, SR, del Campo, N, Dowson, J, et al. (2007) Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 62: 977–84.CrossRefGoogle ScholarPubMed
Chamberlain, SR, Muller, U, Blackwell, AD, et al. (2006) Neurochemical modulation of response inhibition and probabilistic learning in humans. Science 311: 861–3.CrossRefGoogle ScholarPubMed
Chamberlain, SR, Robbins, TW, Winder-Rhodes, S, et al. (2011) Translational approaches to frontostriatal dysfunction in attention-deficit/hyperactivity disorder using a computerized neuropsychological battery. Biol Psychiatry 69: 1192–203.CrossRefGoogle ScholarPubMed
Dalley, JW, Everitt, BJ, Robbins, TW (2011) Impulsivity, compulsivity, and top-down cognitive control. Neuron 69: 680–94.CrossRefGoogle ScholarPubMed
Dalley, JW, Mar, AC, Economidou, D, Robbins, TW (2008) Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav 90: 250–60.CrossRefGoogle ScholarPubMed
Fineberg, NA, Chamberlain, SR, Goudriaan, AR (2014) New developments in human neurocognition: clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectrums 19: 6989.CrossRefGoogle ScholarPubMed
Lodge, DJ, Grace, AA (2006) The hippocampus modulates dopamine neuron responsivity by regulating the intensity of phasic neuron activation. Neuropsychopharmacology 31: 1356–61.CrossRefGoogle ScholarPubMed
Robbins, TW, Gillan, CM, Smith, DG, de Wit, S, Ersche, KD (2012) Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn Sci 16: 8191.CrossRefGoogle ScholarPubMed
Shaw, P, Gilliam, M, Liverpool, M, et al. (2011) Cortical development in typically developing children with symptoms of hyperactivity and impulsivity: support for a dimensional view of attention deficit hyperactivity disorder. Am J Psychiatry 168: 143–51.CrossRefGoogle ScholarPubMed
Sugam, JA, Day, JJ, Wightman, RM, Carelki, RM (2012) Phasic nucleus accumbens dopamine encodes risk-based decision-making behavior. Biol Psychiatry 71: 199205.CrossRefGoogle ScholarPubMed
Weathers, JD, Stringaris, AR, Deveney, CM, et al. (2012) A development study of the neural circuitry mediating motor inhibition in bipolar disorder. Am J Psychiatry 16: 633–41.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×