Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T17:16:15.408Z Has data issue: false hasContentIssue false

17 - Using Relict Species–Area Relationships to Estimate the Conservation Value of Reservoir Islands to Improve Environmental Impact Assessments of Dams

from Part IV - The Species–Area Relationship in Applied Ecology

Published online by Cambridge University Press:  11 March 2021

Thomas J. Matthews
Affiliation:
University of Birmingham
Kostas A. Triantis
Affiliation:
National and Kapodistrian University of Athens
Robert J. Whittaker
Affiliation:
University of Oxford
Get access

Summary

Large dams are emerging drivers of landscape-scale habitat fragmentation, causing extensive flooding and transforming hilltops into islands. Environmental Impact Assessments (EIAs; the process to assess and account for impacts of development) do not explicitly consider reservoir islands in calculations of habitat impacted by dam construction. Reservoir islands maintain relict biological communities from the previously continuous habitat. Relict communities are subject to an extinction debt whereby species are lost over time. We demonstrate how estimating the ‘conservation value’ of islands (CV; the proportion of relict continuous habitat [forest] species on islands) using relict species–area relationships (RSARs), can be used in an area-of-impact correction tool to account for insular habitats in EIAs. We used data from eight taxonomic groups within the Balbina Hydroelectric Reservoir (BHR) archipelago in Brazilian Amazonia. We found ca. 72,000 ha of insular habitat had reduced CV, equating to 60% of aggregate island area, and that an additional 24% of the ca. 300,000 ha BHR water surface area should be included in area assessments for impacted terrestrial habitat. Where reservoir island creation is unavoidable, using RSARs to assess the CV of islands enables more accurate and dynamic assessment of the ecological impacts of dam construction.

Type
Chapter
Information
The Species–Area Relationship
Theory and Application
, pp. 417 - 437
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson-Teixeira, K. J., Wang, M. M. H., McGarvey, J. C. & LeBauer, D. S. (2016) Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). Global Change Biology, 22, 16901709.Google Scholar
Aurélio-Silva, M., Anciães, M., Henriques, L. M. P., Benchimol, M. & Peres, C. A. (2016) Patterns of local extinction in an Amazonian archipelagic avifauna following 25 years of insularization. Biological Conservation, 199, 101109.Google Scholar
Benchimol, M. & Peres, C. A. (2015a) Edge-mediated compositional and functional decay of tree assemblages in Amazonian forest islands after 26 years of isolation. Journal of Ecology, 103, 408420.CrossRefGoogle Scholar
Benchimol, M. & Peres, C. A. (2015b) Predicting local extinctions of Amazonian vertebrates in forest islands created by a mega dam. Biological Conservation, 187, 6172.Google Scholar
Bregman, T. P., Sekercioglu, C. H. & Tobias, J. A. (2014) Global patterns and predictors of bird species responses to forest fragmentation: Implications for ecosystem function and conservation. Biological Conservation, 169, 372383.Google Scholar
Bueno, A. S. & Peres, C. A. (2019) Patch-scale biodiversity retention in fragmented landscapes: Reconciling the habitat amount hypothesis with the island biogeography theory. Journal of Biogeography, 46, 621632.CrossRefGoogle Scholar
Bueno, A. S. & Peres, C. A. (2020) The role of baseline suitability in assessing the impacts of land-use change on biodiversity. Biological Conservation, 243, 108396.CrossRefGoogle Scholar
Bueno, A. S., Dantas, S. M., Henriques, L. M. P. & Peres, C. A. (2018) Ecological traits modulate bird species responses to forest fragmentation in an Amazonian anthropogenic archipelago. Diversity and Distributions, 24, 387402.CrossRefGoogle Scholar
Bueno, A. S., Masseli, G. S., Kaefer, I. L. & Peres, C. A. (2020) Sampling design may obscure species–area relationships in landscape‐scale field studies. Ecography, 43, 107118.CrossRefGoogle Scholar
Bull, J. W., Suttle, K. B., Gordon, A., Singh, N. J. & Milner-Gulland, E. J. (2013) Biodiversity offsets in theory and practice. Oryx, 47, 369380.Google Scholar
Chaplin-Kramer, R., Ramler, I., Sharp, R., Haddad, N. M., Gerber, J. S., West, P. C., Mandle, L., Engstrom, P., Baccini, A., Sim, S. & Mueller, C. (2015) Degradation in carbon stocks near tropical forest edges. Nature Communications, 6, 10158.Google Scholar
Diamond, J. M. (1972) Biogeographic kinetics: Estimation of relaxation times for avifaunas of southwest pacific islands. Proceedings of the National Academy of Sciences USA, 69, 31993203.CrossRefGoogle ScholarPubMed
Emer, C., Venticinque, E. M. & Fonseca, C. R. (2013) Effects of dam-induced landscape fragmentation on Amazonian ant-plant mutualistic networks. Conservation Biology, 27, 763773.CrossRefGoogle ScholarPubMed
ESRI (2012) ArcGIS Desktop, version 10.1. Redlands, CA: ESRI.Google Scholar
Ewers, R. M. & Didham, R. K. (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews, 81, 117142.CrossRefGoogle ScholarPubMed
Fearnside, P. M. (2016) Environmental and social impacts of hydroelectric dams in Brazilian Amazonia: Implications for the aluminium industry. World Development, 77, 4865.Google Scholar
Gardner, T. A., Barlow, J., Araujo, I. S., Ávila‐Pires, T. C., Bonaldo, A. B., Costa, J. E., Esposito, M. C., Ferreira, L. V., Hawes, J., Hernandez, M. I. & Hoogmoed, M. S. (2008) The cost-effectiveness of biodiversity surveys in tropical forests. Ecology Letters, 11, 139150.CrossRefGoogle ScholarPubMed
Gibson, L., Lynam, A. J., Bradshaw, C. J., He, F., Bickford, D. P., Woodruff, D. S., Bumrungsri, S. & Laurance, W. F. (2013) Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science, 341, 15081510.Google Scholar
Gibson, L., Wilman, E. N. & Laurance, W. F. (2017) How green is green? Trends in Ecology & Evolution, 32, 922935.Google Scholar
Gonzalez, A. (2000) Community relaxation in fragmented landscapes: The relation between species richness, area and age. Ecology Letters, 3, 441448.CrossRefGoogle Scholar
ICOLD (2018) International Commission on Large Dams. www.icold-cigb.org/GB/World_register/general_synthesis.asp.Google Scholar
Jones, I. L. & Bull, J. W. (2020) Major dams and the challenge of achieving “No Net Loss” of biodiversity in the tropics. Sustainable Development, 28, 435443.CrossRefGoogle Scholar
Jones, I. L., Bunnefeld, N., Jump, A. S., Peres, C. A. & Dent, D. H. (2016) Extinction debt on reservoir land-bridge islands. Biological Conservation, 199, 7583.CrossRefGoogle Scholar
Jones, I. L., Peres, C. A., Benchimol, M., Bunnefeld, L. & Dent, D. H. (2017) Woody lianas increase in dominance and maintain compositional integrity across an Amazonian dam-induced fragmented landscape. PLoS ONE, 12, 119.Google Scholar
Jones, I. L., Peres, C. A., Benchimol, M., Bunnefeld, L. & Dent, D. H. (2019) Instability of insular tree communities in an Amazonian mega-dam is driven by impaired recruitment and altered species composition. Journal of Applied Ecology, 56, 779791.CrossRefGoogle Scholar
Latrubesse, E. M., Arima, E. Y., Dunne, T., Park, E., Baker, V. R., d’Horta, F. M., Wight, C., Wittmann, F., Zuanon, J., Baker, P. A. & Ribas, C. C. (2017) Damming the rivers of the Amazon basin. Nature, 546, 363369.Google Scholar
Laurance, W. F., Camargo, J. L., Luizão, R. C., Laurance, S. G., Pimm, S. L., Bruna, E. M., Stouffer, P. C., Williamson, G. B., Benítez-Malvido, J., Vasconcelos, H. L. & Van Houtan, K. S. (2011) The fate of Amazonian forest fragments: A 32-year investigation. Biological Conservation, 144, 5667.Google Scholar
Lees, A. C., Peres, C. A., Fearnside, P. M., Schneider, M. & Zuanon, J. A. (2016) Hydropower and the future of Amazonian biodiversity. Biodiversity and Conservation, 25, 451466.Google Scholar
Lomolino, M. V. (2000) Ecology’s most general, yet protean pattern: The species–area relationship. Journal of Biogeography, 27, 1726.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Maron, M., Brownlie, S., Bull, J. W., Evans, M. C., von Hase, A., Quétier, F., Watson, J. E. & Gordon, A. (2018) The many meanings of no net loss in environmental policy. Nature Sustainability, 1, 1927.Google Scholar
Matthews, T. J., Guilhaumon, F., Triantis, K. A., Borregaard, M. K. & Whittaker, R. J. (2016) On the form of species–area relationships in habitat islands and true islands. Global Ecology & Biogeography, 25, 847858.Google Scholar
Mendenhall, C. D., Karp, D. S., Meyer, C. F., Hadly, E. A. & Daily, G. C. (2014) Predicting biodiversity change and averting collapse in agricultural landscapes. Nature, 509, 213217.Google Scholar
Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. (2018) Sustainable hydropower in the 21st century. Proceedings of the National Academy of Sciences USA, 115, 1189111898.Google Scholar
Palmeirim, A. F., Benchimol, M., Vieira, M. V. & Peres, C. A. (2018) Small mammal responses to Amazonian forest islands are modulated by their forest dependence. Oecologia, 187, 191204.CrossRefGoogle ScholarPubMed
Palmeirim, A. F., Vieira, M. V. & Peres, C. A. (2017) Non-random lizard extinctions in land-bridge Amazonian forest islands after 28 years of isolation. Biological Conservation, 214, 5565.Google Scholar
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G. & Ciais, P. (2011) A large and persistent carbon sink in the world’s forests. Science, 333, 988993.Google Scholar
Peres, C. A. (2001) Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conservation Biology, 15, 14901505.Google Scholar
R Core Team (2018) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. www.R-project.orgGoogle Scholar
Ritter, C. D., McCrate, G., Nilsson, R. H., Fearnside, P. M., Palme, U. & Antonelli, A. (2017) Environmental impact assessment in Brazilian Amazonia: Challenges and prospects to assess biodiversity. Biological Conservation, 206, 161168.CrossRefGoogle Scholar
Sonter, L. J., Gourevitch, J., Koh, I., Nicholson, C. C., Richardson, L. L., Schwartz, A. J., Singh, N. K., Watson, K. B., Maron, M. & Ricketts, T. H. (2018) Biodiversity offsets may miss opportunities to mitigate impacts on ecosystem services. Frontiers in Ecology and the Environment, 16, 143148.Google Scholar
Storck-Tonon, D. & Peres, C. A. (2017) Forest patch isolation drives local extinctions of Amazonian orchid bees in a 26 years old archipelago. Biological Conservation, 214, 270277.Google Scholar
Terborgh, J., Feeley, K., Silman, M., Nuñez, P. & Balukjian, B. (2006) Vegetation dynamics of predator-free land-bridge islands. Journal of Ecology, 94, 253263.Google Scholar
Terborgh, J., Lopez, L., Nuñez, P., Rao, M., Shahabuddin, G., Orihuela, G., Riveros, M., Ascanio, R., Adler, G. H., Lambert, T. D. & Balbas, L. (2001) Ecological meltdown in predator-free forest fragments. Science, 294, 19231926.Google Scholar
Terborgh, J., Lopez, L. & Tello, J. S. (1997) Bird communities in transition: The Lago Guri islands. Ecology, 78, 14941501.CrossRefGoogle Scholar
Timpe, K. & Kaplan, D. (2017) The changing hydrology of a dammed Amazon. Science Advances, 3, 114.CrossRefGoogle ScholarPubMed
Trussart, S., Messier, D., Roquet, V. & Aki, S. (2002) Hydropower projects: A review of most effective mitigation measures. Energy Policy, 30, 12511259.Google Scholar
Watling, J. I. & Donnelly, M. A. (2006) Fragments as islands: A synthesis of faunal responses to habitat patchiness. Conservation Biology, 20, 10161025.Google Scholar
Watson, D. M. (2002) A conceptual framework for studying species composition in fragments, islands and other patchy ecosystems. Journal of Biogeography, 29, 823834.Google Scholar
WCD (2000) Dams and development: A new framework for decision-making. London: Earthscan Publications.Google Scholar
Winemiller, K. O., McIntyre, P. B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., Baird, I. G., Darwall, W., Lujan, N. K., Harrison, I. & Stiassny, M. L. J. (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science, 351, 128129.Google Scholar
Wolfe, J. D., Stouffer, P. C., Mokross, K., Powell, L. L. & Anciães, M. M. (2015) Island vs. countryside biogeography: An examination of how Amazonian birds respond to forest clearing and fragmentation. Ecosphere, 6, 114.CrossRefGoogle Scholar
Zarfl, C., Lumsdon, A. E. & Tockner, K. (2015) A global boom in hydropower dam construction. Aquatic Sciences, 77, 161170.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×