Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T07:24:16.152Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  10 August 2009

Udo Fritsching
Affiliation:
Universität Bremen
Get access
Type
Chapter
Information
Spray Simulation
Modeling and Numerical Simulation of Sprayforming metals
, pp. 245 - 268
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aamir, M. A. and Watkins, A. P. Dense propane spray analysis with a modified collision model, CD-ROM, Proc. ILASS-Europe'99, 5–7 July Toulouse (1999)
Abbott, C. E.A survey of water drop interaction experiments, Rev. Geophys. Space Phys. 15 (1977): 363–74CrossRefGoogle Scholar
Ahmadi, M. and Sellens, R. W.A simplified maximum-entropy-based drop size distribution, Atomiz. & Sprays 3 (1993): 292–310CrossRefGoogle Scholar
Ahrens, O. Numerische Simulation des transsonischen Strömungsfeldes von unterexpandierten Freistrahlen, Studienarbeit, Fachgebiet Verfahrenstechnik, Universität Bremen (1995)
Albrecht, A., Bedat, B., Poinsot, T. J. and Simonin, O. Direct numerical simulation and modeling of evaporating droplets in homogeneous turbulence: application to turbulent flames, CD-ROM, Proc. ILASS-Europe'99, 5–7 July, Toulouse (1999)
Amsden, A. A., O'Rourke, P. J. and Butler, T. D. KIVA-I: A Computer Program for Chemically Reactive Flows with Sprays, Report LA-11560-MS, Los Alamos National Laboratory, LNM (1989)
Andersen, O. Berechnung des Temperaturverlaufs einer stationären Schmelzeströmung durch ein dünnes Rohr mit Kreisquerschnitt unter gleichzeitiger Berücksichtigung von Strahlung und Konvektion, Diplomarbeit, Fachgebiet Verfahrenstechnik, Universität Bremen (1991)
Anderson, I. E. and Figliola, R. S. Observations of gas atomization process dynamics, in: P. U. Gummeson and D. A. Gustafson (eds.) Modern Developments in Powder Metallurgy, Vol. 20, Metal Powder Industries Federation, Princeton, NJ (1988), pp 205–23
Anderson, I. E. and Terpstra, R. L.Progress toward gas atomization processing with increased uniformity and control, Mater. Sci. Engng. A326 (2002) 1: 101–9CrossRefGoogle Scholar
Anderson, I. E., Terpstra, R. L. and Rau, S.Progress toward understanding of gas atomization processing physics, Kolloquium des SFB 372, vol. 5, Universität, Bremen (2001) pp 1–16Google Scholar
Annavarapu, S. and Apelian, D. and Lawley, A.Processing effects in spray casting of steel strip, Metall. Trans. A 19 (1988): 3077–86CrossRefGoogle Scholar
Annavarapu, S., Apelian, D. and Lawley, A.Spray casting of steel strip – process analysis, Metall. Trans. A 21 (1990): 3237–56CrossRefGoogle Scholar
Annavarapu, S. and Doherty, R. D.Evolution of microstructure in spray casting, Int. J. Powder Metall. 29 (1993) 4: 331–43Google Scholar
Annavarapu, S. and Doherty, R. D.Inhibited coarsening of solid-liquid microstructures in spray casting at high volume fractions of solid, Acta Metall. Mater. 43 (1995) 8: 3207–30CrossRefGoogle Scholar
Anno, J. N. The Mechanics of Liquid Jets, Lexington Books, Lexington, MA (1977)
Antipas, G., Lekakou, C. and Tsakiropoulos, P. The break-up of melt streams by high pressure gases in spray forming, Proc. 2nd International Conference on Spray Forming ICSF-2, 13–15 Sept., Swansea (1993) pp 15–24
Armster, S. Q., Delplanque, J. P., Rein, M. and Lavernia, E. J.Thermo-fluid mechanisms controlling droplet based materials processes, Int. Mater. Rev. 47 (2002) 6: 265–301CrossRefGoogle Scholar
Ashgriz, N. and Poo, J. Y.Coalescence and separation in binary collision of liquid drops, J. Fluid Mech. 221 (1990): 183–204CrossRefGoogle Scholar
Baehr, H. D. and Stephan, K. Wärme- und Stoffübertragung, Springer-Verlag, Berlin (1994)
Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. and van der Vorst, H. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM Publishing, Philadelphia, PA (1994). Available at: ftp.netlib.org/templates/templates.ps
Bauckhage, K.Das Zerstäuben metallischer Schmelzen, Chem.-Ing.-Tech. 64 (1992) 4: 322–32CrossRefGoogle Scholar
Bauckhage, K.Stand der Technik beim Sprühkompktieren von Bolzen, Härt.-Tech.-Mitteilung 52 (1997) 5: 319–31Google Scholar
Bauckhage, K. Use of the phase-Doppler-anemometry for the analysis and the control of the spray forming process, Proc. PM2TEC'98, 31 May–4 June, Las Vegas (1998a)
Bauckhage, K.Die Bedeutung der Partikelabkühlung für den Materialaufbau beim Sprühkompaktieren, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1998b) pp 139–74Google Scholar
Bauckhage, K., Bergmann, D., Fritsching, U., Lohner, H., Schreckenberg, P. and Uhlenwinkel, V.Das Scaling-Down-Problem bei der Zweistoffzerstäubung von Metallschmelzen, Chem.-Ing.-Tech. 73 (2001) 4: 304–133.0.CO;2-Z>CrossRefGoogle Scholar
Bauckhage, K., Bergmann, D. and Tillwick, J.Die Massen- und Enthalpiebilanzierung des Sprühkegels als Kopplung für die Modellvorstellung des Materialaufbaus in der Mix-Schicht, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 139–70Google Scholar
Bauckhage, K. and Fritsching, U. Production of metal powders by gas atomization, in: Cooper, K. P., Anderson, I. E., Ridder, S. D. and Biancanello F. S. (eds.) Liquid Metal Atomization: Fundamentals and Practice, June TMS, Warrendale (2000) pp 23–36
Bauckhage, K., Liu, H. M. and Fritsching, U. Models for the transport phenomena in a new spray compacting process, 4th Proc. International Conference on Liquid Atomization and Spray Systems, ICLASS'88, Sendai/Japan, 21–24 August, The Fuel Society of Japan, Tokyo (1988) pp 424–30
Bauckhage, K. und Uhlenwinkel, V.Zu den Möglichkeiten eines automatisierten und optimierten Sprühkompaktierbetriebes, Härt.-Tech.-Mitteilung 51 (1996b) 5: 289–97Google Scholar
Bauckhage, K. und Uhlenwinkel, V. (eds.) Sprühkompaktieren – Sprayforming, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996a)
Bauckhage, K. und Uhlenwinkel, V. (eds.) Sprühkompaktieren – Sprayforming, Kolloquium des SFB 372, Vol. 2, Universität Bremen (1997)
Bauckhage, K. und Uhlenwinkel, V. (eds.) Sprühkompaktieren – Sprayforming, Kolloquium des SFB 372, Vol. 3, Universität Bremen (1998)
Bauckhage, K. und Uhlenwinkel, V. (eds.) Sprühkompaktieren – Sprayforming, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999)
Bauckhage, K. und Uhlenwinkel, V. (eds.) Sprühkompaktieren – Sprayforming, Kolloquium des SFB 372, Vol. 5, Universität Bremen (2001)
Bauckhage, K., Uhlenwinkel, U. and Fritsching, U. (eds.) Proc. Spray Deposition and Melt Atomization Conference SDMA 2000, 26–28 June, Bremen, Universität Bremen (2000)
Bauckhage, K., Fritsching, U., Uhlenwinkel, U., Ziesemis, J. and Leatham, A. (eds.) Proc. 2nd Spray Deposition and Melt Atomization Conference SDMA 2003, 22–25 June, Bremen, Universität Bremen (2003)
Baum, S. Software for Graphics and Data Analysis, Deptartment of Oceanography, Texas A&M University (1996). Available at: http://www-ocean.tamu.edu/∼baum/ocean_graphics.html
Bayvel, L. and Orzechowski, Z. Liquid Atomization, Taylor & Francis, Washington, DC (1993)
Bellan, J.Perspectives on large eddy simulations for sprays: issues and solutions, Atomiz. & Sprays 10 (2000): 409–25CrossRefGoogle Scholar
Beretta, F., Cavalieri, F. and D'Alessio, A.Drop size concentration in a spray by sideward laser light scattering measurements, Combust. Sci. Technol. 36 (1984): 19–37CrossRefGoogle Scholar
Berg, J. C. (ed.) Wettability, Marcel Dekker, New York (1993)
Berg, M. Zum Aufprall, zur Ausbreitung und Zerteilung von Schmelzetropfen aus reinen Metallen, Dissertation Universität Bremen (1999)
Berg, M. and Ulrich, J.Experimental based detection of the splash limits for the normal and oblique impact of molten metal particles on different substrates, J. Mater. Synth. Proc. 5 (1997) 1: 45–9Google Scholar
v. Berg, E., Bürger, M., Cho, S. H. and Schatz, A. Analysis of atomization of a liquid jet taking into account effects of the near surface boundary layer, Proc. 11th ILASS-Europe Conference 21–23 March, Nürnberg (1995)
Bergmann, D. Modellierung des Sprühkompaktierprozesses für Kupfer- und Stahlwerkstoffe, Dissertation, Universität Bremen (2000)
Bergmann, D., Bauckhage, K. and Fritsching, U. Modelling the spray forming process, 1999 International Conference on Powder Metallurgy and Particulate Materials, 20–24 June, Vancouver (1999b)
Bergmann, D., Fritsching, U. and Bauckhage, K. Modellierung der Abkühlung und raschen Erstarrung von Metalltropfen im Fluge während des Sprühkompaktierens, in: Kolloquium des SFB 372, Vol. 3, Bauckhage, K. and Uhlenwinkel, V. (eds.), Universität Bremen (1998) pp 175–96
Bergmann, D., Fritsching, U. and Bauckhage, K. Averaging thermal conditions in molten metal sprays, in: Mishra, B. (ed.) Proc. TMS – Annual Meeting, EPD Congress 1999, 28 Feb.–4 March, San Diego CA (1999a)
Bergmann, D., Fritsching, U. and Bauckhage, K. Coupled simulation of molten metal droplet sprays, in: Rath, H. J. (ed.) 8th International Symposium on Computational Fluid Dynamics ISCFD'99, 5–10 September, Bremen (1999b)
Bergmann, D., Fritsching, U. and Bauckhage, K.A mathematical model for cooling and rapid solidification of molten metal droplets, Int. J. Therm. Sci. 39 (2000): 53–62CrossRefGoogle Scholar
Bergmann, D., Fritsching, U. and Bauckhage, K.Simulation of molten metal droplet sprays, Comp. Fluid Dynamics J. 9 (2001a): 203–11Google Scholar
Bergmann, D., Fritsching, U. and Bauckhage, K.Thermische Simulation des Sprühkompaktierprozesses, Härt.-Tech.-Mitteilung 56 (2001b) 2: 110–19Google Scholar
Bergmann, D., Fritsching, U. and Crowe, C. T. Multiphase flows in the spray forming process, Proc. 2nd International Conference on Multiphase Flow, 3–7 April, Kyoto, Japan, Vol. 1 (1995) pp SP1–SP8
Bergström, C., Fuchs, L. and Holmborn, J. Large eddy simulation of spray injected in a strong turbulent cross flow, CD-ROM, Proc. ILASS-Europe 99, 5–7 July, Toulouse (1999)
Berthomieu, P., Carntz, H., Villedieu, P. and Lavergne, G. Characterization of droplet breakup regimes, in: Yule, A. J. (ed.) Proc. ILASS-Europe'98, 6–8 July, Manchester (1998) pp 72–7
Bewlay, B. P. and Cantor, B.Modeling of spray deposition – measurement of particle size, gas velocity, particle velocity, and spray temperature in gas-atomized sprays, Metall. Trans. B 12B (1990): 899–912CrossRefGoogle Scholar
Bhagat, R. B. and Amateau, M. F. Droplet solidification and microstructure modeling for Al–4Li alloy, Adv. Powder Metall. & Parti. Mater. 2 (1996)
Bird, R. B., Stewart, W. E. and Lightfoot, E. N. Transport Phenomena, Wiley International Edition, John Wiley & Sons, New York (1960)
Birtigh, A., Lauschke, G., Schierholz, W. F., Beck, D., Maul, C., Gilbert, N., Wagner, H.-G. and Werniger, C. Y.CFD in der chemischen Verfahrenstechnik aus industrieller Sicht, Chem.-Ing.-Tech. 72 (2000) 3: 175–933.0.CO;2-J>CrossRefGoogle Scholar
Boettinger, W. J., Coriel, S. R., Greer, A. L., Karma, A., Kurz, W., Rappaz, M. and Trivedi, R.Solidification microstructures: recent developments, future directions, Acta Mater. 48 (2000) 1: 43–70CrossRefGoogle Scholar
Brackbill, J. U., Kothe, D. B. and Zemach, C.A continuum method for modelling surface tension, J. Comp. Phys. 100 (1992): 335–54CrossRefGoogle Scholar
Bradley, D.On the atomization of liquids by high-velocity gases, Part 1, J. Phys. D: Appl. Phys. 6 (1973a): 1724–36CrossRefGoogle Scholar
Bradley, D.On the atomization of liquids by high-velocity gases, Part 2, J. Phys. D: Appl. Phys. 6 (1973b): 2267–72CrossRefGoogle Scholar
Brander, B. and Brauer, H. Impuls- und Stofftransport durch die Phasengrenzfläche von kugelförmigen fluiden Partikeln, Fortschritt-Berichte VDI, vol. 3, No. 326, VDI-Verlag, Düsseldorf (1993)
Bricknell, R. H.The structure and properties of a nickel-base superalloy produced by Osprey atomization and deposition, Metall. Trans A. 17A (1986): 583–91CrossRefGoogle Scholar
Brody, H. D. and Flemings, C.Solute redistribution in dendritic solidification, Trans. Metall. Soc. AIME 236 (1966) 5: 615–23Google Scholar
Brooks, R. G., Moore, C., Leatham, A. G. and Coombs, J. S.The Osprey process, Powder Metall. 2 (1977): 100–2CrossRefGoogle Scholar
Buchholz, M. Untersuchung des Sprühkompaktierverhaltens an sprühkompaktierten Bolzen, Dissertation, Universität Bremen (2002)
Buchholz, M., Uhlenwinkel, V., v. Freyberg, A. and Bauckhage, K.Specific enthalpy measurement in molten metal spray, Mater. Sci. Engng. A326 (2002) 1: 165–75CrossRefGoogle Scholar
Bürger, M., v. Berg, E., Cho, S. H. and Schatz, A.Fragmentation processes in gas and water atomization plants for process optimization purposes, Part 1: discussion of the main fragmentation processes, Powder Metall. Int. 21 (1989) 6: 10–15Google Scholar
Bürger, M., v. Berg, E., Cho, S. H. and Schatz, A.Analysis of fragmentation processes in gas and water atomization plants for process optimization purposes, Part 2: modelling of growth and stripping of capillary waves in parallel shear flow – the basic fragmentation mechanism, Powder Metall. Int. 24 (1992) 6: 32–8Google Scholar
Bürger, M., Schwalbe, W., Kim, D. S., Unger, H., Hohmann, H. and Schins, H.Two-phase description of hydrodynamic fragmentation processes within thermal detonation waves, J. Heat Transfer 106 (1984): 728–34CrossRefGoogle Scholar
Bussmann, M., Aziz, S. D. and Chandra, S.Photographs and simulations of molten metal droplets landing on a solid surface, J. Heat Transfer 122 (2000): 422CrossRefGoogle Scholar
Bussmann, M., Mostaghimi, J. and Chandra, S.On a three-dimensional volume tracking model of droplet impact, Phys. Fluids 11 (1999): 1406–17CrossRefGoogle Scholar
Butzer, G. A. The production-scale spray forming of superalloys for aerospace applications, J. Metals 51 (1999) 4, web-edition: http://www-ocean.tamu.edu/∼baum/ocean_graphics.html
Cai, C. A modelling study for the design and control of spray forming, PhD thesis, Drexel University (1995)
Cai, W. D. and Lavernia, E. J.Modeling of porosity during spray forming, Mater. Sci. Engng. A 226–8 (1997): 8–12CrossRefGoogle Scholar
Cai, C., Warner, L., Annavarapu, S. and Doherty, R. Modelling microstructural development in spray forming: experimental verification, in: Wood, J. V. Proc. 3rd International Conference on Spray Forming, Cardiff, 1996, Osprey Metals Ltd, Neath (1997)
Cappus, J. M. and German, R. M. (eds.) Proc. 1992 Powder Metallurgy World Congress, Vol. 1: Powder Production and Spray Forming, 21–26 June, San Francisco, CA (1992)
Carter, W. T., Benz, M.-G., Basu, A. K., Zabala, R. J., Knudsen, B. A., Forbes Jones, R. M., Lippard, H. E. and Kennedy, R. L. The CMSF process: the spray forming of clean metal, J. Metals51 (1999) 4, web-edition: http://www.tms.org/pubs/journals/JOM/9904/Carter/Carter-9904.html
Chang, D.-H., Kang, S., Lee, E.-S. and Ahn, S. Analysis of transient heat conduction with phase change in a spray deposited body, in: Marsh, S. P. et al. (eds.), Solidification 1998, The Minerals, Metals & Materials Society, Warrendale, PA (1998) pp 497–508
Chao, B. T.Motion of spherical gas bubbles in a viscous liquid at large Reynolds numbers, Phys. Fluids 5 (1962) 1: 69–79CrossRefGoogle Scholar
Chen, M. M., Crowe, C. T., Fritsching, U., Pien, S. J., et al. (eds.) Transport Phenomena in Materials Processing and Manufacturing, Heat Transfer Division – vol. 336, Fluids Engng Division – Vol. 240, The American Society of Mechanical Engineers ASME, New York (1996)
Cheng, C., Annavarapu, S. and Doherty, R. Modelling based microstructural control in spray casting, Proc. 2nd International Conference on Spray Forming, ICSF-2, 13–15 Sept., Swansea (1993)
Clift, R., Grace, J. R. and Weber, M. E. Bubbles, Drops and Particles, Academic Press, San Diego, CA (1978)
Coimbra, C. F. M. and Rangel, R. H.General solution of the particle momentum equation in unsteady Stokes flows, J. Fluid Mech. 370 (1998): 53–72CrossRefGoogle Scholar
Colella, P. and Glaz, H. M.Efficient solution algorithmus for the Riemann problem for real gases, J. Comp. Phys. 59 (1985): 264–89CrossRefGoogle Scholar
Computational Fluid Dynamics Services CFX 4.1 Flow Solver User Guide, Computational Fluid Dynamics Services, Harwell Laboratories Oxfordshire (1995)
Conelly, S., Coombs, J. S. and Medwell, J. O.Flow characteristics of metal particles in atomized sprays, Metal Powder Rep. 41 (1986): 9Google Scholar
Cousin, J. and Dumouchel, C.Effect of viscosity on the linear instability of a liquid sheet, Atomiz. & Sprays 6 (1996): 563–76CrossRefGoogle Scholar
Cousin, J. and Dumouchel, C. Theoretical determination of spray drop size distribution, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS'97, August, Seoul (1997) Part 1: Description of the Procedure, pp 788–95, Part 2: Applications, pp 796–803
Cousin, J., Yoon, S. J. and Dumouchel, C. Coupling of the classical linear theory and the maximum entropy formalism for the prediction of drop size distributions in sprays, application to pressure swirl atomizers, Atomiz. & Sprays6 (1996) 5: 601 ff
creare.x Inc. (Hrsg.) FLUENT User's Manual, Version 3.02, Hanover (1990)
Crowe, C. T.Modelling spray–air contact in spray drying systems, Adv. in Drying 1 (1980) 3: 63–99Google Scholar
Crowe, C. T.Challenges in numerical simulation of metal sprays in spray forming processes, Kolloquium des SFB 372, Vol. 2, Universität. Bremen (1997) pp 1–16Google Scholar
Crowe, C. T.Importance of multiphase coupling in modeling metal-droplet sprays, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 757–70Google Scholar
Crowe, C. T., Sharma, M. P. and Stock, D. E.The particle-source-in-cell method for gas droplet flow, J. Fluids Engng. 99 (1977): 325–32CrossRefGoogle Scholar
Crowe, C. T., Sommerfeld, M. and Tsuji, Y. Multiphase Flows with Drops and Particles, CRC Press, Boca Raton, CA (1998)
Crowe, C. T., Troutt, T. R. and Chung, J. N.Numerical models for two-phase turbulent flows, Ann. Rev. Fluid Mech. 28 (1996): 11–43CrossRefGoogle Scholar
Cui, C., Cao, F., Li, Z. and Li, Q. Modeling of the spray forming and solidification process of billets, Proc. 4th International Conference on Spray Forming, Baltimore, MD (1999)
Cui, C., Cao, F., Li, Z., Zhang, J. and Li, Q.Modeling of spray forming and solidification process of tubular products, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen, (2000) pp 825–38Google Scholar
Cui, C., Fritsching, U., Schulz, A., Bauckhage, K. and Mayr, P.Control of cooling during spray forming of bearing steel billet, Proc. Spray Deposition and Melt Atomization SDMA 2003, Bremen, 22–25 June, (2003) pp 8.117–8.128Google Scholar
Cui, C., Li, Z. and Li, Q.Numerical simulation of heat and momentum transfer in spray forming process, Proc. 1998 PM World Congress, Vol. 1, 18–22 October, Grenada (1998) pp 555–60Google Scholar
Dash, S. M. and Wolf, D. E.Interactive phenomema in supersonic jet mixing problems, Part I: phenomenology and numerical modeling techniques, AIAA Journal 22 (1984) 7: 905–13CrossRefGoogle Scholar
Delplanque, J. P., Lavernia, E. J. and Rangel, R. H.Analysis of in-flight oxidation during reactive spray atomization and deposition processing of aluminum, J. Heat Transfer 122 (2000): 126–33CrossRefGoogle Scholar
Delplanque, J.-P., Lavernia, E. J. and Rangel, R. H.Multidirectional solidification model for the decription of micropore formation in spray deposition processes, Numerical Heat Transfer, Part A 30 (1996): 1–18CrossRefGoogle Scholar
Delplanque, J. P. and Rangel, R. H.Simulation of liquid-jet overflow in droplet deposition processes, Acta Mater. 47 (1999) 7: 2207–13CrossRefGoogle Scholar
Delplanque, J. P. and Sirignano, W. A.Boundary-layer stripping effects on droplet transcritical convective vaporization, Atomiz. & Sprays 4 (1994) 3: 325–49CrossRefGoogle Scholar
Dielewicz, L. G., v. Berg, E. and Lampe, M. Computation of transsonic two-phase flow in liquid metal jet atomizers, CD-ROM Proc. ILASS-Europe'99, 5–7 July Toulouse (1999)
Djuric, Z. and Grant, P. S.Two dimensional simulation of liquid metal spray deposition onto a complex surface II: splashing and redeposition, Modelling Simul. Mater. Sci. Eng. 9 (2001): 111–27CrossRefGoogle Scholar
Djuric, Z., Newberry, P. and Grant, P. S.Two dimensional simulation of liquid metal spray deposition onto a complex surface, Modelling Simul. Mater. Sci. Eng. 7 (1999): 553–71CrossRefGoogle Scholar
Dobre, M. and Bolle, L. Theoretical prediction of ultrasonic spray characteristics using the maximum entropy formalism, in: Yule, A. J. (ed.) Proc. ILASS-Europe'98, 6–8 July, Manchester (1998) pp 7–12
Doherty, R. D., Annavarapu, S., Cai, C. and Warner Kohler, L. K.Modeling based studies for control and microstructure development in spray forming, Kolloquium des SFB 372, Vol. 2, Universität Bremen (1997) pp 45–78Google Scholar
Doherty, R. D., Cai, C.and Warner-Kohler, L. K. Modeling and microstructural development in spray forming, Int. J. Powder Metall. 33 (1997) 3: 50–60Google Scholar
Dombrowski, N. and Johns, W. R.The aerodynamic instability and disintegration of viscous liquid sheets, Chem. Engng. Sci. 18 (1963): 203–14CrossRefGoogle Scholar
Domnick, J., Raimann, J., Wolf, G., Berlemont, A. and Cabot, M.-S. On-line process control in melt spraying using phase-Doppler anemometry, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS'97, 18–22 August (1997) Seoul
Drezet, J.-M.Thermomechanical aspects in solidification processes, Kolloquium des SFB 372, Vol. 3, Universität Bremen (1998) pp 53–82Google Scholar
Duda, J. L. and Vrentas, J. S.Fluid mechanics of laminar liquid jets, Chem. Engng. Sci. 22 (1967): 855–73CrossRefGoogle Scholar
Dumouchel, C. Problemes lies a la d ún pulverizateur mecanique – hydrodynamique de chambre et instabilite de nappe, Dissertation Université Rouen (1989)
Dunkley, J. J. Liquid metal atomization – a suitable case for investigation, in: Yule, A. J. (ed.) Proc. ILASS-Europe'98, 6–8 July, Manchester (1998) pp P1–P6
Durao, D. F. G. The application of laser anemometry to free jets and flames with and without recirculation, PhD thesis, University of London (1976)
Durst, F., Milojevic, D.and Schönung, B. Eulerian and Lagrangian predictions of particulate two-phase flows: a numerical study, Appl. Math. Modelling 8 (1984): 101–15CrossRefGoogle Scholar
Dykhuizen, R. C.Review of impact and solidification of molten thermal spray droplets, J. Thermal Spray Technol. 3 (1994): 351–61CrossRefGoogle Scholar
Dykhuizen, R. C. and Smith, M. F.Gas dynamic principles of spray, J. Thermal Spray Technol. 7 (1998) 2:, 205–12CrossRefGoogle Scholar
Ebert, T., v. Buch, F. und Kainer, K. U.Sprühkompaktieren von Magnesiumlegierungen im Rahmen des SFB 390, Kolloquium des SFB 372, Vol. 3, Universität Bremen (1998) pp 9–30Google Scholar
Ebert, T., Moll, F. and Kainer, K. U. Spray forming of magnesium alloys and composites, Proc. 3rd International Conference on Spray Forming, Cardiff, 1996, Osprey Metals Ltd, Neath (1997) pp 177–85
Edwards, C. F. Formulating large-eddy simulations of dense multiphase flows, in: Yule, A. J. (ed.) Proc. ILASS-Europe'98, 6–8 July, Manchester (1998) pp P7–P16
Elghobashi, S. E., Abou-Arab, T. W., Rirk, M. and Mostafa, A.Prediction of the particle laden jet with a two-equation turbulence model, Int. J. Multiphase Flow 10 (1984): 697–710CrossRefGoogle Scholar
Espina, P. I.Numerical simulation of atomization gas flow, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 127–38Google Scholar
Espina, P. I. and Piomelli, U. Numerical simulation of the gas flow in gas metal atomizers, Proc. 1998 ASME – Fluids Engng Division, Washington (1998a), FEDSM98–4901
Espina, P. I. and Piomelli, U. Study of the gas jet in a close-coupled gas metal atomizer, AIAA Aerospace Science Meeting, 12–15 June, Reno, NV, Paper 98–0959 (1998b)
Evans, R. W., Leatham, A. G. and Brooks, R. G.The Osprey preform process, Powder Metall. 28 (1985): 13–20CrossRefGoogle Scholar
Faeth, G. M. Structure and atomization properties of dense turbulent sprays, 23rd Symposium on Combustion, The Combustion Institute, Pittsburgh, PA (1990) pp 1345–52
Faragó, Z. Activities on liquid atomization at the Research Center Lampoldshausen of the German Aerospace Research Establishment, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS'97, 18–22 August, Seoul (1997) pp 345–52
Faragó, Z. and Chigier, N.Morphological classification of disintegration of round liquid jets in a coaxial air stream, Atomiz. & Sprays 2 (1992): 137–53Google Scholar
Ferziger, J. H. and Peric, M. Computational Methods for Fluid Dynamics, Springer Verlag, Berlin (1996)
Fletcher, C. A. J. Computational Techniques for Fluid Dynamics Part 1: Fundamental and General Techniques; Part 2: Specific Techniques for Different Flow Categories, 2nd Edition, Springer Verlag (1991)
Flow Science, Flow-3D User's Manual, Flow Science, Santa Fe, CA (1998)
Ford, R. E. and Furmidge, C. G. L. Impact and spreading of spray drops on foliar surfaces, Wetting (Soc. Chem. Ind.) 25: 417–32 (1967)
Forrest, J., Lile, S. and Coombs, J. S. Numerical modelling of the Osprey process, Proc. International Conference on Spray Forming, ICSF-2, 13–15 September, Swansea (1993)
Frigaard, I. A.Growth dynamics of spray-formed aluminium billets, Part 1: steady state crown shapes, J. Mater. Proc. Manuf. Sci. 3 (1994a): 173–93Google Scholar
Frigaard, I. A.Growth dynamics of spray-formed aluminium billets, Part 2: transient billet growth, J. Mater. Proc. Manuf. Sci. 3 (1994b): 257–75Google Scholar
Frigaard, I. A.Controlling the growth of alluminium spray-formed billets, Kolloquium des SFB 372, Vol. 2, Universität Bremen (1997) pp 29–44Google Scholar
Frigaard, I. A.Spray-forming of large diameter billets using twin atomizer system: basic features of spray-form growth dynamics, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 839–54Google Scholar
Fritsching, U.Modelling the spray cone behaviour in the metal spray forming process, momentum and thermal coupling in two-phase flow, Phoenics J. Comp. Fluid Dynamics 8 (1995) 1: 68–90Google Scholar
Fritsching, U. and Bauckhage, K.Die Bewegung von Tropfen im Sprühkegel einer Ein- und einer Zweistoffdüse, Chem.-Ing.-Tech. 59 (1987) 9: 744–5CrossRefGoogle Scholar
Fritsching, U. and Bauckhage, K. Numerical investigations on the atomization of molten metals, 3rd International Phoenics-User Conference, 28 August–1 September, Dubrovnik CHAM Ltd, London (1989)
Fritsching, U. and Bauckhage, K.Investigations on the atomization of molten metals: the coaxial jet and the gas flow in the nozzle near field, PHOENICS J. Comp. Fluid Dynamics 5 (1992) 1: 81–98Google Scholar
Fritsching, U. and Bauckhage, K. Lagrangian modelling of thermal and kinetic droplet/particle behaviour in the metal spray compaction process, Proc. ILASS-93/CHISA-93, 29 August–3 September, Prague (1993)
Fritsching, U. and Bauckhage, K.Zum Impuls- und Wärmetransport bei der Zerstäubung und anschließenden Kompaktierung von Schmelzen, Chem.-Ing.-Tech. 66 (1994a) 3: 380–2CrossRefGoogle Scholar
Fritsching, U. and Bauckhage, K. Sprays and jets for metallurgical applications, Proc. 7th Workshop on Two-Phase Flow Predictions, 11–14 April, Erlangen (1994b)
Fritsching, U. and Bauckhage, K. Spray modelling in spray forming, in: Chen, M. M. and Crowe, C. T. (eds.) Multiphase Flow and Heat Transfer in Materials Processing, presented at International Mechanical Engineering Congress 94, 6–11 November, Chicago, ASME-FED201 (1994c): 49–54
Fritsching, U. and Bauckhage, K. Thermal treatment and conditions of the deposit in spray forming applications, in: Chen, M. M. and Crowe, C. T. (eds.) Multiphase Flow and Heat Transfer in Materials Processing, presented at International Mechanical Engineering Congress 94, 6–11 November, Chicago, ASME-Fluids Engng Division201 (1994d): 7–18
Fritsching, U. and Bauckhage, K. Sprayforming of Metals, Ullmann's Encyclopedia of Industrial Chemistry, 6th Edition, 1999 electronic release, Wiley VCH, Weinheim (1999)
Fritsching, U., Bergmann, D. and Bauckhage, K. Metal solidification during spray forming, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS'97, 18–22 August, Seoul (1997a)
Fritsching, U., Bergmann, D., Heck, U. und Bauckhage, K. Modellierung und Simulation des Sprühkompaktierprozesses, in: Bauckhage, K. und Uhlenwinkel, V. (eds.) Kolloquium des SFB 372, Vol. 2, Universität Bremen (1997b)
Fritsching, U., Bergmann, D., Heck, U. and Bauckhage, K. Particle size distribution width in gas atomization of molten metals, 1999 International Conference on Powder Metallurgy and Particulate Materials, 20–24 June, Vancouver (1999)
Fritsching, U., Liu, H. and Bauckhage, K. Numerical modelling in the spray compaction process, Proc. 5th International Conference on Liquid Atomization and Spray Systems, ICLASS-91, Gaithersburg, MD, NIST SP813 (1991) pp 491–8
Fritsching, U., Heck, U. and Bauckhage, K. The gas-flowfield in the atomization region of a free fall atomizer, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS'97, 18–22 August, Seoul (1997)
Fritsching, U., Liu, H. and Bauckhage, K. Two-phase flow and heat transfer in the metal spray compaction process, Proc. International Conference on Multiphase Flows'91, 24–7 September, Tsukuba (1991)
Fritsching, U., Uhlenwinkel, V. and Bauckhage, K. Spreading of the spray cone for spray forming applications, Proc. Powder Metallurgy World Congress, PM-93, 12–15 July, Kyoto (1993)
Fritsching, U., Uhlenwinkel, V. and Bauckhage, K. (eds.) Selected papers from the International Conference on Spray Deposition and Melt Atomization, SDMA-2000, Mater. Sci. Engng. A326 (2002) 1
Fritsching, U., Uhlenwinkel, V., Bauckhage, K. and Urlau, U.Gas- und Partikelströmungen im Düsennahbereich einer Zweistoffdüse, Modelluntersuchungen zur Zerstäubung von Metall-schmelzen, Chem.-Ing.-Tech. 62 (1990) 2: 146–7CrossRefGoogle Scholar
Fritsching, U., Zhang, H. and Bauckhage, K. Thermal histories of atomized and compacted metals, Proc. Powder Metallurgy World Congress PM-93, 12–15 July, Kyoto (1993a)
Fritsching, U., Zhang, H. and Bauckhage, K. Modelling of thermal histories and solidification in the spray cone and deposit of atomized and compacted metals, Proc. International Conference on Spray Forming, ICSF-2, 13–15 September, Swansea (1993b)
Fritsching, U., Zhang, H. and Bauckhage, K.Numerical simulation of temperature distribution and solidification behaviour during spray forming, Steel Research 65 (1994a) 7: 273–8CrossRefGoogle Scholar
Fritsching, U., Zhang, H. and Bauckhage, K.Numerical results of temperature distribution and solidification behaviour during spray forming, Steel Research 65 (1994b) 8: 322–5CrossRefGoogle Scholar
Frohn, A. and Roth, N. Dynamics of Droplets, Springer Verlag, Berlin (2000)
Fukai, J., Shiiba, Y., Yamamoto, T., Miyatake, O., Poulikakos, D., Megaridis, C. M. and Zhao, Z.Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modeling, Phys. Fluids 11 (1995): 236–47CrossRefGoogle Scholar
Fukai, J., Zhao, Z., Poulikakos, D., Megaridis, C. M. and Miyatake, O.Modeling of the deformation of a liquid droplet impinging a flat surface, Phys. Fluids 5 (1993): 2588–99CrossRefGoogle Scholar
Fukai, J., Asami, H. and Miyatake, O. Deformation and solidification behaviour of a molten metal droplet colliding with a substrate: modeling and experiment, in: Marsh, S. P. et al. (eds.) Solidification 1998, TMS, The Minerals, Metals & Materials Society, Warrendale, PA (1998), pp 473–83
Georjon, T. L. and Reitz, R. D.A drop-shattering collision model for multidimensional spray computations, Atomiz. & Sprays 9 (1999): 231–54CrossRefGoogle Scholar
Gerking, L.Powder from metal and ceramic melts by laminar streams at supersonic speed, Powder Metall. Int. 25 (1993) 2: 59–65Google Scholar
Gerling, R., Liu, K. W. und Schimansky, F.-P.Pulverherstellung und Sprühformen von intermetallischen Titanbasislegierungen, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 105–26Google Scholar
Gerling, R., Schimansky, F. P., Wegmann, G. and Zhang, J. X.Spray forming of Ti 48.9Al (at%) and subsequent hot isostatic pressing and forging, Mater. Sci. Engng. A326 (2002) 1: 73–8CrossRefGoogle Scholar
Gosman, A. D. and Ioannides, E.Aspects of computer simulation of liquid-fueled combustors, J. Energy 7 (1983): 482–90CrossRefGoogle Scholar
Grant, P. S., Cantor, B. and Katgerman, L.Modelling of droplet dynamic and thermal histories during spray forming. I. Individual droplet behaviour, Acta Metall. Mater. 41 (1993a) 11: 3097–108CrossRefGoogle Scholar
Grant, P. S., Cantor, B. and Katgerman, L.Modelling of droplet dynamic and thermal histories during spray forming. II. Effect of process parameters, Acta Metall. Mater. 41 (1993b) 11: 3109–18CrossRefGoogle Scholar
Grant, P. S.Spray forming, Progress in Mater. Sci. 39 (1995): 497–545CrossRefGoogle Scholar
Grant, P. S.A model for the factors controlling spray formed grain sizes, Kolloquium des SFB 372, Vol. 3, Universität Bremen (1998) pp 83–92Google Scholar
Grant, P. S., Cantor, B. and Katgerman, L.Acta Metall. Mater. 41 (1993) 11: 3097CrossRef
Grant, P. S., Underhill, R. P., Cantor, B. and Bryant, D. J. Modelling droplet behaviour during spray forming using FLUENT, TMS Annual Meeting, Orlando, FL (1997)
Grigull, U. and Sandner, H. Wärmeleitung, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1986)
Gupta, M., Ibrahim, I. A., Mohammed, F. A. and Lavernia, E. J.Wetting and interfacial reactions in Al–Li–SiCp metal matrix composites processing by spray atomization and deposition, J. Mater. Sci. 26 (1991): 6673–84CrossRefGoogle Scholar
Gupta, M., Mohammed, F. A. and Lavernia, E. J.Heat transfer mechanisms and their effects on microstructure during spray atomization and codeposition of metal matrix composites, Mater. Sci. Engng. A144 (1991): 99–110CrossRefGoogle Scholar
Gupta, M., Lane, C. and Lavernia, E. J.Microstructure and properties of spray atomized and deposited Al–7Si/SiC metal matrix composites, Scripta Metall. Mater. 26 (1992): 825–30CrossRefGoogle Scholar
Gutierrez-Miravete, M., Lavernia, E. J., Trapaga, G. M. and Szekely, J.A mathematical model of the liquid dynamic compaction process. Part 2: formation of the deposit, Int. J. Rapid Solidification 4 (1988): 125–50Google Scholar
Hagerty, W. W. and Shea, J. F.A study of the stability of plane fluid sheets, J. Appl. Mech. 22 (1955): 509–14Google Scholar
Hansen, P. N., Hartmann, G. and Kallien, L.Numerical simulation of rapid solidification processes: powder and spray-forming technologies, Solidification Processing (1987): 373–6Google Scholar
Hansmann, S. und Müller, H. R.Hochzinnhaltige Bronzen mittels Sprühkompaktieren seigerungsarm hergestellt, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 1–6Google Scholar
Hardalupas, Y., Tsai, R.-E. and Whitelaw, J. H. Unsteady breakup of liquid jets in coaxial airblast atomizers, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS'97, 18–22 August, Seoul (1997) pp 326–33
Hardalupas, Y., Taylor, A. M. K. P. and Wilkins, J. H.Experimental investigation of sub-millimetre droplet impingement onto spherical surfaces, Int. J. Heat Fluid Flow 20 (1999): 477–85CrossRefGoogle Scholar
Harlow, F. H. and Shannon, J. P.The splash of a liquid drop, J. Appl. Phys. 38 (1967) 10: 3855–66CrossRefGoogle Scholar
Hartmann, G. C. Die Erstarrung von Metallen im Sprühgießprozeß am Beispiel der Zinnbronze CuSn6, Fortschritt Berichte VDI, Reihe 5: Grund- und Werkstoffe No. 195, VDI-Verlag Düsseldorf (1990)
Hattel, J. H. Mathematical modelling and numerical simulation of casting processes, Technical University Denmark, Lyngby (1999)
Hattel, J. H., Pryds, N. H., Pedersen, T. B. and Pedersen, A. S.Numerical modelling of the spray forming process: the effect of process parameters on the deposited material, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen 200 pp 803–812
Hattel, J. H., Pryds, N., Thorborg, J. and Ottosen, P.A quasi-stationary numerical model of atomized metal droplets, Part I: model formulation, Modelling Simul. Mater. Sci. Engng. 7 (1999) 3: 413–30CrossRefGoogle Scholar
Heck, U. Zur Zerstäubung in Freifalldüsen, Dissertation, Universität Bremen (1998)
Heck, U., Fritsching, U. und Bauckhage, K. Zur Fluiddisintegration in Freifall-Zerstäubern, in: Koschel, W. W. and Haidn, O. J. (eds.) Spray'97, 3. Workshop über Sprays, Erfassung von Sprühvorgängen und Techniken der Fluidzerstäubung, DLR Lampoldshausen, 22–23 Oktober (1997)
Heck, U., Fritsching, U. and Bauckhage, K.Gas-flow effects on twin-fluid atomization of liquid metals, Atomiz. & Sprays 10 (2000) 1: 25–46CrossRefGoogle Scholar
Helebrook, B. T. and Edwards, C. F. Proc. 8th International Conference on Liquid Atomization and Spraying Systems ICLASS-2000, 16–20 July, Pasadena, CA (2000)
Henein, H.Single fluid atomization through the application of impulses to a melt, Mater. Sci. Engng. A326 (2002) 1: 92–100CrossRefGoogle Scholar
Hetsroni, G. (ed.) Handbook of Multiphase Systems, Hemisphere, Washington, DC (1982)
Hill, J. M. One-Dimensional Stefan Problems: An Introduction, Longman Scientific & Technical, John Wiley, New York (1987)
Hinze, J. O.Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE J. 1 (1955): 289–95CrossRefGoogle Scholar
Hirt, C. W., Nichols, B. D. and Romero, N. C. SOLA – A Numerical Solution Algorithm for Transient Fluid Flows, Report LA-5652, Los Alamos Scientific Laboratory, NM (1975)
Hirth, J. P.Nucleation, undercooling and homogeneous structures in rapidly solidified powders, Metall. Trans. A, 9A (1978) 3: 401–4CrossRefGoogle Scholar
Ho, S. and Lavernia, E. J.Thermal residual stresses in spray atomized and deposited Ni3Al, Scripta Mater. 34 (1996) 4: 527–36CrossRefGoogle Scholar
Horvay, M. Theoretische und experimentelle Untersuchung über den Einfluß des inneren Strömungsfeldes auf die Zerstäubungseigenschaften von Drall-Druckzerstäubungsdüsen, Dissertation, Universität Karlsruhe (1985)
Hsiang, L. P. and Faeth, G. M.Near-limit drop deformation and secondary breakup, Int. J. Multiphase Flow 18 (1992) 5: 635–52CrossRefGoogle Scholar
Hsiang, L. P. and Faeth, G. M.Drop properties after secondary breakup, Int. J. Multiphase Flow 19 (1993) 5: 721–35CrossRefGoogle Scholar
Hu, H. M., Lavernia, E. J., Lee, Z. H. and White, D. R.Residual stresses in spray-formed A2 tool steel, J. Mater. Res. 14 (1999) 12: 4521–4530CrossRefGoogle Scholar
Hummert, K.Sprühkompaktieren von Aluminiumwerkstoffen im industriellen Maßstab – Stand der Entwicklung, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 199–215Google Scholar
Hummert, K.PM-Hochleistungsaluminium im industriellen Maßstab, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 21–44Google Scholar
Inada, S. and Yang, W.Solidification of molton metal droplets impinging on a cold surface, Exp. Heat Transfer 7 (1994) 2: 93–100CrossRefGoogle Scholar
Jeffreys, H.On the formation of water waves by wind, Proc. Roy. Soc. A, (1924): 189Google Scholar
Jordan, N. und Harig, H.Sprühkompaktierte Kupferbasis-Werkstoffe – Stand der Forschungs- und Entwicklungsarbeiten, Kolloquium des SFB 372, Vol. 3, Universität Bremen (1998) pp 31–52Google Scholar
Jordan, N., Schröder, R., Harig, H. and Kienzler, R.Influences of the spray deposition process on the properties of copper and copper alloys, Mater. Sci. Engng. A326 (2002) 1: 51–62CrossRefGoogle Scholar
Kallien, L. Herstellung schnell erstarrter und hochunterkühlter Metallpulver, PhD thesis, RWTH, Aachen (1988)
Karl, A. Untersuchung der Wechselwirkung von Tropfen mit Wänden oberhalb der Leidenfrost-Temperatur, PhD thesis, Universität Stuttgart (1997)
Karl, A., Rieber, M., Schelkle, M., Anders, K. and Frohn, A.Comparison of new numerical results for droplet wall interactions with experimental results, Fluids Engng Division 236 (1996): 201–6Google Scholar
Kelkar, K. M., Hou, Z., Patankar, S. V., Minisandram, R. S., Forbes Jones, R. M., Carter Jr., W. T., Srivatsa, S. K. and Madden, C. Mathematical model of the clean metal spray forming process, Proc. 4th International Conference on Spray Forming, Baltimore MD (1999)
Kienzler, R. and Schröder, R.Entwicklung von Materialmodellen zur Beschreibung des Spannungszustandes und der Porendichte in sprühkompaktierten Komponenten, Sprühkompaktieren, Arbeits- und Ergebnisbericht 1994–1997, Kolloquium des SFB 372, Universität Bremen (1997) pp 389–428Google Scholar
Klar, E. and Fesko, J. W. Powder Metallurgy Metals Handbook, Vol. 7, American Society for Metals, Materials Park, OH (1984)
Klein, M., Sadiki, A. and Janicka, J.Influence of the inflow conditions on the direct numerical simulation of primary breakup of liquid jets, ILASS-Europe 2001, Zürich (2001) pp 475–80Google Scholar
Klein, M., Sadiki, A. and Janicka, J.Untersuchung des Primärzerfalls eines Flüssigkeitsfilms: Vergleich direkte numerische Simulation, Experiment und lineare Theorie, Spray 2002, Freiberger Forschungshefte A 870 Verfahrenstechnik, TU-Bergakademie Freiberg (2002) pp 63–72Google Scholar
Knight, R., Smith, R. W. and Lawley, A.Spray forming research at Drexel University, Int. J. Powder Metall. 31 (1995) 3: 205–13Google Scholar
Kohnen, G. Über den Einfluß der Phasenwechselwirkungen bei turbulenten Zweiphasenströmungen und deren numerische Erfassung in der Euler-Lagrange Betrachtungsweise, Dissertation, Universität Halle-Wittenberg (1997)
Kothe, D. B. and Mjolsness, R. C.RIPPLE: a new model for incompressible flows with free surfaces, AIAA Journal 30 (1992): 11Google Scholar
Kozarek, R. L., León, D. D. and Mansour, A.An investigation of linear nozzles for spray forming aluminium sheets, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 141–60Google Scholar
Kozarek, R. L., Chu, M. G. and Pien, S. J. An approach to minimize porosity in spray formed deposits through a model-based designed experiment, in: Marsh, S. P. et al. (eds.) Solidification 1998, The Minerals, Metals & Materials Society, Warrendale, PA (1998) pp 461–71
Kramer, C., Uhlenwinkel, V. and Bauckhage, K. The sticking efficiency at the spray forming of metals, in: Wood, J. V. (ed.) Proc. 3rd International Conference on Spray Forming, Cardiff, 1996, Osprey Metals Ltd, Neath (1997)
Kramer, C. Die Kompaktierungsrate beim Sprühkompaktieren von Gauß-förmigen Deposits, Dissertation, Universität Bremen (1997)
Krauss, M., Bergmann, D. and Fritsching, U.In-situ particle temperature, velocity and size measurements in the spray forming process, Proc. Spray Deposition and Melt Atomization SDMA 2000, 26–28 June, Bremen, 26–28 June (2000) pp 659–70. Also: Mater. Sci. Engng. A326 (2002) 1: 154–64Google Scholar
Lafaurie, B., Mantel, T. and Zaleski, S. Direct Navier–Stokes simulations of the near-nozzle region, in: Yule, A. J. (ed.) Proc. ILASS-Europe'98, 6–8 July, Manchester (1998) pp 54–9
Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S. and Zanetti, G.Modelling merging and fragmentation in multiphase flows with SURFER, J. Comp. Phys. 133 (1994): 134–47CrossRefGoogle Scholar
Lampe, K. Experimentelle Untersuchung und Modellierung der Mehrphasenströmung im düsennahen Bereich einer Öl-Brenner-Düse, Dissertation, Universität Bremen (1994)
Launder, B. E. and Spalding, D. B.The numerical computation of turbulent flows, Comp. Meth. Appl. Mech. Engng. 3 (1974): 269–89CrossRefGoogle Scholar
Lavernia, E. J.Spray atomization and deposition of metal matrix composites, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 63–122Google Scholar
Lavernia, E. J., Ayers, J. D. and Srivastan, T. S.Rapid solidification processing with specific application to aluminium alloys, Int. Mater. Rev. 37 (1992): 1–44CrossRefGoogle Scholar
Lavernia, E. J., Baram, J. and Gutierrez, E. M.Precipitation and excess solid solubility in Mg–Al–Zr and Mg–Zn–Zr alloys processed by spray atomization and deposition, Mater. Sci. Engng. A132 (1991): 119–33CrossRefGoogle Scholar
Lavernia, E. J., Gomez, E. and Grant, N. J.The structures and properties of Mg–Zn–Zr and Mg–Zn–Zr alloys produced by LDC, Mater. Sci. Engng. A95 (1987): 225–36CrossRefGoogle Scholar
Lavernia, E. J., Rai, G. and Grant, N. J.Rapid solidification processing of 7XXX aluminum alloys: a review, Mater. Sci. Engng. A79 (1986): 211–21CrossRefGoogle Scholar
Lavernia, E. J., Gutierrez, E. M., Szekely, J. and Grant, N. J.A mathematical model of the liquid dynamic compaction process. part 1: heat flow in gas atomization, Int. J. Rapid Solidification 4 (1988): 89–124Google Scholar
Lavernia, E. J. and Wu, Y. Spray Atomization and Deposition, J. Wiley & Sons, Chichester (1996)
Lawley, A. Atomization – The Production of Metal Powders, Metal Powder Industries Federation, Princeton, NJ (1992)
Lawley, A.Melt atomization and spray deposition – quo vadis, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 3–16Google Scholar
Lawley, A., Mathur, P., Apelian, D. and Meystel, A.Sprayforming: process fundamentals and control, Powder Metall. 33 (1990): 109–11CrossRefGoogle Scholar
Leatham, A. Spray forming: alloys, products, and markets, J. Metals51 (1999): 4, web-edition: http://www.tms.org/pubs/journals/JOM/9904/Leatham/Leatham-9904.html
Leatham, A. G., Brooks, R. G., Coombs, J. S. and Ogilvy, G. W. in: Wood, J. Proc. 1st International Conference on Spray Forming, 17–19 September 1990, Osprey Metals Ltd, Neath, Paper 1 (1991)
Leatham, A. G. and Lawley, A.The Osprey process: principles and applications, Int. J. Powder Metall. 29 (1993) 4: 321–9Google Scholar
Lee, E. and Ahn, S.Solidification progress and heat transfer analysis of gas atomized alloy droplets during spray forming, Acta Metall. Mater. 42 (1994) 9: 3231–43CrossRefGoogle Scholar
Lee, J., Yung, J. Y., Lee, E.-S., Park, W. J., Ahn, S. and Kim, N. J.Dispersion strengthened Cu alloys fabricated in-situ by spray forming, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 7–20Google Scholar
Lefebvre, A. H. Atomization and Sprays, Hemisphere, New York (1989)
Leschziner, M. A. and Rodi, W.Calculation of annular and twin parallel jets using various discretization schemes and turbulence-model variations, J. Fluids Engng. 103 (1981): 352–60CrossRefGoogle Scholar
Levi, C. G.The evolution of microcrystalline structures in supercooled metal powders, Metall. Trans. A 19A (1988): 699–708CrossRefGoogle Scholar
Levi, C. G. and Mehrabian, R.Heat flow during rapid solidification of undercooled metal droplets, Metall. Trans. A: Phys. Metall. Mater. Sci. 13A (1982): 221–34CrossRefGoogle Scholar
Levich, V. G. Physicochemical Hydrodynamics, Prentice Hall, NJ (1962)
Li, B., Liang, XO., Earthman, J. C. and Lavernia, E. J.Two dimensional modeling of momentum and thermal behaviour during spray atomization of γ-TiAl, Acta Mater. 44 (1996) 6: 2409–20CrossRefGoogle Scholar
Li, J. PhD thesis, University of Paris VI (1996)
Li, X.Mechanism of atomization of a liquid jet, Atomiz. & Sprays 5 (1995): 89–105CrossRefGoogle Scholar
Li, X. and Tankin, R. S.Droplet size distribution: a derivation of Nukyama–Tanasawa type distribution function, Combust. Sci. Technol. 56 (1987): 65Google Scholar
Liang, X., Earthman, J. C. and Lavernia, E. J.On the mechanism of grain formation during spray atomization and deposition, Acta Metall. Mater. 40 (1992) 11: 3003–16CrossRefGoogle Scholar
Liang, X. and Lavernia, E. J.Solidification and microstructure evolution during spray atomization and deposition of Ni3Al, Mater. Sci. Engng. A161 (1993): 221–35CrossRefGoogle Scholar
Liang, X. and Lavernia, E. J.Evolution of interaction domain microstructure during spray deposition, Metall. Mater. Trans. A 25A (1994): 2341–9CrossRefGoogle Scholar
Libera, M., Olsen, G. B. and Sande, J. B.Heterogeneous nucleation of solidification in atomized liquid metal droplets, Mater. Sci. Engng., A132 (1991): 107–18CrossRefGoogle Scholar
Liu, H. Berechnungsmodelle für die Geschwindigkeiten und die Abkühlung von Tropfen im Sprühkegel einer Stahl-Zerstäubungsanlage, Dissertation, Universität Bremen (1990)
Liu, H. Numerical modelling of gas atomization in spray forming process, Proc. 1997 TMS Annual Meeting, 9–13 February, Orlando, FL (1997)
Liu, H. Science and Engineering of Droplets: Fundamentals and Applications, William Andrew, Norwich, NA (2000a)
Liu, H. Spray forming, in: Yu, K. O. Modelling and Simulation for Casting and Solidification: Theory and Applications, Marcel Dekker Inc, NY (2000b)
Liu, H., Lavernia, E. J. and Rangel, R. H.Numerical simulation of substrate impact and freezing of droplets in plasma spray processes, J. Phys. D: Appl. Phys. 26 (1993): 1900–8CrossRefGoogle Scholar
Liu, H., Lavernia, E. J. and Rangel, R. H.Numerical investigation of micropore formation during substrate impact of molten droplets in plasma spray processes, Atomiz. & Sprays 4 (1994a): 369–84CrossRefGoogle Scholar
Liu, H., Rangel, R. H. and Lavernia, E. J.Modeling of reactive atomization and deposition processing of Ni3Al, Acta Metall. Mater. 42 (1994b) 10, 3277–89CrossRefGoogle Scholar
Löffler-Mang, M. Düsenströmung, Tropfenentstehung und Tropfenausbreitung bei rücklaufgeregelten Drall-Druckzerstäubern, Dissertation, Universität Karlsruhe (1992)
Love, E., Grisby, C. E., Lee, P. L. and Woodling, M. J. Experimental and Theoretical Studies of Axisymmetric Free Jets, NACA Technical Report R-6, Hanover, MD (1959)
Low, T. B. and List, R.Collision, coalescence and breakup of raindrops, J. Atmosph. Sci. 39 (1982): 1591–6182.0.CO;2>CrossRefGoogle Scholar
Lozano, A., Call, C. J. and Dopazo, C. An experimental and numerical study of the atomization of a planar liquid sheet, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS'94, July, Rouen (1994)
Lubanska, H.Correlation of spray ring data for gas atomization of liquid droplets, J. Metals 2 (1970): 45–9Google Scholar
Madejski, J.Solidification of droplets on a cold surface, Int. J. Heat Mass Transfer 19 (1976): 1009–18CrossRefGoogle Scholar
Madejski, J.Droplets on impact with a solid surface, Int. J. Heat Mass Transfer 26 (1983): 1095–8CrossRefGoogle Scholar
Majagi, S. I., Ranganathan, K., Lawley, A. and Apelian, D. Microstructural Design by Solidification Processing, TMS Conference Proceedings, Warrendale, PA (1992) 139 ff
Malin, M. R. On the Prediction of Radially Spreading Turbulent Jets, CHAM Technical Report TR 143, London (1987)
Malot, H. and Dumouchel, C. Volume-based spray drop size distribution: derivation of a generalized gamma distribution from the application of the maximum entropy formalism, CD-ROM Proc. ILASS-Europe'99, 5–7 July, Toulouse (1999)
Manson-Whitton, E. D., Stone, I. C., Jones, J. R., Grant, P. S. and Cantor, B.Isothermal grain coarsening of spray formed alloys in the semi-solid state, Acta Materialia 50 (2002): 2517–25CrossRefGoogle Scholar
Markus, S. and Fritsching, U. Spray forming with multiple atomization, Proc. Spray Deposition and Melt Atomization SDMA 2003, 22–25 June, Bremen (2003)
Markus, S., Fritsching, U. and Bauckhage, K.Jet break up of liquid metals, Proc. Spray Deposition and Melt Atomization SDMA 2000, 26–28 June, Bremen (2000) pp 497–510. Also: Mater. Sci. Engng. A326 (2002) 1: 122–33Google Scholar
Masuda, W. and Moriyama, E.Aerodynamic characteristics of coaxial impinging jets, JSME Int. J. Series B, 37 (1994) 4: 749–75CrossRefGoogle Scholar
Mathur, P., Annavarapu, S., Apelian, D. and Lawley, A.Process control, modeling and applications of spray casting, J. Metals 41 (1989b): 23–8Google Scholar
Mathur, P., Annavarapu, S., Apelian, D. and Lawley, A.Spray casting: an integral model for process understanding and control, Mater. Sci. Engng. A142 (1991): 261–70CrossRefGoogle Scholar
Mathur, P., Apelian, D. and Lawley, A.Analysis of the spray deposition process, Acta Metall. 37 (1989a) 2: 429–43CrossRefGoogle Scholar
Matteson, M. A., Madden, C. and Moran, A. L. An approach to modelling the spray-forming process with artificial neural networks, Proc. International Conference on Spray Forming, ICSF-2, 13–15 September, Swansea (1993)
Maxey, M. R. and Riley, J. J.Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids 26 (1983): 883–9CrossRefGoogle Scholar
Mayer, W. Zur koaxialen Flüssigkeitszerstäubung im Hinblick auf die Treibstoffaufbereitung in Raketentriebwerken, Dissertation, Universität Erlangen (1993)
Medwell, J. O.; Gethin, D. T. and Muhamad, N. Analysis of the Osprey preform deposition process, in Advances in Powder Matallurgy and Particulate Materials 1992, Vol. 1: Powder Production and Spray Forming, MPIF, Princeton, NJ, pp 249–71
Megaridis, C. M.Presolidification liquid metal droplet cooling under convective conditions, Atomiz. & Sprays 3 (1993) 2: 171–91CrossRefGoogle Scholar
Menchaca-Rocha, A., Huidobro, F., Martinez-Davalos, A., Michaelian, K., Perez, A., Rodriguez, V. and Carjan, N.Coalescence and fragmentation of colliding mercury drops, J. Fluid Mech. 346 (1997): 291–318CrossRefGoogle Scholar
Meyer, O., Fritsching, U. and Bauckhage, K.Numerical investigation of alternative process conditions for influencing the thermal history of spray deposited billets, Proc. Spray Deposition and Melt Atomization SDMA 2000, 26–28 June, Bremen (2000) pp 771–88Google Scholar
Meyer, O., Fritsching, U. and Bauckhage, K.Numerical investigation of alternative process conditions for influencing the thermal history of spray deposited billets, Int. J. Thermal Sci. 42 (2003): 153–68CrossRefGoogle Scholar
Meyer, O., Schneider, A., Uhlenwinkel, V. and Fritsching, U.Convective heat transfer from a billet due to an oblique impinging circular jet within the spray forming process, Int. J. Thermal Sci. 42 (2003) 6: S561–9CrossRefGoogle Scholar
Middleman, S. Modeling Axisymmetric Flows, Dynamics of Films, Jets, and Drops, Academic Press, San Diego, CA (1995)
Miles, J. W.On the generation of surface waves by shear flows, Part 1: J. Fluid Mech. 3 (1957): 185–204CrossRefGoogle Scholar
Miles, J. W.On the generation of surface waves by shear flows, Part 2: J. Fluid Mech. 6 (1958): 568–82CrossRefGoogle Scholar
Miles, J. W.On the generation of surface waves by shear flows, Part 3: J. Fluid Mech. 7 (1960): 469–478CrossRefGoogle Scholar
Miles, J. W.On the generation of surface waves by shear flows, Part 4: J. Fluid Mech. 13 (1961): 433–48CrossRefGoogle Scholar
Mingard, K. P., Alexander, P. W., Langride, S. J., Tomlinson, G. A. and Cantor, B.Direct measurement of sprayform temperatures and the effect of liquid fraction on microstructure, Acta Mater. 46 (1998) 10: 3511–21CrossRefGoogle Scholar
Mingard, K. P., Cantor, B., Palmer, I. G., Hughes, I. R., Alexander, P. W., Willis, T. W. and White, J.Macro-segregation in aluminium alloy spray formed billets, Acta Mater. 48 (2000): 2435–49CrossRefGoogle Scholar
Minisandram, R. S., Forbes Jones, R. M., Kelkar, K. M., Patankar, S. V. and Carter, W. T. Jr.Prediction of thermal history of preforms produced by the clean metal spray forming process, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 789–802. Also: Mater. Sci. Engng. A326 (2002) 1: 184–93Google Scholar
Moran, A. L. and White, D. R.Developing intelligent control for spray forming processes, J. Metals 42 (1990) 7: 21–4Google Scholar
Müller, F. G., Benz, M. G., Carter, W. T. Jr., Forbes, R. M. und Leatham, A.Neues Verfahren zur Herstellung von Pulver, Formteilen oder Halbzeugen aus Titan oder keramikfreien Superlegierungen;Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 169–88Google Scholar
Müller, H. R.Eigenschaften und Einsatzpotential sprühkompaktierter Kupferlegierungen, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 33–56Google Scholar
Mullis, A. M. and Cochrane, R. F.Grain refinement and the stability of dendrites growing into undercooled pure metals and alloys, J. Appl. Phys. 82 (1997): 3783–90CrossRefGoogle Scholar
Mundo, C. Zur Sekundärzerstäubung newtonscher Fluide an Oberflächen, Dissertation, Universität Erlangen (1996)
Mundo, C., Sommerfeld, M. and Tropea, C.Droplet–wall collisions: experimental studies of the deformation and breakup process, Int. J. Multiphase Flow 21 (1995): 151–73CrossRefGoogle Scholar
Muoio, N. G., Crowe, C. T., Bergmann, D. and Fritsching, U. Numerical simulation of the turbulent gas-droplet field in spray forming, 3rd International Symposium on Engineering Turbulence Modelling and Measurements, 27–29 May, Kreta (1996)
Muoio, N. G., Crowe, C. T., Bergmann, D. and Fritsching, U. Numerical simulation of spray temperature in spray forming process by ceramic powder injection, ASME IMECE Multiphase Flow and Heat Transfer in Materials Processing, 17–22 November, Atlanta, GA (1996)
Muoio, N. G., Crowe, C. T., Fritsching, U. and Bergmann, D.Modelling metal droplet sprays in spray forming, ASME Fluids Engng Division 223 (1995): 111–15Google Scholar
Muoio, N., Crowe, C. T., Fritsching, U. and Bergmann, D. Effect of thermal coupling on numerical simulations of the spray forming process, Proc. 2nd International Symposium on Numerical Methods for Multiphase Flows, 7–11 July, San Diego, CA (1996)
Nasr, G. G., Yule, A. J. and Bendig, L. Industrial Sprays and Atomization: Design, Analysis and Applications, Springer-Verlag, Heidelberg (2002)
Nichiporenko, O. S. and Naida, Y. I.Soviet Powder Metallurgy Metal Ceramics 67 (1968): 509CrossRef
Nichols, B. D., Hirt, C. W. and Hotchkiss, R. S. SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries, Report LA-8355, Los Alamos Scientific Laboratory, NM (1980)
Nigmatulin, R. I. Dynamics of Multiphase Media, Vols. 1 and 2, Hemisphere, Washington, DC (1990, 1991)
Nobari, M. R. H. and Tryggvason, G.Numerical simulations of three-dimensional drop collisions, AIAA Journal 34 (1996): 750–5CrossRefGoogle Scholar
Nobari, M. R. H., Jan, Y.-J. and Tryggvason, G.Head-on collision of drops – a numerical investigation, Phys. Fluids 8 (1996): 29–42CrossRefGoogle Scholar
Norman, A. F., Eckler, K., Zambon, A., Gartner, F., Moir, S. A., Ramous, E., Herlach, D. M. and Greer, A. L.Application of microstructure-selection maps to droplet solidification: a case study of the Ni–Cu system, Acta Mater. 46 (1998) 10: 3355–70CrossRefGoogle Scholar
Nunez, L. A., Lobel, T. and Palma, R.Atomizers for molten metals: macroscopic phenomena and engineering aspects, Atomiz. & Sprays 9 (1999) 6: 581–600CrossRefGoogle Scholar
Obermeier, F. (ed.) 7. Workshop über Techniken der Fluidzerstäubung und Untersuchungen von Sprühvorgängen, Spray 2002, Freiberger Forschungshefte A 870 Verfahrenstechnik, TU-Bergakademie, Freiberg (2002)
Oertel, H. und Laurien, E. Numerische Strömungsmechanik, 2. Aufl. Vieweg Braunschweig (2003)
Ojha, S. N., Jha, J. N. and Singh, S. N.Microstructural modification in Al–Si eutectic alloy produced by spray deposition, Scripta Metall. Mater. 25 (1991): 443–7CrossRefGoogle Scholar
Ojha, S. N., Tripathi, A. K. and Singh, S. N.Spray atomization and deposition of an Al–4Cu–20Pb alloy, Powder Metall. Int. 25 (1993) 2: 65–9Google Scholar
Orme, M.A novel technique of rapid solidification net-form materials synthesis, J. Mater. Engng. Perform. 2 (1993) 3: 399–405CrossRefGoogle Scholar
Orme, M. and Huang, C.Phase change manipulation for droplet-based solid freeform fabrication, J. Heat Transfer 119 (1997): 818–23CrossRefGoogle Scholar
Orme, M., Liu, Q. and Fischer, J. Mono-disperse aluminium droplet generation and deposition for net-form manufacturing of structural components, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS 2000, 16–20 July, Passadena, CA (2000)
O'Rourke, P. J. Collective drop effects on vaporizing liquid sprays, PhD thesis, Los Alamos National Laboratory, NM (1981)
O'Rourke, P. J. and Amsden, A. A. The TAB Method for Numerical Calculation of Spray Droplet Breakup, Report LA-UR-87–2105, Los Alamos National Laboratory, NM (1987)
Ottosen, P. Numerical simulation of spray forming, PhD thesis, Technical University of Denmark, TM.93.27 (1993)
Ozols, A. and Sancho, E.Solidification rates in centrifugal atomisation, Proc. 1998 PM World Congress, Vol. 1, 18–22 October, Grenada (1998) pp 179–84Google Scholar
Panchagnula, M. V., Sojky, P. E. and Bajaj, A. K. The non-linear breakup of annular liquid sheets, in: Yule, A. J. (ed.) Proc. ILASS-Europe'98, 6–8 July, Manchester, (1998) pp 36–41
Pasandideh-Fard, M., Bhola, R., Chandra, S. and Mostaghimi, J.Deposition of tin droplets on a steel plate: simulations and experiments, Int. J. Heat Mass Transfer 41 (1998): 2929–45CrossRefGoogle Scholar
Pasandideh-Fard, M., Mostaghimi, J. and Chandra, S. Modeling sequential impact of two molten droplets on a solid surface, Proc. ILASS-America, Indianapolis, IN (1999)
Pasandideh-Fard, M., Qiao, Y. M., Chandra, S. and Mostaghimi, J.Capillary effects during droplet impact on a solid surface, Phys. Fluids 8 (1996): 650–9CrossRefGoogle Scholar
Passow, C. H., Chun, J. H. and Ando, T.Spray deposition of a Sn–40 wt.% Pb alloy with uniform droplets, Metall. Trans. A 24A (1993): 1187–93CrossRefGoogle Scholar
Patankar, S. V. Numerical Heat Transfer and Fluid Flow, McGraw-Hill, Columbus, OH (1981)
Payne, R. D., Matteson, M. A. and Moran, A. L.Application of neural networks in spray forming technology, Int. J. Powder Metall. 29 (1993) 4: 345–51Google Scholar
Payne, R. D., Rebis, A. L. and Moran, A. L.Spray forming quality predictions via neural networks, J. Mat. Engng. and Perf. 2 (1996) 5: 693–702CrossRefGoogle Scholar
Pedersen, T. P., Hattel, J. H., Proyds, N. H., Pedersen, A. S., Buchholz, M. and Uhlenwinkel, V.A new integrated numerical model for spray atomization and deposition: comparison between numerical results and experiments, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 813–24Google Scholar
Pedersen, T. B. Spray forming – a new integrated numerical model, PhD thesis, Technical University of Denmark (2003)
Petersen, K., Pedersen, A. S., Pryds, N., Thorsen, K. A. and List, J. L.The effect of particles in different sizes on the mechanical properties of spray formed steel composites, Mater. Sci. Engng. A326 (2002) 1: 40–50CrossRefGoogle Scholar
Pien, S. J., Luo, J., Baker, F. W. and Chyu, M. K.Numerical simulation of a complex spray forming process, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 161–8Google Scholar
Pilch, M. and Erdmann, C. A.Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop, Int. J. Multiphase Flow 13 (1987): 741–57CrossRefGoogle Scholar
Poulikakos, D. and Waldvogel, J. M.Heat transfer and fluid dynamics in the process of spray deposition, Adv. Heat Transfer 28 (1996): 1–74CrossRefGoogle Scholar
Prakash, C. and Voller, V.On the numerical solution of continuum mixture model equations describing binary solid–liquid phase change, Numer. Heat Transfer B 15 (1989): 171–89CrossRefGoogle Scholar
Prud'homme, R. and Ordonneau, G. The maximum entropy method applied to liquid jet atomization, CD-ROM Proc. ILASS-Europe'99, 5–7 July, Toulouse (1999)
Pryds, N. H. and Hattel, J. H.Numerical modelling of rapid solidification, Modelling Simul. Mater. Sci. Engng. 5 (1997): 451–72CrossRefGoogle Scholar
Pryds, N., Hattel, J. H., Pedersen, T. B. and Thorborg, J.An integrated numerical model of the spray forming process, Acta Mater. 50 (2002): 4075–91CrossRefGoogle Scholar
Pryds, N., Hattel, J. H. and Thorborg, J.A quasi-stationary numerical model of atomized metal droplets, II: prediction and assessment, Modelling Simul. Mater. Sci. Engng. 7 (1999): 431–46CrossRefGoogle Scholar
Quested, P. N., Brooks, R. F., Day, A. P., Richardson, M. J. and Mills, K. C. The physical properties of alloys relevant to spray forming, in: Wood, J. V. (ed.) Proc. 3rd International Conference on Spray Forming, 1996, Cardiff, Osprey Metals Ltd, Neath (1997)
Qian, J. and Law, C. K.Regimes of coalescence and separation in droplet collision, J. Fluid Mech. 331 (1997): 59–80CrossRefGoogle Scholar
Rai, G., Lavernia, E. J. and Grant, N. J.Factors influencing the powder size and distribution in ultrasonic gas atomization, J. Metals 37 (1985) 8: 22–6Google Scholar
Rampant Release 4.0.14, Copyright 1996 Fluent Inc. Hanover, NH
Rangel, R. H. and Sirignano, W. A.The linear and nonlinear shear stability of a fluid sheet, Phys. Fluids A3 (1991) 10: 2392–400CrossRefGoogle Scholar
Ranz, W. E. and Marshall, W. R.Evaporation from drops – I and II, Chem. Eng. Prog. 48 (1952): 141 and 173Google Scholar
Rao, K. P. and Mehrotra, S. P. in: Hausner, H. et al. (eds.) Modern Developments in Powder Metallurgy, Vol. 12, Metal Powder Industries Federation, Princeton, NJ (1980) pp 113–30
Rau, S. Überprüfung der Eignung von CFD-Simulationsrechnungen zur Ermittlung von Wärmeübergangskoeffizienten auf einer Bolzenoberfläche in einer einphasigen Freistrahlströmung, Studienarbeit thesis, University Bremen (2002)
Rayleigh, Lord, On the stability of jets, Proc. London Math. Soc. 10 (1878): 4–13CrossRefGoogle Scholar
Rebis, R., Madden, C., Zappia, T. and Cai, C. Computer aided process planning and simulation for the Osprey spray forming process, in: Wood, J. V. (ed.) Proc. 3rd International Conference on Spray Forming, 1996, Cardiff, Osprey Metals Ltd, Neath (1997)
Reeks, M. W. and McKee, S. The dispersive effect of Basset history forces on particle motion in a turbulent flow, Phys. Fluids27 (1984) 7: 1573 ff
Reich, W. and Rathjen, K. D. Numerische Simulation des Tropfenpralls auf feste, ebene Flächen, Studienarbeit Fachgebiet Verfahrenstechnik der Universität Bremen (1990)
Reichelt, W.Stand der industriellen Anwendung des Sprühkompaktierens, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 189–98Google Scholar
Reichelt, L., Pawlowski, A. and Renz, U. Numerische Untersuchungen zum aerodynamischen Tropfenzerfall mit der Volume-of-Fluid (VOF)-Methode, Freiberger Forschungshefte A 870 Verfahrenstechnik, TU-Bergakademie, Freiberg (2002) pp 133–42
Rein, M.Phenomena of liquid drop impact on solid and liquid surfaces, Fluid Dynamics Research 12 (1993): 61–93CrossRefGoogle Scholar
Rein, M.The transitional regime between coalescing and splashing drops, J. Fluid Mech. 306 (1996): 145–65CrossRefGoogle Scholar
Rein, M.Spray deposition: the importance of droplet impact phenomena, Kolloquium des SFB 372, Vol. 3, Universität Bremen (1998) pp 115–38Google Scholar
Reitz, R. D. Mechanisms of breakup of round liquid jets, PhD thesis, Princeton University, NJ (1978)
Reitz, R. D. and Bracco, F. V.Mechanism of atomization of a liquid jet, Phys. Fluids 25 (1982) 10: 1730–42CrossRefGoogle Scholar
Reitz, R. D. and Diwarkar, R. Structure of high pressure fuel sprays, The Engineering Society for Advancing Mobility, Land, Sea, Air, and Space, Warrendale, PA, Paper 870598 (1987)
Ridder, S. D. and Biancaniello, F. S.Process control during high pressure atomization, Mater. Sci. Engng. 98 (1988): 47–51CrossRefGoogle Scholar
Ridder, S. D., Osella, S. A., Espina, P. I. and Biancaniello, F. S.Intelligent control of particle size distribution during gas atomization, Int. J. Powder Metall. 28 (1992) 2: 133–8Google Scholar
Rieber, M. and Frohn, A. Numerical simulation of splashing drops, Proc. ILASS'98, 6–8 July, Manchester (1998)
Rioboo, R., Marengo, M. and Tropea, C.Time evolution of liquid drop impact onto solid, dry surfaces, Exp. Fluids 33 (2002): 112–24CrossRefGoogle Scholar
Roach, S. J., Henein, H. and Owens, D. C.A new technique to measure dynamically the surface tension, viscosity and density of molten metals, Light Metals 4 (2001): 1285–91Google Scholar
Roe, P. L.Characteristic based schemes for the Euler equations, Ann. Rev. Fluid Mech. 18 (1986): 337–86CrossRefGoogle Scholar
Roisman, I. V., Rioboo, R. and Tropea, C. Model for single drop impact on dry surfaces, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS 2000, Pasadena, CA (2000)
Roisman, I. V. and Tropea, C.Impact of a drop onto a wetted wall: description of crown formation and propagation, J. Fluid Mech 472 (2002): 373–97CrossRefGoogle Scholar
Rosten, H. I. and Spalding, D. B. The PHOENICS reference manual, CHAM Technical Report TR/200, London (1987)
Rückert, F. und Stöcker, P.Die neue Alunimium-Silizium-Zylinderlaufbahn-Technologie für Kurbelgehäuse aus Aluminiumdruckguß, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 45–60Google Scholar
Rüger, M., Hohmann, S., Sommerfeld, M. and Kohnen, G.Euler/Lagrange calculations of turbulent spray: the effect of droplet collisions and coalescence, Atomiz. & Sprays 10 (2000) 1: 47–82CrossRefGoogle Scholar
Rumberg, O. and Rogg, B. Spray modelling via a joint-PDF formulation for two-phase flow, CD-ROM Proc. ILASS-Europe'99, 5–7 July, Toulouse (1999)
Sadhal, S. S., Ayyaswamy, P. S. and Chung, J. N. Transport Phenomena with Drops and Bubbles, Mechanical Engineering Series, Springer Verlag, New York (1997)
Samenfink, W., Elsäßer, A. and Dullenkopf, K.Secondary breakup of liquid droplets: experimental investigation for a numerical description, Proc. Sixth International Conference on Liquid Atomization and Spray Systems ICLASS'94, 18–22 July, Palais des Congrès, Rouen (1994) pp 156–63Google Scholar
Sanmarchi, C., Liu, H., Lavernia, E. J., Rangel, R. H., Sickinger, A.and Mühlberger, E., Numerical analysis of the deformation and solidification of a single droplet impinging on a flat surface, J. Mater. Sci. 28 (1993): 3313–21Google Scholar
Sarkar, S. and Balakrishnan, L. Application of a Reynolds-stress turbulence model to the compressible shear layer, ICASE Report 90–18, NASA CR 182002 (1990)
Scardovelli, R. and Zaleski, S.Direct numerical simulation of free-surface and interfacial flow, Ann. Rev. Fluid Mech. 31 (1999): 567–603CrossRefGoogle Scholar
Schatz, A. Prozeßsimulation für die Herstellung von Metallschmelzen durch die Gas- und Wasserzerstäubung, lecture skript held at IWT Bremen, 29 September (1994)
Schelkle, M., Rieber, M., and Frohn, A.Comparison of lattice Boltzmann and Navier–Stokes simulations of three-dimensional free surface flows, Fluids Engng Division 236 (1996) Fluids Engng. Div. Conf. Vol. 1 ASME 1996: 207–212Google Scholar
Scheller, B. L. and Bousfield, D. W.Newtonian drop impact with a solid surface, AIChE Journal 41 (1995) 6: 1357–67CrossRefGoogle Scholar
Schmaltz, K. and Amon, C.Experimental verification of an impinging molten metal droplet numerical simulation, Proc. ASME Heat Transfer Div. 317 (1995): 219–26Google Scholar
Schmehl, R. CFD analysis of fuel atomization, secondary droplet breakup and spray dispersion in the premix duct of a LPP combustor, 8. International Conference on Liquid Atomization and Spray Systems ICLASS, July Passadena, CA, (2000)
Schneider, A., Meyer, O., Tillwick, F., Uhlenwinkel, V.und Fritsching, U. Konvektiver Wärmeübergang an einem schräg angeströmten Bolzen in einer turbulenten Düsenströmung, Kolloquium des SFB 372, Vol. 5, Universität Bremen (2001) pp 155–78Google Scholar
Schneider, A.Uhlenwinkel, V. und Bauckhage, K.Zum Ausfließen von Metallschmelzen, Kolloquium des SFB 372, Vol. 5, Universität Bremen (2001) pp 69–96Google Scholar
Schneider, S. and Walzel, P. Zerfall von Flüssigkeiten bei Dehnung im Schwerefeld, in: Walzel, P. and Schmidt, D. (eds.) Proc. SPRAY'98, 13–14 October, Essen (1998)
Schönung, B. E. Numerische Strömungsmechanik, Springer Verlag, Berlin 1990
Schröder, R. und Kienzler, R.Kontinuumsmechanische Untersuchungen an sprühkompaktierten Deposits, Härt.-Tech.-Mitteilung 3 (1998a): 172–8Google Scholar
Schröder, R. und Kienzler, R.Numerische Untersuchungen an sprühkompaktierten bolzenförmigen Deposits, Kolloquium des SFB 372, Vol. 3, Universität Bremen (1998b) pp 93–114Google Scholar
Schröder, T. Tropfenbildung an Gerinneströmungen im Schwere- und Zentrifugalfeld, Fortschr. Ber. VDI Reihe 3: Verfahrenstechnik, No. 503, VDI-Verlag, Düsseldorf (1997)
Schulz, G. Economic production of fine, prealloyed MIM powders by the NANOVAL gas atomization process, Adv. Powder Metall. & Part. Materials – 1996, Metal Powder Industries Federation, Princeton, NJ (1996) pp 1–35 – 1–41
Sellens, R. W. and Brzustowski, T. A.A prediction of the drop size distribution in a spray from first principles, Atomiz. & Spray Technol. I (1985): 85Google Scholar
Sellens, R. W.Prediction of the drop size and velocity distribution in a spray based on the maximum entropy formalism, Part. Part. Syst. Charact. 6 (1989): 17CrossRefGoogle Scholar
Seok, H. K., Lee, H. C., Oh, K. H., Lee, J.-C., Lee, H. I. and Ra, H. Y.Formulation of rod forming models and their application to spray forming, Metall. Mater. Trans. A 31A (2000): 1479–88CrossRefGoogle Scholar
Seok, H. K., Yeo, D. H., Oh, K. H., Lee, J.-C., Lee, H.-I. and Ra, H. Y.A three-dimensional model of the spray forming method, Metall. Mater. Trans. A 29 (1998): 699–708CrossRefGoogle Scholar
Seok, H. K., Yeo, D. H., Oh, K. H., Ra, H. Y. and Shin, D. S. 3-dimensional forming model of rod in spray forming method, in: Wood, J. V. (ed.) Proc. 3rd International Conference on Spray Forming, 1996, Cardiff, Osprey Metals Ltd, Neath (1997)
Shan, X. and Chen, H.Simulation of non-ideal gases and liquid–gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E 49 (1994): 2941–8CrossRefGoogle Scholar
Shannon, C. E. and Weaver, W. The Mathematical Theory of Communication, University of Illinois Press, Urbana, IL (1949)
Shokoohi, F. and Elrod, H. G.Numerical investigation of the disintegration of liquid jets, J. Comput. Phys. 71 (1987): 324–42CrossRefGoogle Scholar
Shukla, P., Mandal, R. K. and Ojha, S. N.Non-equilibrium solidification of undercooled droplets during atomization process, Bull. Mater. Sci. 24 (2001) 5: 547–54CrossRefGoogle Scholar
Shukla, P., Mishra, N. S. and Ojha, S. N.Modeling of heat flow and solidification during atomization and spray deposition processing, J. Thermal Spray Technol. 12 (2003) 1: 95–100CrossRefGoogle Scholar
Singer, A. R. E.The principle of spray rolling of metals, Metal Mater. 4 (1970): 246–50Google Scholar
Singer, A. R. E. British Patent No. 1, 262, 471 (1972a)
Singer, A. R. E.Aluminium and aluminium-alloy strip produced by spray deposition and rolling, J. Inst. Metals 100 (1972b): 185–90Google Scholar
Singer, A. R. E.Recent developments and opportunities in spray forming, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 123–40Google Scholar
Singh, R. P., Lawley, A., Friedman, S. and Nurty, Y. V.Microstructure and properties of spray cast Cu–Zr alloys, Mater. Sci. Engng. A145 (1991): 243–55CrossRefGoogle Scholar
Sirignano, W. A. Fluid Dynamics and Transport of Droplets and Sprays, Cambridge University Press, New York (1999)
Sizov, A. M. Dispersion of Melts by Supersonic Gas Jets, Metallurgija, Verlag Moskau (1991)
Smith, M. F., Neiser, R. A. and Dykhuizen, R. C. NTSC'94, Proc. 7th National Thermal Spray Conference, 12–15 June, American Society of Metals, Boston, MA (1994)
Sommerfeld, M. Modellierung und numerische Berechnung von partikelbeladenen turbulenten Strömungen mit Hilfe des Euler/Lagrange Verfahrens, Verlag Shaker, Aachen (1996)
Song, J. L., Dowson, A., Jacobs, M. H., Brooks, J. K. and Beden, I.FE simulation of the ring rolling process and the implications of prior processing by low pressure centrifugal spray deposition, Adv. Technol. Plasticity 12 (1999): 2419–24Google Scholar
Spalding, D. B. The calculation of free-convection phenomena in gas–liquid mixtures, ICHMT Seminar, Dubrovnik (1976)
Spalding, D. B. Combustion and Mass Transfer, 1st Edn., Pergamon Press, Oxford (1979)
Spiegelhauer, C., Shaw, L., Overgaard, J. und Oaks, G.Horizontale Sprühkompaktierung von großen Bolzen aus Fe-Legierung, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 57–62Google Scholar
Spiegelhauer, C.Properties of spray formed highly alloyed tool steels, Kolloquium des SFB 372, Vol. 3, Universität Bremen (1998) pp 1–8Google Scholar
Spiegelhauer, C.State of the art for making tool steel billets by spray forming, Kolloquium des SFB 372, Vol. 5, Universität Bremen (2001) pp 63–8Google Scholar
Srivastava, V. C., Mandal, R. K. and Ojha, S. N.Monte Carlo simulation of droplet mass flux during gas atomization and deposition, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 855–868Google Scholar
STAR-CD, User Guide, Computational Dynamics Ltd (1999)
Sterling, A. M. and Schleicher, C. A.The instability of capillary jets, J. Fluid Mech. 68 (1975): 477–95CrossRefGoogle Scholar
Sterling, T. L., Salmon, J., Becker, D. J. and Savarese, D. F. How to Build a Beowulf, A Guide to the Implementation and Application of PC Clusters, MIT Press, Cambridge, MA (1999)
Su, Y. H. and Tsao, C. Y. A.Modeling of solidification of molten metal droplets during atomization, Metall. Mater. Trans. 28B (1997): 1249–55CrossRefGoogle Scholar
Taylor, G. I. Generation of Ripples by Wind Blowing over a Viscous Liquid, Collected Works of G. I. Taylor, Vol. 3 (1940)
The Aluminum Association, Aluminum Industry Technology Roadmap, The Aluminum Association, Washington, DC (1997)
Tillwick, F. Ermittlung von Wärmeübergangskoeffizienten an der Bolzenoberfläche in einer einphasigen Freistrahlströmung, Studienarbeit, Universität Bremen (2000)
Ting, J., Peretti, M. W. and Eisen, W. B.The effect of deep aspiration on gas-atomized powder yield, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 483–96, Also: Mater. Sci. Engng. A326 (2002) 1: 110–21Google Scholar
Tinscher, R., Bomas, H. und Mayr, P.Untersuchungen zum Sprühkompaktieren des Stahls 100Cr6, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 77–104Google Scholar
Torrey, M. D., Cloutman, L. D., Mjolsness, R. C. and Hirt, C. W. NASA-VOF2D: A Computer Program for Incompressible Flows with Free Surfaces, Report LA-10612-MS, Los Alamos Scientific, NM (1985)
Torrey, M. D., Mjolsness, R. C. and Stein, L. R. NASA-VOF3D: A Three-Dimensional Computer Program for Incompressible Flows with Free Surfaces, Report LA-11009-MS Los Alamos Scientific Laboratory, NM (1987)
Trapaga, G., Matthys, E. F., Valencia, J. J. and Szekely, J.Fluid flow, heat transfer and solidification of molten metal droplets impinging on substrates – comparison of numerical and experimental results, Metall. Trans. B Process Metall. 23B (1992): 701–18CrossRefGoogle Scholar
Trapaga, G. and Szekely, J.Mathematical modeling of the isothermal impingement of liquid droplets in spray forming, Metall. Trans. B 22 (1991): 901–10CrossRefGoogle Scholar
Truckenbrodt, E. Fluidmechanik, Vol. 1: Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluide, Springer-Verlag, Berlin u.a., 3. Aufl. (1989)
Truckenbrodt, E. Fluidmechanik, Vol. 2: Elementare Strömungsvorgänge dichteveränderlicher Fluide sowie Potential- und Grenzschichtströmungen, Springer-Verlag, Berlin u.a. (1980)
Tsao, C.-Y. A. and Grant, N. J.Modeling of the liquid dynamic compaction spray process, Int. J. Powder Metall. 30 (1994) 3: 323–33Google Scholar
Tsao, C.-Y. A. and Grant, N. J.Microstructure and recrystallization behaviour of in-situ alloyed and microalloyed spray-formed SAE 1008 steel, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 61–76Google Scholar
Turnbull, D.Formation of crystal nuclei in liquid metals, J. Appl. Phys. 21 (1950): 1022–8CrossRefGoogle Scholar
Uhlenwinkel, V. Zum Ausbreitungsverhalten der Partikeln bei der Sprühkompaktierung von Metallen, Dissertation, Universität Bremen (1992)
Uhlenwinkel, V., Fritsching, U. and Bauckhage, K. The influence of spray parameters on local mass fluxes and deposit growth rates during spray compaction process, Proc. 5th International Conference on Liquid Atomization and Spray Systems, ICLASS-91, Gaithersburg, MD, NIST SP813 (1991) pp 483–90
Uhlenwinkel, V., Fritsching, U., Bauckhage, K. und Urlau, U.Strömungsuntersuchungen im Düsennahbereich einer Zweistoffdüse – Modelluntersuchungen für die Zerstäubung von Me-tallschmelzen, Chem.-Ing. Tech. 62 (1990) 3: 228–9, Synopse 1840CrossRefGoogle Scholar
Ünal, A.Effect of processing variables on particle size in gas atomization of rapidly solidified aluminium powders, Mater. Sci. Technol. 3 (1987): 1029–39CrossRefGoogle Scholar
Ünal, A.Flow separation and liquid rundown in a gas-atomization process, Metall. Trans. 20B (1989): 613–22CrossRefGoogle Scholar
Underhill, R. P., Grant, P. S., Bryant, D. J. and Cantor, B.Grain growth in spray-formed Ni superalloys, J. Mater. Synthesis Processing 3 (1995) 3: 171–9Google Scholar
Sande, E. and Smith, J. M.Jet breakup and air entrainment by low-velocity turbulent jets, Chem. Engng. Sci. 31 (1973) 3: 219–24CrossRefGoogle Scholar
Vardelle, A., Themelis, N. J., Dussoubs, B., Vardelle, M. and Fauchais, P.Transport and chemical rate phenomena in plasma sprays, High Temp. Chem. Process 1 (1997) 3: 295–313CrossRefGoogle Scholar
Venekateswaren, S., Weiss, J. M. and Merkle, C. L. Propulsion Related Flowfields Using Preconditioned Navier–Stokes Equations, Technical Report AAIA-92–3437, American Institute of Aeronautics and Astronautics, Reston, VA (1992)
Voller, V. R., Swaminathan, C. R. and Thomas, B. G.Fixed grid techniques for phase change problems: a review, Int. J. Num. Methods Engng. 30 (1990): 875–98CrossRefGoogle Scholar
Voller, V. R., Swaminathan, C. R. and Thomas, B. G.General source-based methods for solidification phase change, Num. Heat Transfer, Part B 19 (1991): 175–89CrossRefGoogle Scholar
Waldvogel, J. M. and Poulikakos, D.Solidification phenomena in picoliter size solder droplet deposition on a composite substrate, Int. J. Heat Mass Transfer 40 (1997): 295–309CrossRefGoogle Scholar
Walzel, P.Zerteilgrenze beim Tropfenaufprall, Chem.-Ing.-Tech. 52 (1980): 338–9CrossRefGoogle Scholar
Wang, G. X. and Matthys, E. F.Modelling of heat transfer and solidification during splat cooling: effect of splat thickness and splat/substrate thermal contact, Int. J. Rapid Solidification 6 (1991): 141–74Google Scholar
Wang, G. X. and Matthys, E. F.Numerical modelling of phase change and heat transfer during rapid solidification processes: use of control volume integral with element subdivision, Int. J. Heat Mass Transfer 35 (1992): 141–53CrossRefGoogle Scholar
Weber, C.Zum Zerfall eines Flüssigkeitsstrahles, Z. Angew. Math. Mech. 11 (1931): 138–45CrossRefGoogle Scholar
Weiss, J. M. and Smith, W. A.Preconditioning applied to variable and constant density flows, AIAA Journal 33 (1995): 2050–57CrossRefGoogle Scholar
Weiss, D. A. and Yarin, A. L.Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation, J. Fluid Mech. 385 (1999): 229–54CrossRefGoogle Scholar
Welch, J. E., Harlow, F. H., Shannon, J. P. and Daly, B. J. The MAC-Method: A Computing Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems Involving Free Surfaces, Report LA-3425, Los Alamos Scientific Laboratory, NM (1966)
Winnikow, S. and Chao, B. T.Droplet motion in purified systems, Phys. Fluids 9 (1965) 1: 50–61CrossRefGoogle Scholar
Wood, J. V. (ed.) Proc. 2nd International Conference on Spray Forming, Swansea, 1993, Woodhead, Cambridge (1993)
Wood, J. V. (ed.) Proc. 3rd International Conference on Spray Forming, Cardiff, 1996, Osprey Metals Ltd, Neath (1997)
Wood, J. V. (ed.) Proc. 4th International Conference on Spray Forming, Baltimore, MD 1999, Osprey Metals Ltd and Welsh Development Agency, Neath (1999)
Woodruff, D. P. The Solid–Liquid Interface, Cambridge University Press (1973)
Wu, Y., Zhang, J. and Lavernia, E. J.Modeling of the incorporation of ceramic particulates in metallic droplets during spray atomization and coinjection, Metall. Mater. Trans. B 25 (1994): 135–47CrossRefGoogle Scholar
Wünnenberg, K.Sprühkompaktieren von Stahl: Verfahrenstechnik und Produkteigenschaften, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 1–32Google Scholar
Xu, Q. and Lavernia, E. J. Numerical calculations of heat transfer and nucleation in the initially deposited material during spray atomization and deposition, Proc. 4th International Conference on Spray Forming ICSF, 13–15 September, Baltimore, MD (1999)
Xu, Q. and Lavernia, E. J.Fundamentals of the spray forming process, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 17–36Google Scholar
Yakhot, V. and Orszag, S. A.Renormalization group analysis of turbulence, I. basic theory, J. Sci. Comput. 1 (1986): 3–51CrossRefGoogle Scholar
Yang, B., Wang, F., Cui, H., Duan, B. Q. and Zhang, J. S.Research and development of spray deposited material in China, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 53–60Google Scholar
Yarin, A. L. and Weiss, D. A.Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity, J. Fluid Mech. 283 (1995): 141–73CrossRefGoogle Scholar
Yearling, P. R. and Gould, R. D.Convective heat and mass transfer from single evaporating water, methanol and ethanol droplets, ASME Fluids Engng Division 223 (1995): 33–8Google Scholar
Yule, A. J. and Dunkley, J. J. Atomization of Melts, Clarendon Press, Oxford (1994)
Zaleski, S. and Li, J. Direct simulation of spray formation, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS'97, Seoul, August (1997) pp 812–19
Zaleski, S., Li, J., Succi, S., Scardovelli, R. and Zanetti, G. Direct numerical simulation of flows with interfaces, Proc. 2nd International Conference on Multiphase Flow, April, Kyoto (1995)
Zeng, X. and Lavernia, E. J.Interfacial behaviour during spray atomization and co-deposition, Int. J. Rapid Solidification 7 (1992): 219–43Google Scholar
Zhang, H. Temperaturverteilung im aufwachsenden Deposit und im Substrat sowie Verläufe des Erstarrungsgrades im Deposit bei der Sprühkompaktierung von Metallen, Dissertation, Universität Bremen (1994)
Zhang, J., Wu, Y. and Lavernia, E. J.Kinetics of ceramic particulate penetration into spray atomized metallic droplets at variable penetration depth, Acta Metall. Mater. 42 (1994): 2955–72CrossRefGoogle Scholar
Zhao, Y. Y., Dowson, A. L. and Jacobs, M. H.Modelling of liquid flow after a hydraulic jump on a rotating disc prior to centrifugal atomization, Modelling Simul. Mater. Sci. Eng. 8 (2000) 1: 55–65CrossRefGoogle Scholar
Zhao, Y. Y., Dowson, A. L., Johnson, T. P., Young, J. M. and Jacobs, M. H. Prediction of liquid metal velocities on a rotating disk in spray forming by centrifugal spray deposition, Adv. Powder Metall. & Part. Materials – 1996, Metal Powder Industries Federation, Princeton, NJ (1996a) pp 9–79 – 9–89
Zhao, Z., Poulikakos, D. and Fukai, J.Heat transfer and fluid dynamics during the collision of a liquid droplet on substrate – I. modeling, Int. J. Heat Mass Transfer 39 (1996b): 2771–89CrossRefGoogle Scholar
Zhou, Z.-W. and Tang, X.-D. The effect of the pulsation in gas flow on the stability of molten metal jet, Proc. 4th International Conference on Spray Forming ICSF, Baltimore, MD (1999)
Aamir, M. A. and Watkins, A. P. Dense propane spray analysis with a modified collision model, CD-ROM, Proc. ILASS-Europe'99, 5–7 July Toulouse (1999)
Abbott, C. E.A survey of water drop interaction experiments, Rev. Geophys. Space Phys. 15 (1977): 363–74CrossRefGoogle Scholar
Ahmadi, M. and Sellens, R. W.A simplified maximum-entropy-based drop size distribution, Atomiz. & Sprays 3 (1993): 292–310CrossRefGoogle Scholar
Ahrens, O. Numerische Simulation des transsonischen Strömungsfeldes von unterexpandierten Freistrahlen, Studienarbeit, Fachgebiet Verfahrenstechnik, Universität Bremen (1995)
Albrecht, A., Bedat, B., Poinsot, T. J. and Simonin, O. Direct numerical simulation and modeling of evaporating droplets in homogeneous turbulence: application to turbulent flames, CD-ROM, Proc. ILASS-Europe'99, 5–7 July, Toulouse (1999)
Amsden, A. A., O'Rourke, P. J. and Butler, T. D. KIVA-I: A Computer Program for Chemically Reactive Flows with Sprays, Report LA-11560-MS, Los Alamos National Laboratory, LNM (1989)
Andersen, O. Berechnung des Temperaturverlaufs einer stationären Schmelzeströmung durch ein dünnes Rohr mit Kreisquerschnitt unter gleichzeitiger Berücksichtigung von Strahlung und Konvektion, Diplomarbeit, Fachgebiet Verfahrenstechnik, Universität Bremen (1991)
Anderson, I. E. and Figliola, R. S. Observations of gas atomization process dynamics, in: P. U. Gummeson and D. A. Gustafson (eds.) Modern Developments in Powder Metallurgy, Vol. 20, Metal Powder Industries Federation, Princeton, NJ (1988), pp 205–23
Anderson, I. E. and Terpstra, R. L.Progress toward gas atomization processing with increased uniformity and control, Mater. Sci. Engng. A326 (2002) 1: 101–9CrossRefGoogle Scholar
Anderson, I. E., Terpstra, R. L. and Rau, S.Progress toward understanding of gas atomization processing physics, Kolloquium des SFB 372, vol. 5, Universität, Bremen (2001) pp 1–16Google Scholar
Annavarapu, S. and Apelian, D. and Lawley, A.Processing effects in spray casting of steel strip, Metall. Trans. A 19 (1988): 3077–86CrossRefGoogle Scholar
Annavarapu, S., Apelian, D. and Lawley, A.Spray casting of steel strip – process analysis, Metall. Trans. A 21 (1990): 3237–56CrossRefGoogle Scholar
Annavarapu, S. and Doherty, R. D.Evolution of microstructure in spray casting, Int. J. Powder Metall. 29 (1993) 4: 331–43Google Scholar
Annavarapu, S. and Doherty, R. D.Inhibited coarsening of solid-liquid microstructures in spray casting at high volume fractions of solid, Acta Metall. Mater. 43 (1995) 8: 3207–30CrossRefGoogle Scholar
Anno, J. N. The Mechanics of Liquid Jets, Lexington Books, Lexington, MA (1977)
Antipas, G., Lekakou, C. and Tsakiropoulos, P. The break-up of melt streams by high pressure gases in spray forming, Proc. 2nd International Conference on Spray Forming ICSF-2, 13–15 Sept., Swansea (1993) pp 15–24
Armster, S. Q., Delplanque, J. P., Rein, M. and Lavernia, E. J.Thermo-fluid mechanisms controlling droplet based materials processes, Int. Mater. Rev. 47 (2002) 6: 265–301CrossRefGoogle Scholar
Ashgriz, N. and Poo, J. Y.Coalescence and separation in binary collision of liquid drops, J. Fluid Mech. 221 (1990): 183–204CrossRefGoogle Scholar
Baehr, H. D. and Stephan, K. Wärme- und Stoffübertragung, Springer-Verlag, Berlin (1994)
Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. and van der Vorst, H. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM Publishing, Philadelphia, PA (1994). Available at: ftp.netlib.org/templates/templates.ps
Bauckhage, K.Das Zerstäuben metallischer Schmelzen, Chem.-Ing.-Tech. 64 (1992) 4: 322–32CrossRefGoogle Scholar
Bauckhage, K.Stand der Technik beim Sprühkompktieren von Bolzen, Härt.-Tech.-Mitteilung 52 (1997) 5: 319–31Google Scholar
Bauckhage, K. Use of the phase-Doppler-anemometry for the analysis and the control of the spray forming process, Proc. PM2TEC'98, 31 May–4 June, Las Vegas (1998a)
Bauckhage, K.Die Bedeutung der Partikelabkühlung für den Materialaufbau beim Sprühkompaktieren, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1998b) pp 139–74Google Scholar
Bauckhage, K., Bergmann, D., Fritsching, U., Lohner, H., Schreckenberg, P. and Uhlenwinkel, V.Das Scaling-Down-Problem bei der Zweistoffzerstäubung von Metallschmelzen, Chem.-Ing.-Tech. 73 (2001) 4: 304–133.0.CO;2-Z>CrossRefGoogle Scholar
Bauckhage, K., Bergmann, D. and Tillwick, J.Die Massen- und Enthalpiebilanzierung des Sprühkegels als Kopplung für die Modellvorstellung des Materialaufbaus in der Mix-Schicht, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 139–70Google Scholar
Bauckhage, K. and Fritsching, U. Production of metal powders by gas atomization, in: Cooper, K. P., Anderson, I. E., Ridder, S. D. and Biancanello F. S. (eds.) Liquid Metal Atomization: Fundamentals and Practice, June TMS, Warrendale (2000) pp 23–36
Bauckhage, K., Liu, H. M. and Fritsching, U. Models for the transport phenomena in a new spray compacting process, 4th Proc. International Conference on Liquid Atomization and Spray Systems, ICLASS'88, Sendai/Japan, 21–24 August, The Fuel Society of Japan, Tokyo (1988) pp 424–30
Bauckhage, K. und Uhlenwinkel, V.Zu den Möglichkeiten eines automatisierten und optimierten Sprühkompaktierbetriebes, Härt.-Tech.-Mitteilung 51 (1996b) 5: 289–97Google Scholar
Bauckhage, K. und Uhlenwinkel, V. (eds.) Sprühkompaktieren – Sprayforming, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996a)
Bauckhage, K. und Uhlenwinkel, V. (eds.) Sprühkompaktieren – Sprayforming, Kolloquium des SFB 372, Vol. 2, Universität Bremen (1997)
Bauckhage, K. und Uhlenwinkel, V. (eds.) Sprühkompaktieren – Sprayforming, Kolloquium des SFB 372, Vol. 3, Universität Bremen (1998)
Bauckhage, K. und Uhlenwinkel, V. (eds.) Sprühkompaktieren – Sprayforming, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999)
Bauckhage, K. und Uhlenwinkel, V. (eds.) Sprühkompaktieren – Sprayforming, Kolloquium des SFB 372, Vol. 5, Universität Bremen (2001)
Bauckhage, K., Uhlenwinkel, U. and Fritsching, U. (eds.) Proc. Spray Deposition and Melt Atomization Conference SDMA 2000, 26–28 June, Bremen, Universität Bremen (2000)
Bauckhage, K., Fritsching, U., Uhlenwinkel, U., Ziesemis, J. and Leatham, A. (eds.) Proc. 2nd Spray Deposition and Melt Atomization Conference SDMA 2003, 22–25 June, Bremen, Universität Bremen (2003)
Baum, S. Software for Graphics and Data Analysis, Deptartment of Oceanography, Texas A&M University (1996). Available at: http://www-ocean.tamu.edu/∼baum/ocean_graphics.html
Bayvel, L. and Orzechowski, Z. Liquid Atomization, Taylor & Francis, Washington, DC (1993)
Bellan, J.Perspectives on large eddy simulations for sprays: issues and solutions, Atomiz. & Sprays 10 (2000): 409–25CrossRefGoogle Scholar
Beretta, F., Cavalieri, F. and D'Alessio, A.Drop size concentration in a spray by sideward laser light scattering measurements, Combust. Sci. Technol. 36 (1984): 19–37CrossRefGoogle Scholar
Berg, J. C. (ed.) Wettability, Marcel Dekker, New York (1993)
Berg, M. Zum Aufprall, zur Ausbreitung und Zerteilung von Schmelzetropfen aus reinen Metallen, Dissertation Universität Bremen (1999)
Berg, M. and Ulrich, J.Experimental based detection of the splash limits for the normal and oblique impact of molten metal particles on different substrates, J. Mater. Synth. Proc. 5 (1997) 1: 45–9Google Scholar
v. Berg, E., Bürger, M., Cho, S. H. and Schatz, A. Analysis of atomization of a liquid jet taking into account effects of the near surface boundary layer, Proc. 11th ILASS-Europe Conference 21–23 March, Nürnberg (1995)
Bergmann, D. Modellierung des Sprühkompaktierprozesses für Kupfer- und Stahlwerkstoffe, Dissertation, Universität Bremen (2000)
Bergmann, D., Bauckhage, K. and Fritsching, U. Modelling the spray forming process, 1999 International Conference on Powder Metallurgy and Particulate Materials, 20–24 June, Vancouver (1999b)
Bergmann, D., Fritsching, U. and Bauckhage, K. Modellierung der Abkühlung und raschen Erstarrung von Metalltropfen im Fluge während des Sprühkompaktierens, in: Kolloquium des SFB 372, Vol. 3, Bauckhage, K. and Uhlenwinkel, V. (eds.), Universität Bremen (1998) pp 175–96
Bergmann, D., Fritsching, U. and Bauckhage, K. Averaging thermal conditions in molten metal sprays, in: Mishra, B. (ed.) Proc. TMS – Annual Meeting, EPD Congress 1999, 28 Feb.–4 March, San Diego CA (1999a)
Bergmann, D., Fritsching, U. and Bauckhage, K. Coupled simulation of molten metal droplet sprays, in: Rath, H. J. (ed.) 8th International Symposium on Computational Fluid Dynamics ISCFD'99, 5–10 September, Bremen (1999b)
Bergmann, D., Fritsching, U. and Bauckhage, K.A mathematical model for cooling and rapid solidification of molten metal droplets, Int. J. Therm. Sci. 39 (2000): 53–62CrossRefGoogle Scholar
Bergmann, D., Fritsching, U. and Bauckhage, K.Simulation of molten metal droplet sprays, Comp. Fluid Dynamics J. 9 (2001a): 203–11Google Scholar
Bergmann, D., Fritsching, U. and Bauckhage, K.Thermische Simulation des Sprühkompaktierprozesses, Härt.-Tech.-Mitteilung 56 (2001b) 2: 110–19Google Scholar
Bergmann, D., Fritsching, U. and Crowe, C. T. Multiphase flows in the spray forming process, Proc. 2nd International Conference on Multiphase Flow, 3–7 April, Kyoto, Japan, Vol. 1 (1995) pp SP1–SP8
Bergström, C., Fuchs, L. and Holmborn, J. Large eddy simulation of spray injected in a strong turbulent cross flow, CD-ROM, Proc. ILASS-Europe 99, 5–7 July, Toulouse (1999)
Berthomieu, P., Carntz, H., Villedieu, P. and Lavergne, G. Characterization of droplet breakup regimes, in: Yule, A. J. (ed.) Proc. ILASS-Europe'98, 6–8 July, Manchester (1998) pp 72–7
Bewlay, B. P. and Cantor, B.Modeling of spray deposition – measurement of particle size, gas velocity, particle velocity, and spray temperature in gas-atomized sprays, Metall. Trans. B 12B (1990): 899–912CrossRefGoogle Scholar
Bhagat, R. B. and Amateau, M. F. Droplet solidification and microstructure modeling for Al–4Li alloy, Adv. Powder Metall. & Parti. Mater. 2 (1996)
Bird, R. B., Stewart, W. E. and Lightfoot, E. N. Transport Phenomena, Wiley International Edition, John Wiley & Sons, New York (1960)
Birtigh, A., Lauschke, G., Schierholz, W. F., Beck, D., Maul, C., Gilbert, N., Wagner, H.-G. and Werniger, C. Y.CFD in der chemischen Verfahrenstechnik aus industrieller Sicht, Chem.-Ing.-Tech. 72 (2000) 3: 175–933.0.CO;2-J>CrossRefGoogle Scholar
Boettinger, W. J., Coriel, S. R., Greer, A. L., Karma, A., Kurz, W., Rappaz, M. and Trivedi, R.Solidification microstructures: recent developments, future directions, Acta Mater. 48 (2000) 1: 43–70CrossRefGoogle Scholar
Brackbill, J. U., Kothe, D. B. and Zemach, C.A continuum method for modelling surface tension, J. Comp. Phys. 100 (1992): 335–54CrossRefGoogle Scholar
Bradley, D.On the atomization of liquids by high-velocity gases, Part 1, J. Phys. D: Appl. Phys. 6 (1973a): 1724–36CrossRefGoogle Scholar
Bradley, D.On the atomization of liquids by high-velocity gases, Part 2, J. Phys. D: Appl. Phys. 6 (1973b): 2267–72CrossRefGoogle Scholar
Brander, B. and Brauer, H. Impuls- und Stofftransport durch die Phasengrenzfläche von kugelförmigen fluiden Partikeln, Fortschritt-Berichte VDI, vol. 3, No. 326, VDI-Verlag, Düsseldorf (1993)
Bricknell, R. H.The structure and properties of a nickel-base superalloy produced by Osprey atomization and deposition, Metall. Trans A. 17A (1986): 583–91CrossRefGoogle Scholar
Brody, H. D. and Flemings, C.Solute redistribution in dendritic solidification, Trans. Metall. Soc. AIME 236 (1966) 5: 615–23Google Scholar
Brooks, R. G., Moore, C., Leatham, A. G. and Coombs, J. S.The Osprey process, Powder Metall. 2 (1977): 100–2CrossRefGoogle Scholar
Buchholz, M. Untersuchung des Sprühkompaktierverhaltens an sprühkompaktierten Bolzen, Dissertation, Universität Bremen (2002)
Buchholz, M., Uhlenwinkel, V., v. Freyberg, A. and Bauckhage, K.Specific enthalpy measurement in molten metal spray, Mater. Sci. Engng. A326 (2002) 1: 165–75CrossRefGoogle Scholar
Bürger, M., v. Berg, E., Cho, S. H. and Schatz, A.Fragmentation processes in gas and water atomization plants for process optimization purposes, Part 1: discussion of the main fragmentation processes, Powder Metall. Int. 21 (1989) 6: 10–15Google Scholar
Bürger, M., v. Berg, E., Cho, S. H. and Schatz, A.Analysis of fragmentation processes in gas and water atomization plants for process optimization purposes, Part 2: modelling of growth and stripping of capillary waves in parallel shear flow – the basic fragmentation mechanism, Powder Metall. Int. 24 (1992) 6: 32–8Google Scholar
Bürger, M., Schwalbe, W., Kim, D. S., Unger, H., Hohmann, H. and Schins, H.Two-phase description of hydrodynamic fragmentation processes within thermal detonation waves, J. Heat Transfer 106 (1984): 728–34CrossRefGoogle Scholar
Bussmann, M., Aziz, S. D. and Chandra, S.Photographs and simulations of molten metal droplets landing on a solid surface, J. Heat Transfer 122 (2000): 422CrossRefGoogle Scholar
Bussmann, M., Mostaghimi, J. and Chandra, S.On a three-dimensional volume tracking model of droplet impact, Phys. Fluids 11 (1999): 1406–17CrossRefGoogle Scholar
Butzer, G. A. The production-scale spray forming of superalloys for aerospace applications, J. Metals 51 (1999) 4, web-edition: http://www-ocean.tamu.edu/∼baum/ocean_graphics.html
Cai, C. A modelling study for the design and control of spray forming, PhD thesis, Drexel University (1995)
Cai, W. D. and Lavernia, E. J.Modeling of porosity during spray forming, Mater. Sci. Engng. A 226–8 (1997): 8–12CrossRefGoogle Scholar
Cai, C., Warner, L., Annavarapu, S. and Doherty, R. Modelling microstructural development in spray forming: experimental verification, in: Wood, J. V. Proc. 3rd International Conference on Spray Forming, Cardiff, 1996, Osprey Metals Ltd, Neath (1997)
Cappus, J. M. and German, R. M. (eds.) Proc. 1992 Powder Metallurgy World Congress, Vol. 1: Powder Production and Spray Forming, 21–26 June, San Francisco, CA (1992)
Carter, W. T., Benz, M.-G., Basu, A. K., Zabala, R. J., Knudsen, B. A., Forbes Jones, R. M., Lippard, H. E. and Kennedy, R. L. The CMSF process: the spray forming of clean metal, J. Metals51 (1999) 4, web-edition: http://www.tms.org/pubs/journals/JOM/9904/Carter/Carter-9904.html
Chang, D.-H., Kang, S., Lee, E.-S. and Ahn, S. Analysis of transient heat conduction with phase change in a spray deposited body, in: Marsh, S. P. et al. (eds.), Solidification 1998, The Minerals, Metals & Materials Society, Warrendale, PA (1998) pp 497–508
Chao, B. T.Motion of spherical gas bubbles in a viscous liquid at large Reynolds numbers, Phys. Fluids 5 (1962) 1: 69–79CrossRefGoogle Scholar
Chen, M. M., Crowe, C. T., Fritsching, U., Pien, S. J., et al. (eds.) Transport Phenomena in Materials Processing and Manufacturing, Heat Transfer Division – vol. 336, Fluids Engng Division – Vol. 240, The American Society of Mechanical Engineers ASME, New York (1996)
Cheng, C., Annavarapu, S. and Doherty, R. Modelling based microstructural control in spray casting, Proc. 2nd International Conference on Spray Forming, ICSF-2, 13–15 Sept., Swansea (1993)
Clift, R., Grace, J. R. and Weber, M. E. Bubbles, Drops and Particles, Academic Press, San Diego, CA (1978)
Coimbra, C. F. M. and Rangel, R. H.General solution of the particle momentum equation in unsteady Stokes flows, J. Fluid Mech. 370 (1998): 53–72CrossRefGoogle Scholar
Colella, P. and Glaz, H. M.Efficient solution algorithmus for the Riemann problem for real gases, J. Comp. Phys. 59 (1985): 264–89CrossRefGoogle Scholar
Computational Fluid Dynamics Services CFX 4.1 Flow Solver User Guide, Computational Fluid Dynamics Services, Harwell Laboratories Oxfordshire (1995)
Conelly, S., Coombs, J. S. and Medwell, J. O.Flow characteristics of metal particles in atomized sprays, Metal Powder Rep. 41 (1986): 9Google Scholar
Cousin, J. and Dumouchel, C.Effect of viscosity on the linear instability of a liquid sheet, Atomiz. & Sprays 6 (1996): 563–76CrossRefGoogle Scholar
Cousin, J. and Dumouchel, C. Theoretical determination of spray drop size distribution, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS'97, August, Seoul (1997) Part 1: Description of the Procedure, pp 788–95, Part 2: Applications, pp 796–803
Cousin, J., Yoon, S. J. and Dumouchel, C. Coupling of the classical linear theory and the maximum entropy formalism for the prediction of drop size distributions in sprays, application to pressure swirl atomizers, Atomiz. & Sprays6 (1996) 5: 601 ff
creare.x Inc. (Hrsg.) FLUENT User's Manual, Version 3.02, Hanover (1990)
Crowe, C. T.Modelling spray–air contact in spray drying systems, Adv. in Drying 1 (1980) 3: 63–99Google Scholar
Crowe, C. T.Challenges in numerical simulation of metal sprays in spray forming processes, Kolloquium des SFB 372, Vol. 2, Universität. Bremen (1997) pp 1–16Google Scholar
Crowe, C. T.Importance of multiphase coupling in modeling metal-droplet sprays, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 757–70Google Scholar
Crowe, C. T., Sharma, M. P. and Stock, D. E.The particle-source-in-cell method for gas droplet flow, J. Fluids Engng. 99 (1977): 325–32CrossRefGoogle Scholar
Crowe, C. T., Sommerfeld, M. and Tsuji, Y. Multiphase Flows with Drops and Particles, CRC Press, Boca Raton, CA (1998)
Crowe, C. T., Troutt, T. R. and Chung, J. N.Numerical models for two-phase turbulent flows, Ann. Rev. Fluid Mech. 28 (1996): 11–43CrossRefGoogle Scholar
Cui, C., Cao, F., Li, Z. and Li, Q. Modeling of the spray forming and solidification process of billets, Proc. 4th International Conference on Spray Forming, Baltimore, MD (1999)
Cui, C., Cao, F., Li, Z., Zhang, J. and Li, Q.Modeling of spray forming and solidification process of tubular products, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen, (2000) pp 825–38Google Scholar
Cui, C., Fritsching, U., Schulz, A., Bauckhage, K. and Mayr, P.Control of cooling during spray forming of bearing steel billet, Proc. Spray Deposition and Melt Atomization SDMA 2003, Bremen, 22–25 June, (2003) pp 8.117–8.128Google Scholar
Cui, C., Li, Z. and Li, Q.Numerical simulation of heat and momentum transfer in spray forming process, Proc. 1998 PM World Congress, Vol. 1, 18–22 October, Grenada (1998) pp 555–60Google Scholar
Dash, S. M. and Wolf, D. E.Interactive phenomema in supersonic jet mixing problems, Part I: phenomenology and numerical modeling techniques, AIAA Journal 22 (1984) 7: 905–13CrossRefGoogle Scholar
Delplanque, J. P., Lavernia, E. J. and Rangel, R. H.Analysis of in-flight oxidation during reactive spray atomization and deposition processing of aluminum, J. Heat Transfer 122 (2000): 126–33CrossRefGoogle Scholar
Delplanque, J.-P., Lavernia, E. J. and Rangel, R. H.Multidirectional solidification model for the decription of micropore formation in spray deposition processes, Numerical Heat Transfer, Part A 30 (1996): 1–18CrossRefGoogle Scholar
Delplanque, J. P. and Rangel, R. H.Simulation of liquid-jet overflow in droplet deposition processes, Acta Mater. 47 (1999) 7: 2207–13CrossRefGoogle Scholar
Delplanque, J. P. and Sirignano, W. A.Boundary-layer stripping effects on droplet transcritical convective vaporization, Atomiz. & Sprays 4 (1994) 3: 325–49CrossRefGoogle Scholar
Dielewicz, L. G., v. Berg, E. and Lampe, M. Computation of transsonic two-phase flow in liquid metal jet atomizers, CD-ROM Proc. ILASS-Europe'99, 5–7 July Toulouse (1999)
Djuric, Z. and Grant, P. S.Two dimensional simulation of liquid metal spray deposition onto a complex surface II: splashing and redeposition, Modelling Simul. Mater. Sci. Eng. 9 (2001): 111–27CrossRefGoogle Scholar
Djuric, Z., Newberry, P. and Grant, P. S.Two dimensional simulation of liquid metal spray deposition onto a complex surface, Modelling Simul. Mater. Sci. Eng. 7 (1999): 553–71CrossRefGoogle Scholar
Dobre, M. and Bolle, L. Theoretical prediction of ultrasonic spray characteristics using the maximum entropy formalism, in: Yule, A. J. (ed.) Proc. ILASS-Europe'98, 6–8 July, Manchester (1998) pp 7–12
Doherty, R. D., Annavarapu, S., Cai, C. and Warner Kohler, L. K.Modeling based studies for control and microstructure development in spray forming, Kolloquium des SFB 372, Vol. 2, Universität Bremen (1997) pp 45–78Google Scholar
Doherty, R. D., Cai, C.and Warner-Kohler, L. K. Modeling and microstructural development in spray forming, Int. J. Powder Metall. 33 (1997) 3: 50–60Google Scholar
Dombrowski, N. and Johns, W. R.The aerodynamic instability and disintegration of viscous liquid sheets, Chem. Engng. Sci. 18 (1963): 203–14CrossRefGoogle Scholar
Domnick, J., Raimann, J., Wolf, G., Berlemont, A. and Cabot, M.-S. On-line process control in melt spraying using phase-Doppler anemometry, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS'97, 18–22 August (1997) Seoul
Drezet, J.-M.Thermomechanical aspects in solidification processes, Kolloquium des SFB 372, Vol. 3, Universität Bremen (1998) pp 53–82Google Scholar
Duda, J. L. and Vrentas, J. S.Fluid mechanics of laminar liquid jets, Chem. Engng. Sci. 22 (1967): 855–73CrossRefGoogle Scholar
Dumouchel, C. Problemes lies a la d ún pulverizateur mecanique – hydrodynamique de chambre et instabilite de nappe, Dissertation Université Rouen (1989)
Dunkley, J. J. Liquid metal atomization – a suitable case for investigation, in: Yule, A. J. (ed.) Proc. ILASS-Europe'98, 6–8 July, Manchester (1998) pp P1–P6
Durao, D. F. G. The application of laser anemometry to free jets and flames with and without recirculation, PhD thesis, University of London (1976)
Durst, F., Milojevic, D.and Schönung, B. Eulerian and Lagrangian predictions of particulate two-phase flows: a numerical study, Appl. Math. Modelling 8 (1984): 101–15CrossRefGoogle Scholar
Dykhuizen, R. C.Review of impact and solidification of molten thermal spray droplets, J. Thermal Spray Technol. 3 (1994): 351–61CrossRefGoogle Scholar
Dykhuizen, R. C. and Smith, M. F.Gas dynamic principles of spray, J. Thermal Spray Technol. 7 (1998) 2:, 205–12CrossRefGoogle Scholar
Ebert, T., v. Buch, F. und Kainer, K. U.Sprühkompaktieren von Magnesiumlegierungen im Rahmen des SFB 390, Kolloquium des SFB 372, Vol. 3, Universität Bremen (1998) pp 9–30Google Scholar
Ebert, T., Moll, F. and Kainer, K. U. Spray forming of magnesium alloys and composites, Proc. 3rd International Conference on Spray Forming, Cardiff, 1996, Osprey Metals Ltd, Neath (1997) pp 177–85
Edwards, C. F. Formulating large-eddy simulations of dense multiphase flows, in: Yule, A. J. (ed.) Proc. ILASS-Europe'98, 6–8 July, Manchester (1998) pp P7–P16
Elghobashi, S. E., Abou-Arab, T. W., Rirk, M. and Mostafa, A.Prediction of the particle laden jet with a two-equation turbulence model, Int. J. Multiphase Flow 10 (1984): 697–710CrossRefGoogle Scholar
Espina, P. I.Numerical simulation of atomization gas flow, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 127–38Google Scholar
Espina, P. I. and Piomelli, U. Numerical simulation of the gas flow in gas metal atomizers, Proc. 1998 ASME – Fluids Engng Division, Washington (1998a), FEDSM98–4901
Espina, P. I. and Piomelli, U. Study of the gas jet in a close-coupled gas metal atomizer, AIAA Aerospace Science Meeting, 12–15 June, Reno, NV, Paper 98–0959 (1998b)
Evans, R. W., Leatham, A. G. and Brooks, R. G.The Osprey preform process, Powder Metall. 28 (1985): 13–20CrossRefGoogle Scholar
Faeth, G. M. Structure and atomization properties of dense turbulent sprays, 23rd Symposium on Combustion, The Combustion Institute, Pittsburgh, PA (1990) pp 1345–52
Faragó, Z. Activities on liquid atomization at the Research Center Lampoldshausen of the German Aerospace Research Establishment, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS'97, 18–22 August, Seoul (1997) pp 345–52
Faragó, Z. and Chigier, N.Morphological classification of disintegration of round liquid jets in a coaxial air stream, Atomiz. & Sprays 2 (1992): 137–53Google Scholar
Ferziger, J. H. and Peric, M. Computational Methods for Fluid Dynamics, Springer Verlag, Berlin (1996)
Fletcher, C. A. J. Computational Techniques for Fluid Dynamics Part 1: Fundamental and General Techniques; Part 2: Specific Techniques for Different Flow Categories, 2nd Edition, Springer Verlag (1991)
Flow Science, Flow-3D User's Manual, Flow Science, Santa Fe, CA (1998)
Ford, R. E. and Furmidge, C. G. L. Impact and spreading of spray drops on foliar surfaces, Wetting (Soc. Chem. Ind.) 25: 417–32 (1967)
Forrest, J., Lile, S. and Coombs, J. S. Numerical modelling of the Osprey process, Proc. International Conference on Spray Forming, ICSF-2, 13–15 September, Swansea (1993)
Frigaard, I. A.Growth dynamics of spray-formed aluminium billets, Part 1: steady state crown shapes, J. Mater. Proc. Manuf. Sci. 3 (1994a): 173–93Google Scholar
Frigaard, I. A.Growth dynamics of spray-formed aluminium billets, Part 2: transient billet growth, J. Mater. Proc. Manuf. Sci. 3 (1994b): 257–75Google Scholar
Frigaard, I. A.Controlling the growth of alluminium spray-formed billets, Kolloquium des SFB 372, Vol. 2, Universität Bremen (1997) pp 29–44Google Scholar
Frigaard, I. A.Spray-forming of large diameter billets using twin atomizer system: basic features of spray-form growth dynamics, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 839–54Google Scholar
Fritsching, U.Modelling the spray cone behaviour in the metal spray forming process, momentum and thermal coupling in two-phase flow, Phoenics J. Comp. Fluid Dynamics 8 (1995) 1: 68–90Google Scholar
Fritsching, U. and Bauckhage, K.Die Bewegung von Tropfen im Sprühkegel einer Ein- und einer Zweistoffdüse, Chem.-Ing.-Tech. 59 (1987) 9: 744–5CrossRefGoogle Scholar
Fritsching, U. and Bauckhage, K. Numerical investigations on the atomization of molten metals, 3rd International Phoenics-User Conference, 28 August–1 September, Dubrovnik CHAM Ltd, London (1989)
Fritsching, U. and Bauckhage, K.Investigations on the atomization of molten metals: the coaxial jet and the gas flow in the nozzle near field, PHOENICS J. Comp. Fluid Dynamics 5 (1992) 1: 81–98Google Scholar
Fritsching, U. and Bauckhage, K. Lagrangian modelling of thermal and kinetic droplet/particle behaviour in the metal spray compaction process, Proc. ILASS-93/CHISA-93, 29 August–3 September, Prague (1993)
Fritsching, U. and Bauckhage, K.Zum Impuls- und Wärmetransport bei der Zerstäubung und anschließenden Kompaktierung von Schmelzen, Chem.-Ing.-Tech. 66 (1994a) 3: 380–2CrossRefGoogle Scholar
Fritsching, U. and Bauckhage, K. Sprays and jets for metallurgical applications, Proc. 7th Workshop on Two-Phase Flow Predictions, 11–14 April, Erlangen (1994b)
Fritsching, U. and Bauckhage, K. Spray modelling in spray forming, in: Chen, M. M. and Crowe, C. T. (eds.) Multiphase Flow and Heat Transfer in Materials Processing, presented at International Mechanical Engineering Congress 94, 6–11 November, Chicago, ASME-FED201 (1994c): 49–54
Fritsching, U. and Bauckhage, K. Thermal treatment and conditions of the deposit in spray forming applications, in: Chen, M. M. and Crowe, C. T. (eds.) Multiphase Flow and Heat Transfer in Materials Processing, presented at International Mechanical Engineering Congress 94, 6–11 November, Chicago, ASME-Fluids Engng Division201 (1994d): 7–18
Fritsching, U. and Bauckhage, K. Sprayforming of Metals, Ullmann's Encyclopedia of Industrial Chemistry, 6th Edition, 1999 electronic release, Wiley VCH, Weinheim (1999)
Fritsching, U., Bergmann, D. and Bauckhage, K. Metal solidification during spray forming, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS'97, 18–22 August, Seoul (1997a)
Fritsching, U., Bergmann, D., Heck, U. und Bauckhage, K. Modellierung und Simulation des Sprühkompaktierprozesses, in: Bauckhage, K. und Uhlenwinkel, V. (eds.) Kolloquium des SFB 372, Vol. 2, Universität Bremen (1997b)
Fritsching, U., Bergmann, D., Heck, U. and Bauckhage, K. Particle size distribution width in gas atomization of molten metals, 1999 International Conference on Powder Metallurgy and Particulate Materials, 20–24 June, Vancouver (1999)
Fritsching, U., Liu, H. and Bauckhage, K. Numerical modelling in the spray compaction process, Proc. 5th International Conference on Liquid Atomization and Spray Systems, ICLASS-91, Gaithersburg, MD, NIST SP813 (1991) pp 491–8
Fritsching, U., Heck, U. and Bauckhage, K. The gas-flowfield in the atomization region of a free fall atomizer, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS'97, 18–22 August, Seoul (1997)
Fritsching, U., Liu, H. and Bauckhage, K. Two-phase flow and heat transfer in the metal spray compaction process, Proc. International Conference on Multiphase Flows'91, 24–7 September, Tsukuba (1991)
Fritsching, U., Uhlenwinkel, V. and Bauckhage, K. Spreading of the spray cone for spray forming applications, Proc. Powder Metallurgy World Congress, PM-93, 12–15 July, Kyoto (1993)
Fritsching, U., Uhlenwinkel, V. and Bauckhage, K. (eds.) Selected papers from the International Conference on Spray Deposition and Melt Atomization, SDMA-2000, Mater. Sci. Engng. A326 (2002) 1
Fritsching, U., Uhlenwinkel, V., Bauckhage, K. and Urlau, U.Gas- und Partikelströmungen im Düsennahbereich einer Zweistoffdüse, Modelluntersuchungen zur Zerstäubung von Metall-schmelzen, Chem.-Ing.-Tech. 62 (1990) 2: 146–7CrossRefGoogle Scholar
Fritsching, U., Zhang, H. and Bauckhage, K. Thermal histories of atomized and compacted metals, Proc. Powder Metallurgy World Congress PM-93, 12–15 July, Kyoto (1993a)
Fritsching, U., Zhang, H. and Bauckhage, K. Modelling of thermal histories and solidification in the spray cone and deposit of atomized and compacted metals, Proc. International Conference on Spray Forming, ICSF-2, 13–15 September, Swansea (1993b)
Fritsching, U., Zhang, H. and Bauckhage, K.Numerical simulation of temperature distribution and solidification behaviour during spray forming, Steel Research 65 (1994a) 7: 273–8CrossRefGoogle Scholar
Fritsching, U., Zhang, H. and Bauckhage, K.Numerical results of temperature distribution and solidification behaviour during spray forming, Steel Research 65 (1994b) 8: 322–5CrossRefGoogle Scholar
Frohn, A. and Roth, N. Dynamics of Droplets, Springer Verlag, Berlin (2000)
Fukai, J., Shiiba, Y., Yamamoto, T., Miyatake, O., Poulikakos, D., Megaridis, C. M. and Zhao, Z.Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modeling, Phys. Fluids 11 (1995): 236–47CrossRefGoogle Scholar
Fukai, J., Zhao, Z., Poulikakos, D., Megaridis, C. M. and Miyatake, O.Modeling of the deformation of a liquid droplet impinging a flat surface, Phys. Fluids 5 (1993): 2588–99CrossRefGoogle Scholar
Fukai, J., Asami, H. and Miyatake, O. Deformation and solidification behaviour of a molten metal droplet colliding with a substrate: modeling and experiment, in: Marsh, S. P. et al. (eds.) Solidification 1998, TMS, The Minerals, Metals & Materials Society, Warrendale, PA (1998), pp 473–83
Georjon, T. L. and Reitz, R. D.A drop-shattering collision model for multidimensional spray computations, Atomiz. & Sprays 9 (1999): 231–54CrossRefGoogle Scholar
Gerking, L.Powder from metal and ceramic melts by laminar streams at supersonic speed, Powder Metall. Int. 25 (1993) 2: 59–65Google Scholar
Gerling, R., Liu, K. W. und Schimansky, F.-P.Pulverherstellung und Sprühformen von intermetallischen Titanbasislegierungen, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 105–26Google Scholar
Gerling, R., Schimansky, F. P., Wegmann, G. and Zhang, J. X.Spray forming of Ti 48.9Al (at%) and subsequent hot isostatic pressing and forging, Mater. Sci. Engng. A326 (2002) 1: 73–8CrossRefGoogle Scholar
Gosman, A. D. and Ioannides, E.Aspects of computer simulation of liquid-fueled combustors, J. Energy 7 (1983): 482–90CrossRefGoogle Scholar
Grant, P. S., Cantor, B. and Katgerman, L.Modelling of droplet dynamic and thermal histories during spray forming. I. Individual droplet behaviour, Acta Metall. Mater. 41 (1993a) 11: 3097–108CrossRefGoogle Scholar
Grant, P. S., Cantor, B. and Katgerman, L.Modelling of droplet dynamic and thermal histories during spray forming. II. Effect of process parameters, Acta Metall. Mater. 41 (1993b) 11: 3109–18CrossRefGoogle Scholar
Grant, P. S.Spray forming, Progress in Mater. Sci. 39 (1995): 497–545CrossRefGoogle Scholar
Grant, P. S.A model for the factors controlling spray formed grain sizes, Kolloquium des SFB 372, Vol. 3, Universität Bremen (1998) pp 83–92Google Scholar
Grant, P. S., Cantor, B. and Katgerman, L.Acta Metall. Mater. 41 (1993) 11: 3097CrossRef
Grant, P. S., Underhill, R. P., Cantor, B. and Bryant, D. J. Modelling droplet behaviour during spray forming using FLUENT, TMS Annual Meeting, Orlando, FL (1997)
Grigull, U. and Sandner, H. Wärmeleitung, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1986)
Gupta, M., Ibrahim, I. A., Mohammed, F. A. and Lavernia, E. J.Wetting and interfacial reactions in Al–Li–SiCp metal matrix composites processing by spray atomization and deposition, J. Mater. Sci. 26 (1991): 6673–84CrossRefGoogle Scholar
Gupta, M., Mohammed, F. A. and Lavernia, E. J.Heat transfer mechanisms and their effects on microstructure during spray atomization and codeposition of metal matrix composites, Mater. Sci. Engng. A144 (1991): 99–110CrossRefGoogle Scholar
Gupta, M., Lane, C. and Lavernia, E. J.Microstructure and properties of spray atomized and deposited Al–7Si/SiC metal matrix composites, Scripta Metall. Mater. 26 (1992): 825–30CrossRefGoogle Scholar
Gutierrez-Miravete, M., Lavernia, E. J., Trapaga, G. M. and Szekely, J.A mathematical model of the liquid dynamic compaction process. Part 2: formation of the deposit, Int. J. Rapid Solidification 4 (1988): 125–50Google Scholar
Hagerty, W. W. and Shea, J. F.A study of the stability of plane fluid sheets, J. Appl. Mech. 22 (1955): 509–14Google Scholar
Hansen, P. N., Hartmann, G. and Kallien, L.Numerical simulation of rapid solidification processes: powder and spray-forming technologies, Solidification Processing (1987): 373–6Google Scholar
Hansmann, S. und Müller, H. R.Hochzinnhaltige Bronzen mittels Sprühkompaktieren seigerungsarm hergestellt, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 1–6Google Scholar
Hardalupas, Y., Tsai, R.-E. and Whitelaw, J. H. Unsteady breakup of liquid jets in coaxial airblast atomizers, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS'97, 18–22 August, Seoul (1997) pp 326–33
Hardalupas, Y., Taylor, A. M. K. P. and Wilkins, J. H.Experimental investigation of sub-millimetre droplet impingement onto spherical surfaces, Int. J. Heat Fluid Flow 20 (1999): 477–85CrossRefGoogle Scholar
Harlow, F. H. and Shannon, J. P.The splash of a liquid drop, J. Appl. Phys. 38 (1967) 10: 3855–66CrossRefGoogle Scholar
Hartmann, G. C. Die Erstarrung von Metallen im Sprühgießprozeß am Beispiel der Zinnbronze CuSn6, Fortschritt Berichte VDI, Reihe 5: Grund- und Werkstoffe No. 195, VDI-Verlag Düsseldorf (1990)
Hattel, J. H. Mathematical modelling and numerical simulation of casting processes, Technical University Denmark, Lyngby (1999)
Hattel, J. H., Pryds, N. H., Pedersen, T. B. and Pedersen, A. S.Numerical modelling of the spray forming process: the effect of process parameters on the deposited material, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen 200 pp 803–812
Hattel, J. H., Pryds, N., Thorborg, J. and Ottosen, P.A quasi-stationary numerical model of atomized metal droplets, Part I: model formulation, Modelling Simul. Mater. Sci. Engng. 7 (1999) 3: 413–30CrossRefGoogle Scholar
Heck, U. Zur Zerstäubung in Freifalldüsen, Dissertation, Universität Bremen (1998)
Heck, U., Fritsching, U. und Bauckhage, K. Zur Fluiddisintegration in Freifall-Zerstäubern, in: Koschel, W. W. and Haidn, O. J. (eds.) Spray'97, 3. Workshop über Sprays, Erfassung von Sprühvorgängen und Techniken der Fluidzerstäubung, DLR Lampoldshausen, 22–23 Oktober (1997)
Heck, U., Fritsching, U. and Bauckhage, K.Gas-flow effects on twin-fluid atomization of liquid metals, Atomiz. & Sprays 10 (2000) 1: 25–46CrossRefGoogle Scholar
Helebrook, B. T. and Edwards, C. F. Proc. 8th International Conference on Liquid Atomization and Spraying Systems ICLASS-2000, 16–20 July, Pasadena, CA (2000)
Henein, H.Single fluid atomization through the application of impulses to a melt, Mater. Sci. Engng. A326 (2002) 1: 92–100CrossRefGoogle Scholar
Hetsroni, G. (ed.) Handbook of Multiphase Systems, Hemisphere, Washington, DC (1982)
Hill, J. M. One-Dimensional Stefan Problems: An Introduction, Longman Scientific & Technical, John Wiley, New York (1987)
Hinze, J. O.Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE J. 1 (1955): 289–95CrossRefGoogle Scholar
Hirt, C. W., Nichols, B. D. and Romero, N. C. SOLA – A Numerical Solution Algorithm for Transient Fluid Flows, Report LA-5652, Los Alamos Scientific Laboratory, NM (1975)
Hirth, J. P.Nucleation, undercooling and homogeneous structures in rapidly solidified powders, Metall. Trans. A, 9A (1978) 3: 401–4CrossRefGoogle Scholar
Ho, S. and Lavernia, E. J.Thermal residual stresses in spray atomized and deposited Ni3Al, Scripta Mater. 34 (1996) 4: 527–36CrossRefGoogle Scholar
Horvay, M. Theoretische und experimentelle Untersuchung über den Einfluß des inneren Strömungsfeldes auf die Zerstäubungseigenschaften von Drall-Druckzerstäubungsdüsen, Dissertation, Universität Karlsruhe (1985)
Hsiang, L. P. and Faeth, G. M.Near-limit drop deformation and secondary breakup, Int. J. Multiphase Flow 18 (1992) 5: 635–52CrossRefGoogle Scholar
Hsiang, L. P. and Faeth, G. M.Drop properties after secondary breakup, Int. J. Multiphase Flow 19 (1993) 5: 721–35CrossRefGoogle Scholar
Hu, H. M., Lavernia, E. J., Lee, Z. H. and White, D. R.Residual stresses in spray-formed A2 tool steel, J. Mater. Res. 14 (1999) 12: 4521–4530CrossRefGoogle Scholar
Hummert, K.Sprühkompaktieren von Aluminiumwerkstoffen im industriellen Maßstab – Stand der Entwicklung, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 199–215Google Scholar
Hummert, K.PM-Hochleistungsaluminium im industriellen Maßstab, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 21–44Google Scholar
Inada, S. and Yang, W.Solidification of molton metal droplets impinging on a cold surface, Exp. Heat Transfer 7 (1994) 2: 93–100CrossRefGoogle Scholar
Jeffreys, H.On the formation of water waves by wind, Proc. Roy. Soc. A, (1924): 189Google Scholar
Jordan, N. und Harig, H.Sprühkompaktierte Kupferbasis-Werkstoffe – Stand der Forschungs- und Entwicklungsarbeiten, Kolloquium des SFB 372, Vol. 3, Universität Bremen (1998) pp 31–52Google Scholar
Jordan, N., Schröder, R., Harig, H. and Kienzler, R.Influences of the spray deposition process on the properties of copper and copper alloys, Mater. Sci. Engng. A326 (2002) 1: 51–62CrossRefGoogle Scholar
Kallien, L. Herstellung schnell erstarrter und hochunterkühlter Metallpulver, PhD thesis, RWTH, Aachen (1988)
Karl, A. Untersuchung der Wechselwirkung von Tropfen mit Wänden oberhalb der Leidenfrost-Temperatur, PhD thesis, Universität Stuttgart (1997)
Karl, A., Rieber, M., Schelkle, M., Anders, K. and Frohn, A.Comparison of new numerical results for droplet wall interactions with experimental results, Fluids Engng Division 236 (1996): 201–6Google Scholar
Kelkar, K. M., Hou, Z., Patankar, S. V., Minisandram, R. S., Forbes Jones, R. M., Carter Jr., W. T., Srivatsa, S. K. and Madden, C. Mathematical model of the clean metal spray forming process, Proc. 4th International Conference on Spray Forming, Baltimore MD (1999)
Kienzler, R. and Schröder, R.Entwicklung von Materialmodellen zur Beschreibung des Spannungszustandes und der Porendichte in sprühkompaktierten Komponenten, Sprühkompaktieren, Arbeits- und Ergebnisbericht 1994–1997, Kolloquium des SFB 372, Universität Bremen (1997) pp 389–428Google Scholar
Klar, E. and Fesko, J. W. Powder Metallurgy Metals Handbook, Vol. 7, American Society for Metals, Materials Park, OH (1984)
Klein, M., Sadiki, A. and Janicka, J.Influence of the inflow conditions on the direct numerical simulation of primary breakup of liquid jets, ILASS-Europe 2001, Zürich (2001) pp 475–80Google Scholar
Klein, M., Sadiki, A. and Janicka, J.Untersuchung des Primärzerfalls eines Flüssigkeitsfilms: Vergleich direkte numerische Simulation, Experiment und lineare Theorie, Spray 2002, Freiberger Forschungshefte A 870 Verfahrenstechnik, TU-Bergakademie Freiberg (2002) pp 63–72Google Scholar
Knight, R., Smith, R. W. and Lawley, A.Spray forming research at Drexel University, Int. J. Powder Metall. 31 (1995) 3: 205–13Google Scholar
Kohnen, G. Über den Einfluß der Phasenwechselwirkungen bei turbulenten Zweiphasenströmungen und deren numerische Erfassung in der Euler-Lagrange Betrachtungsweise, Dissertation, Universität Halle-Wittenberg (1997)
Kothe, D. B. and Mjolsness, R. C.RIPPLE: a new model for incompressible flows with free surfaces, AIAA Journal 30 (1992): 11Google Scholar
Kozarek, R. L., León, D. D. and Mansour, A.An investigation of linear nozzles for spray forming aluminium sheets, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 141–60Google Scholar
Kozarek, R. L., Chu, M. G. and Pien, S. J. An approach to minimize porosity in spray formed deposits through a model-based designed experiment, in: Marsh, S. P. et al. (eds.) Solidification 1998, The Minerals, Metals & Materials Society, Warrendale, PA (1998) pp 461–71
Kramer, C., Uhlenwinkel, V. and Bauckhage, K. The sticking efficiency at the spray forming of metals, in: Wood, J. V. (ed.) Proc. 3rd International Conference on Spray Forming, Cardiff, 1996, Osprey Metals Ltd, Neath (1997)
Kramer, C. Die Kompaktierungsrate beim Sprühkompaktieren von Gauß-förmigen Deposits, Dissertation, Universität Bremen (1997)
Krauss, M., Bergmann, D. and Fritsching, U.In-situ particle temperature, velocity and size measurements in the spray forming process, Proc. Spray Deposition and Melt Atomization SDMA 2000, 26–28 June, Bremen, 26–28 June (2000) pp 659–70. Also: Mater. Sci. Engng. A326 (2002) 1: 154–64Google Scholar
Lafaurie, B., Mantel, T. and Zaleski, S. Direct Navier–Stokes simulations of the near-nozzle region, in: Yule, A. J. (ed.) Proc. ILASS-Europe'98, 6–8 July, Manchester (1998) pp 54–9
Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S. and Zanetti, G.Modelling merging and fragmentation in multiphase flows with SURFER, J. Comp. Phys. 133 (1994): 134–47CrossRefGoogle Scholar
Lampe, K. Experimentelle Untersuchung und Modellierung der Mehrphasenströmung im düsennahen Bereich einer Öl-Brenner-Düse, Dissertation, Universität Bremen (1994)
Launder, B. E. and Spalding, D. B.The numerical computation of turbulent flows, Comp. Meth. Appl. Mech. Engng. 3 (1974): 269–89CrossRefGoogle Scholar
Lavernia, E. J.Spray atomization and deposition of metal matrix composites, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 63–122Google Scholar
Lavernia, E. J., Ayers, J. D. and Srivastan, T. S.Rapid solidification processing with specific application to aluminium alloys, Int. Mater. Rev. 37 (1992): 1–44CrossRefGoogle Scholar
Lavernia, E. J., Baram, J. and Gutierrez, E. M.Precipitation and excess solid solubility in Mg–Al–Zr and Mg–Zn–Zr alloys processed by spray atomization and deposition, Mater. Sci. Engng. A132 (1991): 119–33CrossRefGoogle Scholar
Lavernia, E. J., Gomez, E. and Grant, N. J.The structures and properties of Mg–Zn–Zr and Mg–Zn–Zr alloys produced by LDC, Mater. Sci. Engng. A95 (1987): 225–36CrossRefGoogle Scholar
Lavernia, E. J., Rai, G. and Grant, N. J.Rapid solidification processing of 7XXX aluminum alloys: a review, Mater. Sci. Engng. A79 (1986): 211–21CrossRefGoogle Scholar
Lavernia, E. J., Gutierrez, E. M., Szekely, J. and Grant, N. J.A mathematical model of the liquid dynamic compaction process. part 1: heat flow in gas atomization, Int. J. Rapid Solidification 4 (1988): 89–124Google Scholar
Lavernia, E. J. and Wu, Y. Spray Atomization and Deposition, J. Wiley & Sons, Chichester (1996)
Lawley, A. Atomization – The Production of Metal Powders, Metal Powder Industries Federation, Princeton, NJ (1992)
Lawley, A.Melt atomization and spray deposition – quo vadis, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 3–16Google Scholar
Lawley, A., Mathur, P., Apelian, D. and Meystel, A.Sprayforming: process fundamentals and control, Powder Metall. 33 (1990): 109–11CrossRefGoogle Scholar
Leatham, A. Spray forming: alloys, products, and markets, J. Metals51 (1999): 4, web-edition: http://www.tms.org/pubs/journals/JOM/9904/Leatham/Leatham-9904.html
Leatham, A. G., Brooks, R. G., Coombs, J. S. and Ogilvy, G. W. in: Wood, J. Proc. 1st International Conference on Spray Forming, 17–19 September 1990, Osprey Metals Ltd, Neath, Paper 1 (1991)
Leatham, A. G. and Lawley, A.The Osprey process: principles and applications, Int. J. Powder Metall. 29 (1993) 4: 321–9Google Scholar
Lee, E. and Ahn, S.Solidification progress and heat transfer analysis of gas atomized alloy droplets during spray forming, Acta Metall. Mater. 42 (1994) 9: 3231–43CrossRefGoogle Scholar
Lee, J., Yung, J. Y., Lee, E.-S., Park, W. J., Ahn, S. and Kim, N. J.Dispersion strengthened Cu alloys fabricated in-situ by spray forming, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 7–20Google Scholar
Lefebvre, A. H. Atomization and Sprays, Hemisphere, New York (1989)
Leschziner, M. A. and Rodi, W.Calculation of annular and twin parallel jets using various discretization schemes and turbulence-model variations, J. Fluids Engng. 103 (1981): 352–60CrossRefGoogle Scholar
Levi, C. G.The evolution of microcrystalline structures in supercooled metal powders, Metall. Trans. A 19A (1988): 699–708CrossRefGoogle Scholar
Levi, C. G. and Mehrabian, R.Heat flow during rapid solidification of undercooled metal droplets, Metall. Trans. A: Phys. Metall. Mater. Sci. 13A (1982): 221–34CrossRefGoogle Scholar
Levich, V. G. Physicochemical Hydrodynamics, Prentice Hall, NJ (1962)
Li, B., Liang, XO., Earthman, J. C. and Lavernia, E. J.Two dimensional modeling of momentum and thermal behaviour during spray atomization of γ-TiAl, Acta Mater. 44 (1996) 6: 2409–20CrossRefGoogle Scholar
Li, J. PhD thesis, University of Paris VI (1996)
Li, X.Mechanism of atomization of a liquid jet, Atomiz. & Sprays 5 (1995): 89–105CrossRefGoogle Scholar
Li, X. and Tankin, R. S.Droplet size distribution: a derivation of Nukyama–Tanasawa type distribution function, Combust. Sci. Technol. 56 (1987): 65Google Scholar
Liang, X., Earthman, J. C. and Lavernia, E. J.On the mechanism of grain formation during spray atomization and deposition, Acta Metall. Mater. 40 (1992) 11: 3003–16CrossRefGoogle Scholar
Liang, X. and Lavernia, E. J.Solidification and microstructure evolution during spray atomization and deposition of Ni3Al, Mater. Sci. Engng. A161 (1993): 221–35CrossRefGoogle Scholar
Liang, X. and Lavernia, E. J.Evolution of interaction domain microstructure during spray deposition, Metall. Mater. Trans. A 25A (1994): 2341–9CrossRefGoogle Scholar
Libera, M., Olsen, G. B. and Sande, J. B.Heterogeneous nucleation of solidification in atomized liquid metal droplets, Mater. Sci. Engng., A132 (1991): 107–18CrossRefGoogle Scholar
Liu, H. Berechnungsmodelle für die Geschwindigkeiten und die Abkühlung von Tropfen im Sprühkegel einer Stahl-Zerstäubungsanlage, Dissertation, Universität Bremen (1990)
Liu, H. Numerical modelling of gas atomization in spray forming process, Proc. 1997 TMS Annual Meeting, 9–13 February, Orlando, FL (1997)
Liu, H. Science and Engineering of Droplets: Fundamentals and Applications, William Andrew, Norwich, NA (2000a)
Liu, H. Spray forming, in: Yu, K. O. Modelling and Simulation for Casting and Solidification: Theory and Applications, Marcel Dekker Inc, NY (2000b)
Liu, H., Lavernia, E. J. and Rangel, R. H.Numerical simulation of substrate impact and freezing of droplets in plasma spray processes, J. Phys. D: Appl. Phys. 26 (1993): 1900–8CrossRefGoogle Scholar
Liu, H., Lavernia, E. J. and Rangel, R. H.Numerical investigation of micropore formation during substrate impact of molten droplets in plasma spray processes, Atomiz. & Sprays 4 (1994a): 369–84CrossRefGoogle Scholar
Liu, H., Rangel, R. H. and Lavernia, E. J.Modeling of reactive atomization and deposition processing of Ni3Al, Acta Metall. Mater. 42 (1994b) 10, 3277–89CrossRefGoogle Scholar
Löffler-Mang, M. Düsenströmung, Tropfenentstehung und Tropfenausbreitung bei rücklaufgeregelten Drall-Druckzerstäubern, Dissertation, Universität Karlsruhe (1992)
Love, E., Grisby, C. E., Lee, P. L. and Woodling, M. J. Experimental and Theoretical Studies of Axisymmetric Free Jets, NACA Technical Report R-6, Hanover, MD (1959)
Low, T. B. and List, R.Collision, coalescence and breakup of raindrops, J. Atmosph. Sci. 39 (1982): 1591–6182.0.CO;2>CrossRefGoogle Scholar
Lozano, A., Call, C. J. and Dopazo, C. An experimental and numerical study of the atomization of a planar liquid sheet, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS'94, July, Rouen (1994)
Lubanska, H.Correlation of spray ring data for gas atomization of liquid droplets, J. Metals 2 (1970): 45–9Google Scholar
Madejski, J.Solidification of droplets on a cold surface, Int. J. Heat Mass Transfer 19 (1976): 1009–18CrossRefGoogle Scholar
Madejski, J.Droplets on impact with a solid surface, Int. J. Heat Mass Transfer 26 (1983): 1095–8CrossRefGoogle Scholar
Majagi, S. I., Ranganathan, K., Lawley, A. and Apelian, D. Microstructural Design by Solidification Processing, TMS Conference Proceedings, Warrendale, PA (1992) 139 ff
Malin, M. R. On the Prediction of Radially Spreading Turbulent Jets, CHAM Technical Report TR 143, London (1987)
Malot, H. and Dumouchel, C. Volume-based spray drop size distribution: derivation of a generalized gamma distribution from the application of the maximum entropy formalism, CD-ROM Proc. ILASS-Europe'99, 5–7 July, Toulouse (1999)
Manson-Whitton, E. D., Stone, I. C., Jones, J. R., Grant, P. S. and Cantor, B.Isothermal grain coarsening of spray formed alloys in the semi-solid state, Acta Materialia 50 (2002): 2517–25CrossRefGoogle Scholar
Markus, S. and Fritsching, U. Spray forming with multiple atomization, Proc. Spray Deposition and Melt Atomization SDMA 2003, 22–25 June, Bremen (2003)
Markus, S., Fritsching, U. and Bauckhage, K.Jet break up of liquid metals, Proc. Spray Deposition and Melt Atomization SDMA 2000, 26–28 June, Bremen (2000) pp 497–510. Also: Mater. Sci. Engng. A326 (2002) 1: 122–33Google Scholar
Masuda, W. and Moriyama, E.Aerodynamic characteristics of coaxial impinging jets, JSME Int. J. Series B, 37 (1994) 4: 749–75CrossRefGoogle Scholar
Mathur, P., Annavarapu, S., Apelian, D. and Lawley, A.Process control, modeling and applications of spray casting, J. Metals 41 (1989b): 23–8Google Scholar
Mathur, P., Annavarapu, S., Apelian, D. and Lawley, A.Spray casting: an integral model for process understanding and control, Mater. Sci. Engng. A142 (1991): 261–70CrossRefGoogle Scholar
Mathur, P., Apelian, D. and Lawley, A.Analysis of the spray deposition process, Acta Metall. 37 (1989a) 2: 429–43CrossRefGoogle Scholar
Matteson, M. A., Madden, C. and Moran, A. L. An approach to modelling the spray-forming process with artificial neural networks, Proc. International Conference on Spray Forming, ICSF-2, 13–15 September, Swansea (1993)
Maxey, M. R. and Riley, J. J.Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids 26 (1983): 883–9CrossRefGoogle Scholar
Mayer, W. Zur koaxialen Flüssigkeitszerstäubung im Hinblick auf die Treibstoffaufbereitung in Raketentriebwerken, Dissertation, Universität Erlangen (1993)
Medwell, J. O.; Gethin, D. T. and Muhamad, N. Analysis of the Osprey preform deposition process, in Advances in Powder Matallurgy and Particulate Materials 1992, Vol. 1: Powder Production and Spray Forming, MPIF, Princeton, NJ, pp 249–71
Megaridis, C. M.Presolidification liquid metal droplet cooling under convective conditions, Atomiz. & Sprays 3 (1993) 2: 171–91CrossRefGoogle Scholar
Menchaca-Rocha, A., Huidobro, F., Martinez-Davalos, A., Michaelian, K., Perez, A., Rodriguez, V. and Carjan, N.Coalescence and fragmentation of colliding mercury drops, J. Fluid Mech. 346 (1997): 291–318CrossRefGoogle Scholar
Meyer, O., Fritsching, U. and Bauckhage, K.Numerical investigation of alternative process conditions for influencing the thermal history of spray deposited billets, Proc. Spray Deposition and Melt Atomization SDMA 2000, 26–28 June, Bremen (2000) pp 771–88Google Scholar
Meyer, O., Fritsching, U. and Bauckhage, K.Numerical investigation of alternative process conditions for influencing the thermal history of spray deposited billets, Int. J. Thermal Sci. 42 (2003): 153–68CrossRefGoogle Scholar
Meyer, O., Schneider, A., Uhlenwinkel, V. and Fritsching, U.Convective heat transfer from a billet due to an oblique impinging circular jet within the spray forming process, Int. J. Thermal Sci. 42 (2003) 6: S561–9CrossRefGoogle Scholar
Middleman, S. Modeling Axisymmetric Flows, Dynamics of Films, Jets, and Drops, Academic Press, San Diego, CA (1995)
Miles, J. W.On the generation of surface waves by shear flows, Part 1: J. Fluid Mech. 3 (1957): 185–204CrossRefGoogle Scholar
Miles, J. W.On the generation of surface waves by shear flows, Part 2: J. Fluid Mech. 6 (1958): 568–82CrossRefGoogle Scholar
Miles, J. W.On the generation of surface waves by shear flows, Part 3: J. Fluid Mech. 7 (1960): 469–478CrossRefGoogle Scholar
Miles, J. W.On the generation of surface waves by shear flows, Part 4: J. Fluid Mech. 13 (1961): 433–48CrossRefGoogle Scholar
Mingard, K. P., Alexander, P. W., Langride, S. J., Tomlinson, G. A. and Cantor, B.Direct measurement of sprayform temperatures and the effect of liquid fraction on microstructure, Acta Mater. 46 (1998) 10: 3511–21CrossRefGoogle Scholar
Mingard, K. P., Cantor, B., Palmer, I. G., Hughes, I. R., Alexander, P. W., Willis, T. W. and White, J.Macro-segregation in aluminium alloy spray formed billets, Acta Mater. 48 (2000): 2435–49CrossRefGoogle Scholar
Minisandram, R. S., Forbes Jones, R. M., Kelkar, K. M., Patankar, S. V. and Carter, W. T. Jr.Prediction of thermal history of preforms produced by the clean metal spray forming process, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 789–802. Also: Mater. Sci. Engng. A326 (2002) 1: 184–93Google Scholar
Moran, A. L. and White, D. R.Developing intelligent control for spray forming processes, J. Metals 42 (1990) 7: 21–4Google Scholar
Müller, F. G., Benz, M. G., Carter, W. T. Jr., Forbes, R. M. und Leatham, A.Neues Verfahren zur Herstellung von Pulver, Formteilen oder Halbzeugen aus Titan oder keramikfreien Superlegierungen;Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 169–88Google Scholar
Müller, H. R.Eigenschaften und Einsatzpotential sprühkompaktierter Kupferlegierungen, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 33–56Google Scholar
Mullis, A. M. and Cochrane, R. F.Grain refinement and the stability of dendrites growing into undercooled pure metals and alloys, J. Appl. Phys. 82 (1997): 3783–90CrossRefGoogle Scholar
Mundo, C. Zur Sekundärzerstäubung newtonscher Fluide an Oberflächen, Dissertation, Universität Erlangen (1996)
Mundo, C., Sommerfeld, M. and Tropea, C.Droplet–wall collisions: experimental studies of the deformation and breakup process, Int. J. Multiphase Flow 21 (1995): 151–73CrossRefGoogle Scholar
Muoio, N. G., Crowe, C. T., Bergmann, D. and Fritsching, U. Numerical simulation of the turbulent gas-droplet field in spray forming, 3rd International Symposium on Engineering Turbulence Modelling and Measurements, 27–29 May, Kreta (1996)
Muoio, N. G., Crowe, C. T., Bergmann, D. and Fritsching, U. Numerical simulation of spray temperature in spray forming process by ceramic powder injection, ASME IMECE Multiphase Flow and Heat Transfer in Materials Processing, 17–22 November, Atlanta, GA (1996)
Muoio, N. G., Crowe, C. T., Fritsching, U. and Bergmann, D.Modelling metal droplet sprays in spray forming, ASME Fluids Engng Division 223 (1995): 111–15Google Scholar
Muoio, N., Crowe, C. T., Fritsching, U. and Bergmann, D. Effect of thermal coupling on numerical simulations of the spray forming process, Proc. 2nd International Symposium on Numerical Methods for Multiphase Flows, 7–11 July, San Diego, CA (1996)
Nasr, G. G., Yule, A. J. and Bendig, L. Industrial Sprays and Atomization: Design, Analysis and Applications, Springer-Verlag, Heidelberg (2002)
Nichiporenko, O. S. and Naida, Y. I.Soviet Powder Metallurgy Metal Ceramics 67 (1968): 509CrossRef
Nichols, B. D., Hirt, C. W. and Hotchkiss, R. S. SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries, Report LA-8355, Los Alamos Scientific Laboratory, NM (1980)
Nigmatulin, R. I. Dynamics of Multiphase Media, Vols. 1 and 2, Hemisphere, Washington, DC (1990, 1991)
Nobari, M. R. H. and Tryggvason, G.Numerical simulations of three-dimensional drop collisions, AIAA Journal 34 (1996): 750–5CrossRefGoogle Scholar
Nobari, M. R. H., Jan, Y.-J. and Tryggvason, G.Head-on collision of drops – a numerical investigation, Phys. Fluids 8 (1996): 29–42CrossRefGoogle Scholar
Norman, A. F., Eckler, K., Zambon, A., Gartner, F., Moir, S. A., Ramous, E., Herlach, D. M. and Greer, A. L.Application of microstructure-selection maps to droplet solidification: a case study of the Ni–Cu system, Acta Mater. 46 (1998) 10: 3355–70CrossRefGoogle Scholar
Nunez, L. A., Lobel, T. and Palma, R.Atomizers for molten metals: macroscopic phenomena and engineering aspects, Atomiz. & Sprays 9 (1999) 6: 581–600CrossRefGoogle Scholar
Obermeier, F. (ed.) 7. Workshop über Techniken der Fluidzerstäubung und Untersuchungen von Sprühvorgängen, Spray 2002, Freiberger Forschungshefte A 870 Verfahrenstechnik, TU-Bergakademie, Freiberg (2002)
Oertel, H. und Laurien, E. Numerische Strömungsmechanik, 2. Aufl. Vieweg Braunschweig (2003)
Ojha, S. N., Jha, J. N. and Singh, S. N.Microstructural modification in Al–Si eutectic alloy produced by spray deposition, Scripta Metall. Mater. 25 (1991): 443–7CrossRefGoogle Scholar
Ojha, S. N., Tripathi, A. K. and Singh, S. N.Spray atomization and deposition of an Al–4Cu–20Pb alloy, Powder Metall. Int. 25 (1993) 2: 65–9Google Scholar
Orme, M.A novel technique of rapid solidification net-form materials synthesis, J. Mater. Engng. Perform. 2 (1993) 3: 399–405CrossRefGoogle Scholar
Orme, M. and Huang, C.Phase change manipulation for droplet-based solid freeform fabrication, J. Heat Transfer 119 (1997): 818–23CrossRefGoogle Scholar
Orme, M., Liu, Q. and Fischer, J. Mono-disperse aluminium droplet generation and deposition for net-form manufacturing of structural components, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS 2000, 16–20 July, Passadena, CA (2000)
O'Rourke, P. J. Collective drop effects on vaporizing liquid sprays, PhD thesis, Los Alamos National Laboratory, NM (1981)
O'Rourke, P. J. and Amsden, A. A. The TAB Method for Numerical Calculation of Spray Droplet Breakup, Report LA-UR-87–2105, Los Alamos National Laboratory, NM (1987)
Ottosen, P. Numerical simulation of spray forming, PhD thesis, Technical University of Denmark, TM.93.27 (1993)
Ozols, A. and Sancho, E.Solidification rates in centrifugal atomisation, Proc. 1998 PM World Congress, Vol. 1, 18–22 October, Grenada (1998) pp 179–84Google Scholar
Panchagnula, M. V., Sojky, P. E. and Bajaj, A. K. The non-linear breakup of annular liquid sheets, in: Yule, A. J. (ed.) Proc. ILASS-Europe'98, 6–8 July, Manchester, (1998) pp 36–41
Pasandideh-Fard, M., Bhola, R., Chandra, S. and Mostaghimi, J.Deposition of tin droplets on a steel plate: simulations and experiments, Int. J. Heat Mass Transfer 41 (1998): 2929–45CrossRefGoogle Scholar
Pasandideh-Fard, M., Mostaghimi, J. and Chandra, S. Modeling sequential impact of two molten droplets on a solid surface, Proc. ILASS-America, Indianapolis, IN (1999)
Pasandideh-Fard, M., Qiao, Y. M., Chandra, S. and Mostaghimi, J.Capillary effects during droplet impact on a solid surface, Phys. Fluids 8 (1996): 650–9CrossRefGoogle Scholar
Passow, C. H., Chun, J. H. and Ando, T.Spray deposition of a Sn–40 wt.% Pb alloy with uniform droplets, Metall. Trans. A 24A (1993): 1187–93CrossRefGoogle Scholar
Patankar, S. V. Numerical Heat Transfer and Fluid Flow, McGraw-Hill, Columbus, OH (1981)
Payne, R. D., Matteson, M. A. and Moran, A. L.Application of neural networks in spray forming technology, Int. J. Powder Metall. 29 (1993) 4: 345–51Google Scholar
Payne, R. D., Rebis, A. L. and Moran, A. L.Spray forming quality predictions via neural networks, J. Mat. Engng. and Perf. 2 (1996) 5: 693–702CrossRefGoogle Scholar
Pedersen, T. P., Hattel, J. H., Proyds, N. H., Pedersen, A. S., Buchholz, M. and Uhlenwinkel, V.A new integrated numerical model for spray atomization and deposition: comparison between numerical results and experiments, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 813–24Google Scholar
Pedersen, T. B. Spray forming – a new integrated numerical model, PhD thesis, Technical University of Denmark (2003)
Petersen, K., Pedersen, A. S., Pryds, N., Thorsen, K. A. and List, J. L.The effect of particles in different sizes on the mechanical properties of spray formed steel composites, Mater. Sci. Engng. A326 (2002) 1: 40–50CrossRefGoogle Scholar
Pien, S. J., Luo, J., Baker, F. W. and Chyu, M. K.Numerical simulation of a complex spray forming process, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 161–8Google Scholar
Pilch, M. and Erdmann, C. A.Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop, Int. J. Multiphase Flow 13 (1987): 741–57CrossRefGoogle Scholar
Poulikakos, D. and Waldvogel, J. M.Heat transfer and fluid dynamics in the process of spray deposition, Adv. Heat Transfer 28 (1996): 1–74CrossRefGoogle Scholar
Prakash, C. and Voller, V.On the numerical solution of continuum mixture model equations describing binary solid–liquid phase change, Numer. Heat Transfer B 15 (1989): 171–89CrossRefGoogle Scholar
Prud'homme, R. and Ordonneau, G. The maximum entropy method applied to liquid jet atomization, CD-ROM Proc. ILASS-Europe'99, 5–7 July, Toulouse (1999)
Pryds, N. H. and Hattel, J. H.Numerical modelling of rapid solidification, Modelling Simul. Mater. Sci. Engng. 5 (1997): 451–72CrossRefGoogle Scholar
Pryds, N., Hattel, J. H., Pedersen, T. B. and Thorborg, J.An integrated numerical model of the spray forming process, Acta Mater. 50 (2002): 4075–91CrossRefGoogle Scholar
Pryds, N., Hattel, J. H. and Thorborg, J.A quasi-stationary numerical model of atomized metal droplets, II: prediction and assessment, Modelling Simul. Mater. Sci. Engng. 7 (1999): 431–46CrossRefGoogle Scholar
Quested, P. N., Brooks, R. F., Day, A. P., Richardson, M. J. and Mills, K. C. The physical properties of alloys relevant to spray forming, in: Wood, J. V. (ed.) Proc. 3rd International Conference on Spray Forming, 1996, Cardiff, Osprey Metals Ltd, Neath (1997)
Qian, J. and Law, C. K.Regimes of coalescence and separation in droplet collision, J. Fluid Mech. 331 (1997): 59–80CrossRefGoogle Scholar
Rai, G., Lavernia, E. J. and Grant, N. J.Factors influencing the powder size and distribution in ultrasonic gas atomization, J. Metals 37 (1985) 8: 22–6Google Scholar
Rampant Release 4.0.14, Copyright 1996 Fluent Inc. Hanover, NH
Rangel, R. H. and Sirignano, W. A.The linear and nonlinear shear stability of a fluid sheet, Phys. Fluids A3 (1991) 10: 2392–400CrossRefGoogle Scholar
Ranz, W. E. and Marshall, W. R.Evaporation from drops – I and II, Chem. Eng. Prog. 48 (1952): 141 and 173Google Scholar
Rao, K. P. and Mehrotra, S. P. in: Hausner, H. et al. (eds.) Modern Developments in Powder Metallurgy, Vol. 12, Metal Powder Industries Federation, Princeton, NJ (1980) pp 113–30
Rau, S. Überprüfung der Eignung von CFD-Simulationsrechnungen zur Ermittlung von Wärmeübergangskoeffizienten auf einer Bolzenoberfläche in einer einphasigen Freistrahlströmung, Studienarbeit thesis, University Bremen (2002)
Rayleigh, Lord, On the stability of jets, Proc. London Math. Soc. 10 (1878): 4–13CrossRefGoogle Scholar
Rebis, R., Madden, C., Zappia, T. and Cai, C. Computer aided process planning and simulation for the Osprey spray forming process, in: Wood, J. V. (ed.) Proc. 3rd International Conference on Spray Forming, 1996, Cardiff, Osprey Metals Ltd, Neath (1997)
Reeks, M. W. and McKee, S. The dispersive effect of Basset history forces on particle motion in a turbulent flow, Phys. Fluids27 (1984) 7: 1573 ff
Reich, W. and Rathjen, K. D. Numerische Simulation des Tropfenpralls auf feste, ebene Flächen, Studienarbeit Fachgebiet Verfahrenstechnik der Universität Bremen (1990)
Reichelt, W.Stand der industriellen Anwendung des Sprühkompaktierens, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 189–98Google Scholar
Reichelt, L., Pawlowski, A. and Renz, U. Numerische Untersuchungen zum aerodynamischen Tropfenzerfall mit der Volume-of-Fluid (VOF)-Methode, Freiberger Forschungshefte A 870 Verfahrenstechnik, TU-Bergakademie, Freiberg (2002) pp 133–42
Rein, M.Phenomena of liquid drop impact on solid and liquid surfaces, Fluid Dynamics Research 12 (1993): 61–93CrossRefGoogle Scholar
Rein, M.The transitional regime between coalescing and splashing drops, J. Fluid Mech. 306 (1996): 145–65CrossRefGoogle Scholar
Rein, M.Spray deposition: the importance of droplet impact phenomena, Kolloquium des SFB 372, Vol. 3, Universität Bremen (1998) pp 115–38Google Scholar
Reitz, R. D. Mechanisms of breakup of round liquid jets, PhD thesis, Princeton University, NJ (1978)
Reitz, R. D. and Bracco, F. V.Mechanism of atomization of a liquid jet, Phys. Fluids 25 (1982) 10: 1730–42CrossRefGoogle Scholar
Reitz, R. D. and Diwarkar, R. Structure of high pressure fuel sprays, The Engineering Society for Advancing Mobility, Land, Sea, Air, and Space, Warrendale, PA, Paper 870598 (1987)
Ridder, S. D. and Biancaniello, F. S.Process control during high pressure atomization, Mater. Sci. Engng. 98 (1988): 47–51CrossRefGoogle Scholar
Ridder, S. D., Osella, S. A., Espina, P. I. and Biancaniello, F. S.Intelligent control of particle size distribution during gas atomization, Int. J. Powder Metall. 28 (1992) 2: 133–8Google Scholar
Rieber, M. and Frohn, A. Numerical simulation of splashing drops, Proc. ILASS'98, 6–8 July, Manchester (1998)
Rioboo, R., Marengo, M. and Tropea, C.Time evolution of liquid drop impact onto solid, dry surfaces, Exp. Fluids 33 (2002): 112–24CrossRefGoogle Scholar
Roach, S. J., Henein, H. and Owens, D. C.A new technique to measure dynamically the surface tension, viscosity and density of molten metals, Light Metals 4 (2001): 1285–91Google Scholar
Roe, P. L.Characteristic based schemes for the Euler equations, Ann. Rev. Fluid Mech. 18 (1986): 337–86CrossRefGoogle Scholar
Roisman, I. V., Rioboo, R. and Tropea, C. Model for single drop impact on dry surfaces, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS 2000, Pasadena, CA (2000)
Roisman, I. V. and Tropea, C.Impact of a drop onto a wetted wall: description of crown formation and propagation, J. Fluid Mech 472 (2002): 373–97CrossRefGoogle Scholar
Rosten, H. I. and Spalding, D. B. The PHOENICS reference manual, CHAM Technical Report TR/200, London (1987)
Rückert, F. und Stöcker, P.Die neue Alunimium-Silizium-Zylinderlaufbahn-Technologie für Kurbelgehäuse aus Aluminiumdruckguß, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 45–60Google Scholar
Rüger, M., Hohmann, S., Sommerfeld, M. and Kohnen, G.Euler/Lagrange calculations of turbulent spray: the effect of droplet collisions and coalescence, Atomiz. & Sprays 10 (2000) 1: 47–82CrossRefGoogle Scholar
Rumberg, O. and Rogg, B. Spray modelling via a joint-PDF formulation for two-phase flow, CD-ROM Proc. ILASS-Europe'99, 5–7 July, Toulouse (1999)
Sadhal, S. S., Ayyaswamy, P. S. and Chung, J. N. Transport Phenomena with Drops and Bubbles, Mechanical Engineering Series, Springer Verlag, New York (1997)
Samenfink, W., Elsäßer, A. and Dullenkopf, K.Secondary breakup of liquid droplets: experimental investigation for a numerical description, Proc. Sixth International Conference on Liquid Atomization and Spray Systems ICLASS'94, 18–22 July, Palais des Congrès, Rouen (1994) pp 156–63Google Scholar
Sanmarchi, C., Liu, H., Lavernia, E. J., Rangel, R. H., Sickinger, A.and Mühlberger, E., Numerical analysis of the deformation and solidification of a single droplet impinging on a flat surface, J. Mater. Sci. 28 (1993): 3313–21Google Scholar
Sarkar, S. and Balakrishnan, L. Application of a Reynolds-stress turbulence model to the compressible shear layer, ICASE Report 90–18, NASA CR 182002 (1990)
Scardovelli, R. and Zaleski, S.Direct numerical simulation of free-surface and interfacial flow, Ann. Rev. Fluid Mech. 31 (1999): 567–603CrossRefGoogle Scholar
Schatz, A. Prozeßsimulation für die Herstellung von Metallschmelzen durch die Gas- und Wasserzerstäubung, lecture skript held at IWT Bremen, 29 September (1994)
Schelkle, M., Rieber, M., and Frohn, A.Comparison of lattice Boltzmann and Navier–Stokes simulations of three-dimensional free surface flows, Fluids Engng Division 236 (1996) Fluids Engng. Div. Conf. Vol. 1 ASME 1996: 207–212Google Scholar
Scheller, B. L. and Bousfield, D. W.Newtonian drop impact with a solid surface, AIChE Journal 41 (1995) 6: 1357–67CrossRefGoogle Scholar
Schmaltz, K. and Amon, C.Experimental verification of an impinging molten metal droplet numerical simulation, Proc. ASME Heat Transfer Div. 317 (1995): 219–26Google Scholar
Schmehl, R. CFD analysis of fuel atomization, secondary droplet breakup and spray dispersion in the premix duct of a LPP combustor, 8. International Conference on Liquid Atomization and Spray Systems ICLASS, July Passadena, CA, (2000)
Schneider, A., Meyer, O., Tillwick, F., Uhlenwinkel, V.und Fritsching, U. Konvektiver Wärmeübergang an einem schräg angeströmten Bolzen in einer turbulenten Düsenströmung, Kolloquium des SFB 372, Vol. 5, Universität Bremen (2001) pp 155–78Google Scholar
Schneider, A.Uhlenwinkel, V. und Bauckhage, K.Zum Ausfließen von Metallschmelzen, Kolloquium des SFB 372, Vol. 5, Universität Bremen (2001) pp 69–96Google Scholar
Schneider, S. and Walzel, P. Zerfall von Flüssigkeiten bei Dehnung im Schwerefeld, in: Walzel, P. and Schmidt, D. (eds.) Proc. SPRAY'98, 13–14 October, Essen (1998)
Schönung, B. E. Numerische Strömungsmechanik, Springer Verlag, Berlin 1990
Schröder, R. und Kienzler, R.Kontinuumsmechanische Untersuchungen an sprühkompaktierten Deposits, Härt.-Tech.-Mitteilung 3 (1998a): 172–8Google Scholar
Schröder, R. und Kienzler, R.Numerische Untersuchungen an sprühkompaktierten bolzenförmigen Deposits, Kolloquium des SFB 372, Vol. 3, Universität Bremen (1998b) pp 93–114Google Scholar
Schröder, T. Tropfenbildung an Gerinneströmungen im Schwere- und Zentrifugalfeld, Fortschr. Ber. VDI Reihe 3: Verfahrenstechnik, No. 503, VDI-Verlag, Düsseldorf (1997)
Schulz, G. Economic production of fine, prealloyed MIM powders by the NANOVAL gas atomization process, Adv. Powder Metall. & Part. Materials – 1996, Metal Powder Industries Federation, Princeton, NJ (1996) pp 1–35 – 1–41
Sellens, R. W. and Brzustowski, T. A.A prediction of the drop size distribution in a spray from first principles, Atomiz. & Spray Technol. I (1985): 85Google Scholar
Sellens, R. W.Prediction of the drop size and velocity distribution in a spray based on the maximum entropy formalism, Part. Part. Syst. Charact. 6 (1989): 17CrossRefGoogle Scholar
Seok, H. K., Lee, H. C., Oh, K. H., Lee, J.-C., Lee, H. I. and Ra, H. Y.Formulation of rod forming models and their application to spray forming, Metall. Mater. Trans. A 31A (2000): 1479–88CrossRefGoogle Scholar
Seok, H. K., Yeo, D. H., Oh, K. H., Lee, J.-C., Lee, H.-I. and Ra, H. Y.A three-dimensional model of the spray forming method, Metall. Mater. Trans. A 29 (1998): 699–708CrossRefGoogle Scholar
Seok, H. K., Yeo, D. H., Oh, K. H., Ra, H. Y. and Shin, D. S. 3-dimensional forming model of rod in spray forming method, in: Wood, J. V. (ed.) Proc. 3rd International Conference on Spray Forming, 1996, Cardiff, Osprey Metals Ltd, Neath (1997)
Shan, X. and Chen, H.Simulation of non-ideal gases and liquid–gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E 49 (1994): 2941–8CrossRefGoogle Scholar
Shannon, C. E. and Weaver, W. The Mathematical Theory of Communication, University of Illinois Press, Urbana, IL (1949)
Shokoohi, F. and Elrod, H. G.Numerical investigation of the disintegration of liquid jets, J. Comput. Phys. 71 (1987): 324–42CrossRefGoogle Scholar
Shukla, P., Mandal, R. K. and Ojha, S. N.Non-equilibrium solidification of undercooled droplets during atomization process, Bull. Mater. Sci. 24 (2001) 5: 547–54CrossRefGoogle Scholar
Shukla, P., Mishra, N. S. and Ojha, S. N.Modeling of heat flow and solidification during atomization and spray deposition processing, J. Thermal Spray Technol. 12 (2003) 1: 95–100CrossRefGoogle Scholar
Singer, A. R. E.The principle of spray rolling of metals, Metal Mater. 4 (1970): 246–50Google Scholar
Singer, A. R. E. British Patent No. 1, 262, 471 (1972a)
Singer, A. R. E.Aluminium and aluminium-alloy strip produced by spray deposition and rolling, J. Inst. Metals 100 (1972b): 185–90Google Scholar
Singer, A. R. E.Recent developments and opportunities in spray forming, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 123–40Google Scholar
Singh, R. P., Lawley, A., Friedman, S. and Nurty, Y. V.Microstructure and properties of spray cast Cu–Zr alloys, Mater. Sci. Engng. A145 (1991): 243–55CrossRefGoogle Scholar
Sirignano, W. A. Fluid Dynamics and Transport of Droplets and Sprays, Cambridge University Press, New York (1999)
Sizov, A. M. Dispersion of Melts by Supersonic Gas Jets, Metallurgija, Verlag Moskau (1991)
Smith, M. F., Neiser, R. A. and Dykhuizen, R. C. NTSC'94, Proc. 7th National Thermal Spray Conference, 12–15 June, American Society of Metals, Boston, MA (1994)
Sommerfeld, M. Modellierung und numerische Berechnung von partikelbeladenen turbulenten Strömungen mit Hilfe des Euler/Lagrange Verfahrens, Verlag Shaker, Aachen (1996)
Song, J. L., Dowson, A., Jacobs, M. H., Brooks, J. K. and Beden, I.FE simulation of the ring rolling process and the implications of prior processing by low pressure centrifugal spray deposition, Adv. Technol. Plasticity 12 (1999): 2419–24Google Scholar
Spalding, D. B. The calculation of free-convection phenomena in gas–liquid mixtures, ICHMT Seminar, Dubrovnik (1976)
Spalding, D. B. Combustion and Mass Transfer, 1st Edn., Pergamon Press, Oxford (1979)
Spiegelhauer, C., Shaw, L., Overgaard, J. und Oaks, G.Horizontale Sprühkompaktierung von großen Bolzen aus Fe-Legierung, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 57–62Google Scholar
Spiegelhauer, C.Properties of spray formed highly alloyed tool steels, Kolloquium des SFB 372, Vol. 3, Universität Bremen (1998) pp 1–8Google Scholar
Spiegelhauer, C.State of the art for making tool steel billets by spray forming, Kolloquium des SFB 372, Vol. 5, Universität Bremen (2001) pp 63–8Google Scholar
Srivastava, V. C., Mandal, R. K. and Ojha, S. N.Monte Carlo simulation of droplet mass flux during gas atomization and deposition, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 855–868Google Scholar
STAR-CD, User Guide, Computational Dynamics Ltd (1999)
Sterling, A. M. and Schleicher, C. A.The instability of capillary jets, J. Fluid Mech. 68 (1975): 477–95CrossRefGoogle Scholar
Sterling, T. L., Salmon, J., Becker, D. J. and Savarese, D. F. How to Build a Beowulf, A Guide to the Implementation and Application of PC Clusters, MIT Press, Cambridge, MA (1999)
Su, Y. H. and Tsao, C. Y. A.Modeling of solidification of molten metal droplets during atomization, Metall. Mater. Trans. 28B (1997): 1249–55CrossRefGoogle Scholar
Taylor, G. I. Generation of Ripples by Wind Blowing over a Viscous Liquid, Collected Works of G. I. Taylor, Vol. 3 (1940)
The Aluminum Association, Aluminum Industry Technology Roadmap, The Aluminum Association, Washington, DC (1997)
Tillwick, F. Ermittlung von Wärmeübergangskoeffizienten an der Bolzenoberfläche in einer einphasigen Freistrahlströmung, Studienarbeit, Universität Bremen (2000)
Ting, J., Peretti, M. W. and Eisen, W. B.The effect of deep aspiration on gas-atomized powder yield, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 483–96, Also: Mater. Sci. Engng. A326 (2002) 1: 110–21Google Scholar
Tinscher, R., Bomas, H. und Mayr, P.Untersuchungen zum Sprühkompaktieren des Stahls 100Cr6, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 77–104Google Scholar
Torrey, M. D., Cloutman, L. D., Mjolsness, R. C. and Hirt, C. W. NASA-VOF2D: A Computer Program for Incompressible Flows with Free Surfaces, Report LA-10612-MS, Los Alamos Scientific, NM (1985)
Torrey, M. D., Mjolsness, R. C. and Stein, L. R. NASA-VOF3D: A Three-Dimensional Computer Program for Incompressible Flows with Free Surfaces, Report LA-11009-MS Los Alamos Scientific Laboratory, NM (1987)
Trapaga, G., Matthys, E. F., Valencia, J. J. and Szekely, J.Fluid flow, heat transfer and solidification of molten metal droplets impinging on substrates – comparison of numerical and experimental results, Metall. Trans. B Process Metall. 23B (1992): 701–18CrossRefGoogle Scholar
Trapaga, G. and Szekely, J.Mathematical modeling of the isothermal impingement of liquid droplets in spray forming, Metall. Trans. B 22 (1991): 901–10CrossRefGoogle Scholar
Truckenbrodt, E. Fluidmechanik, Vol. 1: Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluide, Springer-Verlag, Berlin u.a., 3. Aufl. (1989)
Truckenbrodt, E. Fluidmechanik, Vol. 2: Elementare Strömungsvorgänge dichteveränderlicher Fluide sowie Potential- und Grenzschichtströmungen, Springer-Verlag, Berlin u.a. (1980)
Tsao, C.-Y. A. and Grant, N. J.Modeling of the liquid dynamic compaction spray process, Int. J. Powder Metall. 30 (1994) 3: 323–33Google Scholar
Tsao, C.-Y. A. and Grant, N. J.Microstructure and recrystallization behaviour of in-situ alloyed and microalloyed spray-formed SAE 1008 steel, Kolloquium des SFB 372, Vol. 4, Universität Bremen (1999) pp 61–76Google Scholar
Turnbull, D.Formation of crystal nuclei in liquid metals, J. Appl. Phys. 21 (1950): 1022–8CrossRefGoogle Scholar
Uhlenwinkel, V. Zum Ausbreitungsverhalten der Partikeln bei der Sprühkompaktierung von Metallen, Dissertation, Universität Bremen (1992)
Uhlenwinkel, V., Fritsching, U. and Bauckhage, K. The influence of spray parameters on local mass fluxes and deposit growth rates during spray compaction process, Proc. 5th International Conference on Liquid Atomization and Spray Systems, ICLASS-91, Gaithersburg, MD, NIST SP813 (1991) pp 483–90
Uhlenwinkel, V., Fritsching, U., Bauckhage, K. und Urlau, U.Strömungsuntersuchungen im Düsennahbereich einer Zweistoffdüse – Modelluntersuchungen für die Zerstäubung von Me-tallschmelzen, Chem.-Ing. Tech. 62 (1990) 3: 228–9, Synopse 1840CrossRefGoogle Scholar
Ünal, A.Effect of processing variables on particle size in gas atomization of rapidly solidified aluminium powders, Mater. Sci. Technol. 3 (1987): 1029–39CrossRefGoogle Scholar
Ünal, A.Flow separation and liquid rundown in a gas-atomization process, Metall. Trans. 20B (1989): 613–22CrossRefGoogle Scholar
Underhill, R. P., Grant, P. S., Bryant, D. J. and Cantor, B.Grain growth in spray-formed Ni superalloys, J. Mater. Synthesis Processing 3 (1995) 3: 171–9Google Scholar
Sande, E. and Smith, J. M.Jet breakup and air entrainment by low-velocity turbulent jets, Chem. Engng. Sci. 31 (1973) 3: 219–24CrossRefGoogle Scholar
Vardelle, A., Themelis, N. J., Dussoubs, B., Vardelle, M. and Fauchais, P.Transport and chemical rate phenomena in plasma sprays, High Temp. Chem. Process 1 (1997) 3: 295–313CrossRefGoogle Scholar
Venekateswaren, S., Weiss, J. M. and Merkle, C. L. Propulsion Related Flowfields Using Preconditioned Navier–Stokes Equations, Technical Report AAIA-92–3437, American Institute of Aeronautics and Astronautics, Reston, VA (1992)
Voller, V. R., Swaminathan, C. R. and Thomas, B. G.Fixed grid techniques for phase change problems: a review, Int. J. Num. Methods Engng. 30 (1990): 875–98CrossRefGoogle Scholar
Voller, V. R., Swaminathan, C. R. and Thomas, B. G.General source-based methods for solidification phase change, Num. Heat Transfer, Part B 19 (1991): 175–89CrossRefGoogle Scholar
Waldvogel, J. M. and Poulikakos, D.Solidification phenomena in picoliter size solder droplet deposition on a composite substrate, Int. J. Heat Mass Transfer 40 (1997): 295–309CrossRefGoogle Scholar
Walzel, P.Zerteilgrenze beim Tropfenaufprall, Chem.-Ing.-Tech. 52 (1980): 338–9CrossRefGoogle Scholar
Wang, G. X. and Matthys, E. F.Modelling of heat transfer and solidification during splat cooling: effect of splat thickness and splat/substrate thermal contact, Int. J. Rapid Solidification 6 (1991): 141–74Google Scholar
Wang, G. X. and Matthys, E. F.Numerical modelling of phase change and heat transfer during rapid solidification processes: use of control volume integral with element subdivision, Int. J. Heat Mass Transfer 35 (1992): 141–53CrossRefGoogle Scholar
Weber, C.Zum Zerfall eines Flüssigkeitsstrahles, Z. Angew. Math. Mech. 11 (1931): 138–45CrossRefGoogle Scholar
Weiss, J. M. and Smith, W. A.Preconditioning applied to variable and constant density flows, AIAA Journal 33 (1995): 2050–57CrossRefGoogle Scholar
Weiss, D. A. and Yarin, A. L.Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation, J. Fluid Mech. 385 (1999): 229–54CrossRefGoogle Scholar
Welch, J. E., Harlow, F. H., Shannon, J. P. and Daly, B. J. The MAC-Method: A Computing Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems Involving Free Surfaces, Report LA-3425, Los Alamos Scientific Laboratory, NM (1966)
Winnikow, S. and Chao, B. T.Droplet motion in purified systems, Phys. Fluids 9 (1965) 1: 50–61CrossRefGoogle Scholar
Wood, J. V. (ed.) Proc. 2nd International Conference on Spray Forming, Swansea, 1993, Woodhead, Cambridge (1993)
Wood, J. V. (ed.) Proc. 3rd International Conference on Spray Forming, Cardiff, 1996, Osprey Metals Ltd, Neath (1997)
Wood, J. V. (ed.) Proc. 4th International Conference on Spray Forming, Baltimore, MD 1999, Osprey Metals Ltd and Welsh Development Agency, Neath (1999)
Woodruff, D. P. The Solid–Liquid Interface, Cambridge University Press (1973)
Wu, Y., Zhang, J. and Lavernia, E. J.Modeling of the incorporation of ceramic particulates in metallic droplets during spray atomization and coinjection, Metall. Mater. Trans. B 25 (1994): 135–47CrossRefGoogle Scholar
Wünnenberg, K.Sprühkompaktieren von Stahl: Verfahrenstechnik und Produkteigenschaften, Kolloquium des SFB 372, Vol. 1, Universität Bremen (1996) pp 1–32Google Scholar
Xu, Q. and Lavernia, E. J. Numerical calculations of heat transfer and nucleation in the initially deposited material during spray atomization and deposition, Proc. 4th International Conference on Spray Forming ICSF, 13–15 September, Baltimore, MD (1999)
Xu, Q. and Lavernia, E. J.Fundamentals of the spray forming process, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 17–36Google Scholar
Yakhot, V. and Orszag, S. A.Renormalization group analysis of turbulence, I. basic theory, J. Sci. Comput. 1 (1986): 3–51CrossRefGoogle Scholar
Yang, B., Wang, F., Cui, H., Duan, B. Q. and Zhang, J. S.Research and development of spray deposited material in China, Proc. Spray Deposition and Melt Atomization SDMA 2000, Bremen (2000) pp 53–60Google Scholar
Yarin, A. L. and Weiss, D. A.Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity, J. Fluid Mech. 283 (1995): 141–73CrossRefGoogle Scholar
Yearling, P. R. and Gould, R. D.Convective heat and mass transfer from single evaporating water, methanol and ethanol droplets, ASME Fluids Engng Division 223 (1995): 33–8Google Scholar
Yule, A. J. and Dunkley, J. J. Atomization of Melts, Clarendon Press, Oxford (1994)
Zaleski, S. and Li, J. Direct simulation of spray formation, Proc. International Conference on Liquid Atomization and Spray Systems ICLASS'97, Seoul, August (1997) pp 812–19
Zaleski, S., Li, J., Succi, S., Scardovelli, R. and Zanetti, G. Direct numerical simulation of flows with interfaces, Proc. 2nd International Conference on Multiphase Flow, April, Kyoto (1995)
Zeng, X. and Lavernia, E. J.Interfacial behaviour during spray atomization and co-deposition, Int. J. Rapid Solidification 7 (1992): 219–43Google Scholar
Zhang, H. Temperaturverteilung im aufwachsenden Deposit und im Substrat sowie Verläufe des Erstarrungsgrades im Deposit bei der Sprühkompaktierung von Metallen, Dissertation, Universität Bremen (1994)
Zhang, J., Wu, Y. and Lavernia, E. J.Kinetics of ceramic particulate penetration into spray atomized metallic droplets at variable penetration depth, Acta Metall. Mater. 42 (1994): 2955–72CrossRefGoogle Scholar
Zhao, Y. Y., Dowson, A. L. and Jacobs, M. H.Modelling of liquid flow after a hydraulic jump on a rotating disc prior to centrifugal atomization, Modelling Simul. Mater. Sci. Eng. 8 (2000) 1: 55–65CrossRefGoogle Scholar
Zhao, Y. Y., Dowson, A. L., Johnson, T. P., Young, J. M. and Jacobs, M. H. Prediction of liquid metal velocities on a rotating disk in spray forming by centrifugal spray deposition, Adv. Powder Metall. & Part. Materials – 1996, Metal Powder Industries Federation, Princeton, NJ (1996a) pp 9–79 – 9–89
Zhao, Z., Poulikakos, D. and Fukai, J.Heat transfer and fluid dynamics during the collision of a liquid droplet on substrate – I. modeling, Int. J. Heat Mass Transfer 39 (1996b): 2771–89CrossRefGoogle Scholar
Zhou, Z.-W. and Tang, X.-D. The effect of the pulsation in gas flow on the stability of molten metal jet, Proc. 4th International Conference on Spray Forming ICSF, Baltimore, MD (1999)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Udo Fritsching, Universität Bremen
  • Book: Spray Simulation
  • Online publication: 10 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536649.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Udo Fritsching, Universität Bremen
  • Book: Spray Simulation
  • Online publication: 10 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536649.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Udo Fritsching, Universität Bremen
  • Book: Spray Simulation
  • Online publication: 10 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536649.011
Available formats
×