Published online by Cambridge University Press: 20 December 2010
Introduction
The results in the preceding chapters on stability of the second kind were mostly of the form E0 > −C(N + M), where E0 denotes the ground state energy of the system, and N and M are the number of electrons and nuclei, respectively. It is obvious, however, that if N is very large or very small compared to M the excess number of particles, positive or negative as the case may be, will float away to infinity. In other words it ought to be possible to reformulate the previous results as E0 > −C′ min{N, M} for a suitable C′ that depends only on the nuclear-electron charge ratio Z.
In the relativistic case discussed in Chapter 8, the energy is actually nonnegative for suitable α and Z, independently of N and M. From this we conclude that also the non-relativistic energy can be bounded below by E0 > −CN independent of M, as discussed in Remark 8.6. (For an alternative method, see.) Also the results in Chapters 9 and 10 yielded bounds of this form, since they rely in an essential way on the non-negativity of the relativistic energy in Chapter 8. This answers half the problem, namely it gives a bound on the energy of the correct form if M is larger than N.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.