Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T14:07:33.191Z Has data issue: false hasContentIssue false

Part III - Theoretical Advances in Species–Area Relationship Research

Published online by Cambridge University Press:  11 March 2021

Thomas J. Matthews
Affiliation:
University of Birmingham
Kostas A. Triantis
Affiliation:
National and Kapodistrian University of Athens
Robert J. Whittaker
Affiliation:
University of Oxford
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Species–Area Relationship
Theory and Application
, pp. 155 - 318
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Arrhenius, O. (1920a) Distribution of the species over the area. Meddelanden från Kungliga Vetenskapsakademiens Nobelinstitut, 4, 16.Google Scholar
Arrhenius, O. (1920b) Yta och arter. I. Svensk Botanisk Tidsskrift, 14, 327329.Google Scholar
Arrhenius, O. (1921) Species and area. Journal of Ecology, 9, 9599.Google Scholar
Arrhenius, O. (1923) On the relation between species and area – A reply. Ecology, 4, 9091.CrossRefGoogle Scholar
Barrett, K., Wait, D. A. & Anderson, W. B. (2003) Small island biogeography in the Gulf of California: Lizards, the subsidized island biogeography hypothesis, and the small island effect. Journal of Biogeography, 30, 15751581.Google Scholar
Braun-Blanquet, J. & Jenny, H. (1926) Vegetations-entwicklung und bodenbildung in der alpine stufe der Zentralalpen (Klimaxgebiet des Caricion curvulae). Denkschriften Schweizerische Naturforsch Gesellschaft, 63, 183344.Google Scholar
Brenner, W. (1921) Växtgeografiska studier i Barõsunds skärgård. Acta Sociatatis pro Fauna et Flora Fennica, 49, 1151.Google Scholar
Brown, J. H. (1971) Mammals on mountaintops: Nonequilibrium insular biogeography. The American Naturalist, 105, 467478.CrossRefGoogle Scholar
Cain, S. A. (1934) Studies of virgin hardwood forest: II, A comparison of quadrat sizes in a quantitative phytosociological study of Nash's Woods, Posey County, Indiana. The American Midland Naturalist, 15, 529566.CrossRefGoogle Scholar
Cain, S. A. (1938) The species–area curve. The American Midland Naturalist, 19, 573581.CrossRefGoogle Scholar
Clench, H. K. (1979) How to make regional lists of butterflies: Some thoughts. Journal of the Lepidopterists' Society, 33, 216231.Google Scholar
Cody, M. L., Moran, R., Rebman, J. & Thompson, H. (2002) Plants. A new island biogeography of the Sea of Cortés (ed. by Case, T. J., Cody, M. L. and Ezcurra, E.), pp. 63111. New York: Oxford University Press.Google Scholar
Colwell, R. K. & Coddington, J. A. (1994) Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society B: Biological Sciences, 345, 101118.Google Scholar
Colwell, R. K., Chang, X. M. & Chang, J. (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology, 85, 27172727.Google Scholar
Condit, R., Hubbell, S. P., LaFrankie, J. V., Sukumar, R., Monokaran, N., Foster, R. B. & Ashton, P. S. (1996) Species–area and species–individual relationships for tropical trees: A comparison of three 50-ha plots. Journal of Ecology, 84, 549562.Google Scholar
Connor, E. F. & McCoy, E. D. (1979) The statistics and biology of the species–area relationship. The American Naturalist, 113, 791833.Google Scholar
Crawley, M. J. & Harral, J. E. (2001) Scale dependence in plant biodiversity. Science, 291, 864868.CrossRefGoogle ScholarPubMed
Darlington, P. J. (1957) Zoogeography: The geographical distribution of animals. New York: John Wiley.Google Scholar
Delsol, R., Loreau, M. & Haegeman, B. (2018) The relationship between spatial scaling of biodiversity and ecosystem stability. Global Ecology & Biogeography, 27, 439449.CrossRefGoogle ScholarPubMed
Dengler, J. (2008) Pitfalls in small-scale species–area sampling and analysis. Folia Geobotanica, 43, 269287.Google Scholar
Dengler, J. (2009) Which function describes the species–area relationship best? A review and empirical evaluation. Journal of Biogeography, 36, 728744.CrossRefGoogle Scholar
Deshaye, J. & Morisset, P. (1988) Floristic richness, area and habitat diversity in a hemiarctic archipelago. Journal of Biogeography, 15, 747757.Google Scholar
Diamond, J.M. (1975) Assembly of species communities. Ecology and evolution of communities (ed. by Cody, M. L. and Diamond, J. M.), pp. 342444. Cambridge, MA: Belknap Press.Google Scholar
Dony, J. G. (1977) Species–area relationships in an area of intermediate size. Journal of Ecology, 65, 475484.Google Scholar
Drakare, S., Lennon, J. J. & Hillebrand, H. (2006) The imprint of geographical, evolutionary and ecological context on species–area relationships. Ecology Letters, 9, 215227.Google Scholar
Engen, S. (1978) Stochastic abundance models. London: Chapman and Hall.Google Scholar
Fattorini, S. (2006) Detecting biodiversity hotspots by species–area relationships: A case study of Mediterranean beetles. Conservation Biology, 20, 11691180.CrossRefGoogle ScholarPubMed
Fattorini, S. (2007a) Levels of endemism are not necessarily biased by the co-presence of species with different range sizes: A case study of Vilekin and Chikatunov's models. Journal of Biogeography, 34, 9941007.Google Scholar
Fattorini, S. (2007b) To fit or not to fit? A poorly fitting procedure produces inconsistent results when the species–area relationship is used to locate hotspots. Biological Conservation, 16, 25312538.Google Scholar
Fattorini, S. & Fowles, A. P. (2005) A biogeographical analysis of the tenebrionid beetles (Coleoptera, Tenebrionidae) of the island of Thasos in the context of the Aegean Islands (Greece). Journal of Natural History, 39, 39193949.CrossRefGoogle Scholar
Fisher, R. A., Corbet, A. S. & Williams, C. B. (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12, 4258.Google Scholar
Flather, C. H. (1996) Fitting species-accumulation functions and assessing regional land use impacts on avian diversity. Journal of Biogeography, 23, 155168.CrossRefGoogle Scholar
Fridley, J. D., Peet, R. K., Wentworth, T. R. & White, P. S. (2005) Connection fine- and broad-scale species–area relationships of southeastern U.S. flora. Ecology, 86, 11721177.Google Scholar
Gentile, G. & Argano, R. (2005) Island biogeography of the Mediterranean Sea: The species–area relationship for terrestrial isopods. Journal of Biogeography, 32, 17151726.Google Scholar
Gitay, H., Roxburgh, S. H. & Wilson, J. B. (1991) Species–area relations in a New-Zealand tussock grassland, with implications for nature-reserve design and for community structure. Journal of Vegetation Science, 2, 113118.CrossRefGoogle Scholar
Gleason, H. A. (1922) On the relation between species and area. Ecology, 3, 158162.Google Scholar
Gleason, H. A. (1925) Species and area. Ecology, 6, 6674.CrossRefGoogle Scholar
Goodall, D. W. (1952) Quantitative aspects of plant distribution. Biological Reviews, 27, 194242.CrossRefGoogle Scholar
Gotelli, N. & Colwell, R. K. (2001) Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4, 379391.Google Scholar
Green, J. L. & Ostling, A. (2003) Endemics–area relationships: The influence of species dominance and spatial aggregation. Ecology, 84, 30903097.CrossRefGoogle Scholar
Green, J. L. & Plotkin, J. B. (2007) A statistical theory for sampling species abundances. Ecology Letters, 10, 10371045.CrossRefGoogle ScholarPubMed
Guilhaumon, F., Gimenez, O., Gaston, K. J. & Mouillot, D. (2008) Taxonomic and regional uncertainty in species–area relationships and the identification of richness hotspots. Proceedings of the National Academy of Sciences USA, 105, 1545815463.Google Scholar
Hanski, I., Zurita, G. A., Bellocq, M. I. & Rybicki, J. (2013) Species–fragmented area relationship. Proceedings of the National Academy of Sciences USA, 110, 1271512720.Google Scholar
Harte, J., Blackburn, T. & Ostling, A. (2001) Self-similarity and the relationship between abundance and range size. The American Naturalist, 157, 374386.CrossRefGoogle ScholarPubMed
Harte, J., Kinzig, A. & Green, J. (1999) Self-similarity in the distribution and abundance of species. Science, 284, 334336.CrossRefGoogle ScholarPubMed
He, F. & Hubbell, S. P. (2011) Species–area relationships always overestimate extinction rates from habitat loss. Nature, 473, 368371.Google Scholar
He, F. & Hubbell, S. P. (2013) Estimating extinction from species–area relationships: Why the numbers do not add up. Ecology, 94, 19051912.Google Scholar
He, F. & Legendre, P. (1996) On species–area relations. The American Naturalist, 148, 719737.Google Scholar
He, F. & Legendre, P. (2002) Species diversity patterns derived from species–area models. Ecology, 83, 11851198.Google Scholar
Hopkins, B. (1955) The species–area relations of plant communities. Journal of Ecology, 43, 409426.Google Scholar
Hopkins, B. & Skellam, J. G. (1954) A new method for determining the type of distribution of plant individuals. Annals of Botany, 18, 213217.Google Scholar
Hubbell, S. P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Irie, H. & Tokita, K. (2012) Species–area relationship for power-law species abundance distribution. International Journal of Biomathematics, 5, 1260014.CrossRefGoogle Scholar
Kangas, P. (1987) On the use of species area curves to predict extinctions. Bulletin of the Ecological Society of America, 68, 158162.Google Scholar
Keeley, J. E. & Fotheringham, C. J. (2005) Plot shape effects on plant species diversity measurements. Journal of Vegetation Science, 16, 249256.Google Scholar
Keil, P., Pereira, H. M., Cabral, J. S., Chase, J. M., May, F., Martins, I. S. & Winter, M. (2018) Spatial scaling of extinction rates: Theory and data reveal nonlinearity and a major upscaling and downscaling challenge. Global Ecology & Biogeography, 27, 213.Google Scholar
Keil, P., Storch, D. & Jetz, W. (2015) On the decline of biodiversity due to area loss. Nature Communications, 6, 8837.Google Scholar
Kilburn, P. D. (1966) Analysis of the species–area relation. Ecology, 47, 831843.Google Scholar
Kobayashi, S. (1974) The species–area relation I. A model for discrete sampling. Researches on Population Ecology, 15, 223237.Google Scholar
Kobayashi, S. (1975) The species–area relation II. A second model for continuous sampling. Researches on Population Ecology, 16, 265280.CrossRefGoogle Scholar
Krishnamari, R., Kumar, A. & Harte, J. (2004) Estimating species richness at large spatial scales using data from small discrete plots. Ecography, 27, 637642.Google Scholar
Kunin, W. E., Harte, J., He, F., Hui, C., Jobe, R. T., Ostling, A., Polce, C., Šizling, A., Smith, A. B., Smith, K., Smart, S. M., Storch, D., Tjørve, E., Ugland, K.-I., Ulrich, W. & Varma, V. (2018) Upscaling biodiversity: Estimating the species–area relationship from small samples. Ecological Monographs, 88, 170187.Google Scholar
Kylin, H. (1923) Växtsociologiska randanmärkningar. Botaniska Notiser, 1923, 161234.Google Scholar
Lennon, J. J., Kunin, W. E. & Hartley, S. (2002) Fractal species distributions do not produce power-law species–area relationships. Oikos, 97, 378386.Google Scholar
Lennon, J. J., Kunin, W. E., Hartley, S. & Gaston, K. J. (2007) Species distribution patterns, diversity scaling and testing for fractals in Southern African birds. Scaling biodiversity (ed. by Storch, D., Marquet, P. and Brown, J.), pp. 5176. Cambridge: Cambridge University Press.Google Scholar
Lomolino, M. V. (2000) Ecology’s most general, yet protean pattern: The species–area relationship. Journal of Biogeography, 27, 1726.CrossRefGoogle Scholar
Lomolino, M. V. (2001) The species–area relationship: New challenges for an old pattern. Progress in Physical Geography, 25, 121.Google Scholar
Lomolino, M. V. (2002) ‘… there are areas too small, and areas too large to show clear diversity patterns…’ R. H. MacArthur (1972: 191). Journal of Biogeography, 29, 555557.Google Scholar
Lomolino, M. V. & Weiser, M. D. (2001) Towards a more general species–area relationship: Diversity of all islands, great and small. Journal of Biogeography, 28, 431445.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1963) An equilibrium theory of insular zoogeography. Evolution, 17, 373387.CrossRefGoogle Scholar
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Maddux, R. D. (2004) Self-similarity and the species–area relationship. The American Naturalist, 163, 616626.Google Scholar
Malyshev, L. I. (1991) Some quantitative approaches to problems of comparative floristics. Quantitative approaches in phytogeography (ed. by Nimis, P. L. and Crovello, T. J.), pp. 1533. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Martín, H. G. & Goldenfeld, N. (2006) On the origin and robustness of power-law species–area relationships in ecology. Proceedings of the National Academy of Sciences USA, 103, 1031010315.Google Scholar
Matthews, T. J., Borregaard, M. K., Guilhaumon, F., Triantis, K. A. & Whittaker, R. J. (2016a) On the form of species–area relationships in habitat islands and true islands. Global Ecology & Biogeography, 25, 847858.Google Scholar
Matthews, T. J., Steinbauer, M., Tzirkalli, E., Triantis, K. A. & Whittaker, R. J. (2014) Thresholds and the species–area relationship: A synthetic analysis of habitat island datasets. Journal of Biogeography, 41, 10181028.Google Scholar
Matthews, T. J., Triantis, K. A., Rigal, F., Borregaard, M. K., Guilhaumon, F. & Whittaker, R. J. (2016b) Island species–area relationships and species accumulation curves are not equivalent: An analysis of habitat island datasets. Global Ecology & Biogeography, 25, 607618.Google Scholar
Miller, R. I. & Wiegert, R. G. (1989) Documenting completeness, species–area relations, and the species-abundance distribution of a regional flora. Ecology, 70, 1622.Google Scholar
Olszewski, T. D. (2004) A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos, 104, 377387.CrossRefGoogle Scholar
Palmer, M. W. (1990) The estimation of species richness by extrapolation. Ecology, 71, 11951198.Google Scholar
Pereira, M. & Daily, G. C. (2006) Biodiversity dynamics in countryside landscapes. Ecology, 87, 18771885.Google Scholar
Picard, N., Karambé, M. & Birnbaum, P. (2004) Species–area curve and spatial pattern. Écoscience, 11, 4554.Google Scholar
Pimm, S. L. & Askins, R. A. (1995) Forest loss predict bird extinctions in eastern North America. Proceedings of the National Academy of Sciences USA, 92, 93439347.Google Scholar
Pimm, S. L. & Raven, P. (2000) Extinction by numbers. Nature, 403, 843845.Google Scholar
Plotkin, J. B., Potts, M. D., Leslie, N., Manokaran, N., LaFrankie, J. & Ashton, P. S. (2000) Species–area curves, spatial aggregation, and habitat specialization in tropical forests. Journal of Theoretical Biology, 207, 8199.Google Scholar
Preston, F. W. (1960) Time and space and the variation of species. Ecology, 41, 611627.Google Scholar
Preston, F. W. (1962) The canonical distribution of commonness and rarity: Part I & II. Ecology, 43 , 185215, 410–432.Google Scholar
Rosenzweig, M. L. (1995) Species diversity in space and time. Cambridge: Cambridge University Press.Google Scholar
Scheiner, S. M. (2003) Six types of species–area curves. Global Ecology & Biogeography, 12, 441447.Google Scholar
Scheiner, S. M. (2004) A mélange of curves – further dialogue about species–area curves. Global Ecology & Biogeography, 13, 479484.Google Scholar
Simberloff, D. (1992) Do species–area curves predict extinction in fragmented forests? Tropical deforestation and species extinction (ed. by Whitmore, T. C. and Sayer, J. A.), pp. 7589. London: Chapman and Hall.Google Scholar
Šizling, A. L. & Storch, D. (2004) Power-law species–area relationships and self-similar species distributions within finite areas. Ecology Letters, 7, 6068.Google Scholar
Šizling, A. L. & Storch, D. (2007) Geometry of species distributions: Random clustering and scale invariance. Scaling biodiversity (ed. by Storch, D., Marquet, P. A. and Brown, J. H.), pp. 77100. Cambridge: Cambridge University Press.Google Scholar
Šizling, A. L., Šizlingová, E., Tjørve, E., Tjørve, K. M. C. & Kunin, W. E. (2017) How to allow SAR collapse across local and continental scales: A resolution of the controversy between Storch et al. (2012) and Lazarina et al. (2013). Ecography, 40, 971981.Google Scholar
Storch, D. (2016) The theory of the nested species–area relationship: Geometric foundations of biodiversity scaling. Journal of Vegetation Science, 27, 880891.Google Scholar
Storch, D., Šizling, A. L. & Gaston, K. J. (2003) Geometry of the species–area relationship in central European birds: Testing the mechanism. Journal of Animal Ecology, 72, 509519.CrossRefGoogle Scholar
Taylor, L. R., Woiwood, I. P. & Perry, J. N. (1978) The density-dependence of spatial behaviour and the rarity of randomness. Journal of Animal Ecology, 47, 383406.CrossRefGoogle Scholar
Tjørve, E. (2002) Habitat size and number in multi-habitat landscapes: A model approach based on species–area curves. Ecography, 25, 1724.CrossRefGoogle Scholar
Tjørve, E. (2003) Shapes and functions of species–area curves: A review of possible models. Journal of Biogeography, 30, 827835.Google Scholar
Tjørve, E. (2009) Shapes and functions of species–area curves (II): A review of new models and parameterizations. Journal of Biogeography, 36, 14351445.CrossRefGoogle Scholar
Tjørve, E. (2010) How to resolve the SLOSS debate: Lessons from species-diversity models. Journal of Theoretical Biology, 264, 604612.Google Scholar
Tjørve, E. (2012) Arrhenius and Gleason revisited: New hybrid models resolve an old controversy. Journal of Biogeography, 39, 629639.Google Scholar
Tjørve, E. & Tjørve, K. M. C. (2008) The species–area relationship, self-similarity, and the true meaning of the z-value. Ecology, 89, 35283533.CrossRefGoogle ScholarPubMed
Tjørve, E. & Tjørve, K. M. C. (2011) Subjecting the theory of the small-island effect to Ockham's razor. Journal of Biogeography, 38, 18341839.Google Scholar
Tjørve, E. & Tjørve, K. M. C. (2017) Species–area relationship. eLS (Encyclopedia of Life Sciences Online), pp. 19. Chichester: John Wiley & Sons.Google Scholar
Tjørve, E. & Turner, W. R. (2009) The importance of samples and isolates for species–area relationships. Ecography, 32, 391400.Google Scholar
Tjørve, E., Kunin, W. E., Polce, C. & Tjørve, K. M. C. (2008) The species–area relationship: Separating the effects of species-abundance and spatial distribution. Journal of Ecology, 96, 11411151.Google Scholar
Tjørve, E., Tjørve, K. C. M., Šizlingová, E. & Šizling, A. L. (2018) Great theories of species diversity in space and why they were forgotten: The beginnings of a spatial ecology and the Nordic early 20th-century botanists. Journal of Biogeography, 45, 530540.Google Scholar
Triantis, K. A., Guilhaumon, F. & Whittaker, R. J. (2012) The island species–area relationship: Biology and statistics. Journal of Biogeography, 39, 215231.Google Scholar
Triantis, K. A., Mylonas, M., Lika, K. & Vardinoyannis, K. (2003) A model for the species–area–habitat relationship. Journal of Biogeography, 30, 1927.Google Scholar
Turner, W. R. & Tjørve, E. (2005) Scale-dependence in species–area relationships. Ecography, 28, 721730.CrossRefGoogle Scholar
Ulrich, W. & Buszko, J. (2003) Self-similarity and the species–area relation of Polish butterflies. Basic and Applied Ecology, 4, 263270.CrossRefGoogle Scholar
Ulrich, W. & Buszko, J. (2005) Detecting biodiversity hotspots using species–area and endemics–area relationships. Biodiversity and Conservation, 14, 19771988.Google Scholar
Veech, J. A. (2000) Choice of species–area function affects identification of hotspots. Conservation Biology, 14, 140147.Google Scholar
Veech, J. A., Crist, T. O. & Summerville, K. S. (2003) Intraspecific aggregation decreases local species diversity of arthropods. Ecology, 84, 33763383.Google Scholar
Williams, C. B. (1950) The application of the logarithmic series to the frequency of occurrence of plant species in quadrats. Journal of Ecology, 38, 107138.Google Scholar
Williams, C. B. (1964) Patterns in the balance of nature and related problems in quantitative ecology. London: Academic Press.Google Scholar
Williams, M. R. (1995) An extreme-value function model of the species incidence and species–area relations. Ecology, 76, 26072616.Google Scholar
Williams, M. R., Lamont, B. B. & Hestridge, J. D. (2009) Species–area functions revisited. Journal of Biogeography, 36, 19942004.Google Scholar
Williamson, M., Gaston, K. J. & Lonsdale, W. M. (2001) The species–area relationship does not have an asymptote! Journal of Biogeography, 28, 827830.Google Scholar
Williamson, M., Gaston, K. J. & Lonsdale, W. M. (2002) An asymptote is an asymptote and not found in species–area relationships. Journal of Biogeography, 29, 1713.Google Scholar
Wilson, E. O. (1961) The nature of the taxon cycle in the Melanesian ant fauna. The American Naturalist, 95, 169193.Google Scholar

References

Adler, P. B. & Lauenroth, W. K. (2003) The power of time: Spatiotemporal scaling of species diversity. Ecology Letters, 6, 749756.Google Scholar
Adler, P. B., White, E. P., Lauenroth, W. K., Kaufman, D. M., Rassweiler, A. & Rusak, J. A. (2005) Evidence for a general species–time–area relationship. Ecology, 86, 20322039.Google Scholar
Allen, A. P. & White, E. P. (2003) Effects of range size on species–area relationships. Evolutionary Ecology Research, 5, 493499.Google Scholar
Arita, H. T. & Rodríguez, P. (2002) Geographic range, turnover rate and the scaling of species diversity. Ecography, 25, 541550.Google Scholar
Arrhenius, O. (1921) Species and area. Journal of Ecology, 9, 9599.Google Scholar
Azaele, S., Muneepeerakul, R., Maritan, A., Rinaldo, A. & Rodriguez-Iturbea, I. (2008) Predicting spatial similarity of freshwater fish biodiversity. Proceedings of the National Academy of Sciences USA, 106, 70587062.Google Scholar
Azovsky, A. I. (2002) Size-dependent species–area relationship in benthos: Is the world more diverse for microbes? Ecography, 25, 273282.Google Scholar
Bartha, S. & Ittzés, P. (2001) Local richness-species pool ratio: A consequence of the species–area relationship. Folia Geobotanica, 36, 923.Google Scholar
Bonn, A., Storch, D. & Gaston, K. J. (2004) Structure of the species–energy relationship. Proceedings of the Royal Society B: Biological Sciences, 271, 16851691.Google Scholar
Caley, M. J. & Schluter, D. (1997) The relationship between local and regional diversity. Ecology, 78, 7080.Google Scholar
Carey, S., Harte, J. & delMoral, R. (2006) Effect of community assembly and primary succession on the species–area relationship in disturbed ecosystems. Ecography, 29, 866872.Google Scholar
Chiarucci, A., Viciani, D., Winter, C. & Diekmann, M. (2006) Effects of productivity on species–area curves in herbaceous vegetation: Evidence from experimental and observational data. Oikos, 115, 475483.Google Scholar
Coleman, D. B. (1981) On random placement and species–area relations. Mathematical Biosciences, 54, 191215.CrossRefGoogle Scholar
Condit, R., Hubbell, S. P., Lafrankie, J. V., Sukumar, R., Manokaran, N., Foster, R. B. & Ashton, P. S. (1996) Species–area and species–individual relationships for tropical trees: A comparison of three 50-ha plots. Journal of Ecology, 84, 549562.CrossRefGoogle Scholar
Connor, E. F. & McCoy, E. D. (1979) The statistics and biology of the species–area relationship. The American Naturalist, 113, 791833.Google Scholar
Dengler, J. (2009) Which function describes the species–area relationship best? A review and empirical evaluation. Journal of Biogeography, 36, 728744.Google Scholar
Drakare, S., Lennon, J. L. & Hillebrand, H. (2006) The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecology Letters, 9, 215227.CrossRefGoogle ScholarPubMed
Finlay, B. J. (2002) Global dispersal of free-living microbial eukaryote species. Science, 296, 10611063.Google Scholar
Fridley, J. D., Peet, R. K., Wentworth, T. R. & White, P. S. (2005) Connecting fine- and broad-scale species–area relationships of southeastern U.S. flora. Ecology, 86, 11721177.Google Scholar
Gaston, K. J., Blackburn, T. M. & Lawton, J. H. (1997) Interspecific abundance–range size relationships: An appraisal of mechanisms. Journal of Animal Ecology, 66, 579601.Google Scholar
Gaston, K. J., Evans, K. L. & Lennon, J. J. (2007) The scaling of spatial turnover: Pruning the thicket. Scaling Biodiversity. (ed. by Storch, D., Marquet, P. A. & Brown, J. H.), pp. 181214. Cambridge: Cambridge University Press.Google Scholar
Gleason, H. A. (1922) On the relation between species and area. Ecology, 3, 158162.Google Scholar
Gray, J. S., Ugland, K. I. & Lambshead, J. (2004) On species accumulation and species–area curves. Global Ecology & Biogeography, 13, 567568.Google Scholar
Green, J. L. & Plotkin, J. B. (2007) A statistical theory for sampling species abundances. Ecology Letters, 10, 10371045.Google Scholar
Haegeman, B. & Etienne, R. S. (2010) Entropy maximization and the spatial distribution of species. The American Naturalist, 175, E74E90.Google Scholar
Hanski, I. & Gyllenberg, M. (1997) Uniting two general patterns in the distribution of species. Science, 275, 397400.Google Scholar
Harrison, J. A., Allan, D. G., Underhill, L. G., Herremans, M., Tree, A. J., Parker, V. & Brown, C. J. (1997) The atlas of southern African birds. Vol I & II. Johannesburg: Bird Life South Africa.Google Scholar
Harte, J. & Kinzig, A. P. (1997) On the implications of species–area relationships for endemism, spatial turnover, and food web patterns. Oikos, 80, 417427.Google Scholar
Harte, J., Conlisk, E., Ostling, A., Green, J. L. & Smith, A. B. (2005) A theory of spatial structure in ecological communities at multiple spatial scales. Ecological Monographs, 75, 179197.Google Scholar
Harte, J., Kinzig, A. & Green, J. (1999) Self-similarity in the distribution and abundance of species. Science, 284, 334336.Google Scholar
Harte, J., Smith, A. B. & Storch, D. (2009) Biodiversity scales from plots to biomes with a universal species–area curve. Ecology Letters, 12, 789797.Google Scholar
He, F. & Condit, R. (2007) The distribution of species: Occupancy, scale, and rarity. Scaling biodiversity (ed. by Storch, D., Marquet, P. A. and Brown, J. H.), pp. 3250. Cambridge: Cambridge University Press.Google Scholar
He, F. & Gaston, K. J. (2000) Estimating species abundance from occurrence. The American Naturalist, 156, 553559.Google Scholar
He, F. & Legendre, P. (1996) On species–area relations. The American Naturalist, 148, 719737.Google Scholar
He, F. & Legendre, P. (2002) Species diversity patterns derived from species–area models. Ecology, 85, 11851198.Google Scholar
Hubbell, S. P. (2001) The unified theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Jaynes, E. T. (1957) Information theory and statistical mechanics. Physical Review, 106, 620630.Google Scholar
Jaynes, E. T. (1982) On the rationale of maximum entropy methods. Proceedings of the IEEE, 70, 939952.Google Scholar
Koleff, P., Gaston, K. J. & Lennon, J. J. (2003) Measuring beta diversity for presence-absence data. Journal of Animal Ecology, 72, 367382.Google Scholar
Kunin, W. E. (1997) Sample shape, spatial scale and species counts: Implications for reserve design. Biological Conservation, 82, 369377.Google Scholar
Kunin, W. E. (1998) Extrapolating species abundances across spatial scales. Science, 281, 15131515.Google Scholar
Kunin, W. E., Harte, J., He, F., Hui, C., Jobe, R. T., Ostling, A., Polce, C., Šizling, A. L., Smith, A. B., Smith, K., Smart, S. M., Storch, D., Tjørve, E., Ugland, K.-I., Ulrich, W. & Varma, V. (2018) Up-scaling biodiversity: Estimating the species–area relationship from small samples. Ecological Monographs, 88, 170187.Google Scholar
Kůrka, P., Šizling, A. L. & Rosindell, J. (2010) Analytical evidence for scale-invariance in the shape of species abundance distributions. Mathematical Biosciences, 223, 151159.Google Scholar
Lazarina, M., Kallimanis, A. S. & Sgardelis, S. (2013) Does the universality of the species–area relationship apply to smaller scales and across taxonomic groups? Ecography, 36, 965970.Google Scholar
Leitner, W. A. & Rosenzweig, M. L. (1997) Nested species–area curves and stochastic sampling: A new theory. Oikos, 79, 503512.Google Scholar
Lennon, J. J., Kunin, W. E. & Hartley, S. (2002) Fractal species distributions do not produce power-law species area distribution. Oikos, 97, 378386.Google Scholar
Lepš, J. & Štursa, J. (1989) Species–area curve, life history strategies, and succession: A field test of relationships. Vegetatio, 83, 249257.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Martín, H. G. & Goldenfeld, N. (2006) On the origin and robustness of power-law species–area relationships in ecology. Proceedings of the National Academy of Sciences USA, 103, 1031010315.Google Scholar
May, R. (1975) Patterns of species abundance and diversity. Ecology and evolution of communities (ed. by Cody, M. L. and Diamond, J. M.), pp. 81120. Cambridge, MA: Belknap Press.Google Scholar
McGill, B. J. (2010) Towards a unification of unified theories of biodiversity. Ecology Letters, 13, 627642.Google Scholar
McGill, B. J. & Collins, C. (2003) A unified theory for macroecology based on spatial patterns of abundance. Evolutionary Ecology Research, 5, 469492.Google Scholar
Nachman, G. (1981) A mathematical model of the functional relationship between density and spatial distribution of a population. Journal of Animal Ecology, 50, 453460.Google Scholar
Nee, S. & Cotgreave, P. (2002) Does the species–area relationship account for the density–area relationship? Oikos, 99, 545551.Google Scholar
Nekola, J. C. & White, P. S. (1999) Distance decay of similarity in biogeography and ecology. Journal of Biogeography, 26, 867878.Google Scholar
O’Dwyer, J. P. & Green, J. L. (2010) Field theory for biogeography: A spatially explicit model for predicting patterns of biodiversity. Ecology Letters, 13, 8795.Google Scholar
Ovaskainen, O. & Hanski, I. (2003) The species–area relationship derived from species-specific incidence functions. Ecology Letters, 6, 903909.Google Scholar
Pautasso, M. & Weisberg, P. J. (2008) Negative density–area relationship: The importance of zeros. Global Ecology & Biogeography, 17, 203210.Google Scholar
Preston, F. V. (1960) Time and space and the variation of species. Ecology, 41, 611627.Google Scholar
Rosenzweig, M. L. (1995) Species diversity in space and time. Cambridge: Cambridge University Press.Google Scholar
Rosenzweig, M. L. & Ziv, Y. (1999) The echo pattern of species diversity: Pattern and processes. Ecography, 22, 614628.Google Scholar
Rosindell, J. & Cornell, S. J. (2007) Species–area relationships from a spatially explicit neutral model in an infinite landscape. Ecology Letters, 10, 586595.Google Scholar
Rosindell, J. & Cornell, S. J. (2009) Species–area curves, neutral models, and long-distance dispersal. Ecology, 90, 17431750.Google Scholar
Scheiner, S. M. (2003) Six types of species–area curves. Global Ecology & Biogeography, 12, 441447.Google Scholar
Scheiner, S. M. (2004) A mélange of curves – Further dialogue about species–area relationships. Global Ecology & Biogeography, 13, 479484.Google Scholar
Shmida, A. & Wilson, M. V. (1985) Biological determinants of species diversity. Journal of Biogeography, 12, 120.Google Scholar
Šizling, A. L. & Storch, D. (2004) Power-law species–area relationships and self-similar species distributions within finite areas. Ecology Letters, 7, 6068.Google Scholar
Šizling, A. L. & Storch, D. (2007) Geometry of species distributions: Random clustering and scale invariance. Scaling Biodiversity (ed. by Storch, D., Marquet, P. A. & Brown, J. H.), pp. 7799. Cambridge: Cambridge University Press.Google Scholar
Šizling, A. L., Kunin, W. E., Šizlingová, E., Reif, J. & Storch, D. (2011) Between geometry and biology: The problem of universality of the species–area relationship. The American Naturalist, 178, 602611.Google Scholar
Šizling, A. L., Šizlingová, E., Tjørve, E., Tjørve, K. M. C. & Kunin, W. E. (2017) How to allow SAR collapse across local and continental scales: A resolution of the controversy between Storch et al. (2012) and Lazarina et al. (2013). Ecography, 40, 971981.Google Scholar
Šizling, A. L., Storch, D., Reif, J. & Gaston, K. J. (2009b) Invariance in species-abundance distributions. Theoretical Ecology, 2, 89103.CrossRefGoogle Scholar
Šizling, A. L., Storch, D., Šizlingová, E., Reif, J. & Gaston, K. J. (2009a) Species abundance distribution results from a spatial analogy of central limit theorem. Proceedings of the National Academy of Sciences USA, 106, 66916695.Google Scholar
Storch, D. (2016) The theory of the nested species–area relationship: Geometric foundations of biodiversity scaling. Journal of Vegetation Science, 27, 880891.Google Scholar
Storch, D. & Šizling, A. L. (2008) The concept of taxon invariance in ecology: Do diversity patterns vary with changes in taxonomic resolution? Folia Geobotanica, 43, 329344.Google Scholar
Storch, D., Evans, K. L. & Gaston, K. J. (2005) The species–area–energy relationship. Ecology Letters, 8, 487492.Google Scholar
Storch, D., Keil, P. & Jetz, W. (2012) Universal species–area and endemics–area relationships at continental scales. Nature, 488, 7881.Google Scholar
Storch, D., Marquet, P. A. & Brown, J. H. (eds.) (2007) Scaling biodiversity. Cambridge: Cambridge University Press.Google Scholar
Storch, D., Šizling, A. L., Reif, J., Polechová, J., Šizlingová, E. & Gaston, K. J. (2008) The quest for a null model for macroecological patterns: Geometry of species distributions at multiple spatial scales. Ecology Letters, 11, 771784.Google Scholar
Tjørve, E. (2003) Shapes and functions of species–area curves: A review of possible models. Journal of Biogeography, 30, 827835.Google Scholar
Tjørve, E. (2009) Shapes and functions of species–area curves (II): A review of new models and parameterizations. Journal of Biogeography, 36, 14351445.Google Scholar
Tjørve, E. & Tjørve, K. M. C. (2008) The species–area relationship, self-similarity, and the true meaning of the z-value. Ecology, 89, 35283533.Google Scholar
Tjørve, E. & Turner, W. R. (2009) The importance of samples and isolates for species–area relationships. Ecography, 32, 391400.Google Scholar
Tjørve, E., Kunin, W. E., Polce, C. & Tjørve, K. M. C. (2008) Species–area relationship: Separating the effects of species abundance and spatial distribution. Journal of Ecology, 96, 11411151.Google Scholar
Ugland, K. I., Gray, J. S. & Ellingsen, K. E. (2003) The species-accumulation curve and estimation of species richness. Journal of Animal Ecology, 72, 888897.Google Scholar
Ugland, K. I., Gray, J. S. & Lambshead, J. D. (2005) Species accumulation curves analysed by a class of null models discovered by Arrhenius. Oikos, 108, 263274.Google Scholar
Ulrich, W. & Buszko, J. (2003) Self-similarity and the species–area relation of Polish butterflies. Basic and Applied Ecology, 4, 263270.Google Scholar
Virkkala, R. (1993) Ranges of northern forest passerines: A fractal analysis. Oikos, 67, 218226.Google Scholar
White, E. P. (2007) Spatiotemporal scaling of species richness: Patterns, processes, and implications. Scaling Biodiversity (ed. by Storch, D., Marquet, P. A. and Brown, J. H.), pp. 325346. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279338.Google Scholar
Williams, M. R. (1995) An extreme-value function model of the species incidence and species–area relationship. Ecology, 76, 26072616.Google Scholar
Williamson, M. H. (1988) Relationship of species number to area, distance and other variables. Analytical biogeography (ed. by Myers, A. A. & Giller, P. S.), pp. 91115. London: Chapman & Hall.Google Scholar
Wright, D. H. (1991) Correlations between incidence and abundance are expected by chance. Journal of Biogeography, 18, 463466.Google Scholar

References

Arrhenius, O. (1921) Species and areaJournal of Ecology9, 9599.Google Scholar
Borda-de-Água, L., Hubbell, S. P. & He, F. (2007) Scaling biodiversity under neutralityScaling Biodiversity (ed. by Storch, D., Marquet, P. A. and Brown, J. H.), pp. 347375. Cambridge: Cambridge University Press.Google Scholar
Borda-de-Água, L., Hubbell, S. P. & McAllister, M. (2002) Species–area curves, diversity indices, and species abundance distributions: A multifractal analysisThe American Naturalist159, 138155.Google Scholar
Castillo, E. (1988Extreme value theory in engineering. San Diego, CA: Academic Press.Google Scholar
Castillo, E., Hadi, A. S., Balakrishnan, N. & Sarabia, J. M. (2005) Extreme value and related models with applications in engineering and science. Hoboken NJ: John Wiley & Sons.Google Scholar
Coles, S. (2001An introduction to statistical modeling of extreme values. London: Springer.Google Scholar
Condit, R. (1998Tropical forest census plots: Methods and results from Barro Colorado Island, Panama and a comparison with other plots. Berlin: Springer.Google Scholar
Condit, R., Hubbell, S. P., Lafrankie, J. V., Sukumar, R., Manokaran, N., Foster, R. B. & Ashton, P. S. (1996) Species–area and species–individual relationships for tropical trees: A comparison of three 50-ha plotsJournal of Ecology, 84, 549562.Google Scholar
de Haan, L. (1970) On regular variation and its applications to the weak convergence of sample extremes. Matematisch Centrum Amsterdam, Amsterdam.Google Scholar
Falk, M., Hüsler, J. & Reiss, R. D. (2011Laws of small numbers: Extremes and rare events, 3rd ed. Berlin: Springer.Google Scholar
Fisher, R. A. & Tippett, L. H. C. (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 24, 180190.Google Scholar
Fréchet, M. (1927) Sur la loi de probabilité de l'écart maximum. Annales de la Société Polonaise de Mathématique, 6, 93116.Google Scholar
García, C. & Borda‐de‐Água, L. (2017) Extended dispersal kernels in a changing world: Insights from statistics of extremesJournal of Ecology105, 6374.Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. & Rubin, D. B. (2014) Bayesian data analysis, 3rd ed. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
Gilleland, E. & Katz, R. W. (2016) extRemes 2.0: An extreme value analysis package in R. Journal of Statistical Software, 72, 12481287.Google Scholar
Gleason, H. A. (1922) On the relation between species and areaEcology3, 158162.Google Scholar
Gnedenko, B. V. (1943) Sur la distribution limite d'une série aléatoire, Annals of Mathematics, 44, 423453.Google Scholar
Guilhaumon, F., Gimenez, O., Gaston, K. J. & Mouillot, D. (2008) Taxonomic and regional uncertainty in species–area relationships and the identification of richness hotspotsProceedings of the National Academy of Sciences USA, 105, 1545815463.Google Scholar
Gumbel, E. J. (1935) Les valeurs extrêmes des distributions statistiques. Annales de l’ Institute Henri Poincaré, 5, 115158.Google Scholar
He, F. & Hubbell, S. P. (2011) Species–area relationships always overestimate extinction rates from habitat lossNature473, 368371.Google Scholar
Hubbell, S. P. (2001The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Kellner, J. R. & Hubbell, S. P. (2017) Adult mortality in a low‐density tree population using high‐resolution remote sensingEcology98, 17001709.Google Scholar
Kellner, J. R., Armston, J., Birrer, M., Cushman, K. C., Duncanson, L., Eck, C., Falleger, C., Imbach, B., Král, K., Krůček, M., Trochta, J., Vrška, T. & Zgraggen, C. (2019) New opportunities for forest remote sensing through ultra-high-density drone lidarSurveys in Geophysics, 40, 959977.Google Scholar
Levy, O., Ball, B. A., Bond-Lamberty, B., Cheruvelil, K. S., Finley, A. O., Lottig, N. R., Punyasena, S. W., Xiao, J., Zhou, J., Buckley, L. B., Filstrup, C. T., Keitt, T. H., Kellner, J. R., Knapp, A. K., Richardson, A. D., Tcheng, D., Toomey, M., Vargas, R., Voordeckers, J. W., Wagner, T. & Williams, J. W. (2014) Approaches to advance scientific understanding of macrosystems ecologyFrontiers in Ecology and the Environment12, 1523.Google Scholar
Martín, H. G. & Goldenfeld, N. (2006) On the origin and robustness of power-law species–area relationships in ecologyProceedings of the National Academy of Sciences USA103, 1031010315.Google Scholar
Matthews, T. J., Triantis, K. A., Rigal, F., Borregaard, M. K., Guilhaumon, F. & Whittaker, R. J. (2016) Island species–area relationships and species accumulation curves are not equivalent: An analysis of habitat island datasetsGlobal Ecology & Biogeography25, 607618.Google Scholar
May, R.M. (1975) Patterns of species abundance and diversity. Ecology and evolution of communities (ed. by Cody, M. L. and Diamond, J. M.), pp. 81120. Harvard University Press, Cambridge Mass.Google Scholar
von Mises, R. (1936) La distribution de la plus grande de n valeurs. Reproduced, Selected papers of von Mises, R. (1964) American Mathematical Society, 2, 271294.Google Scholar
Preston, F. W. (1962) The canonical distribution of commonness and rarity: Part I. Ecology, 43, 185215.Google Scholar
R Core Team (2018) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. www.R-project.org/.Google Scholar
Rosenzweig, M. L. (1995Species diversity in space and time. Cambridge: Cambridge University Press.Google Scholar
Scheiner, S. M. (2003) Six types of species–area curvesGlobal Ecology & Biogeography12, 441447.Google Scholar
Tjørve, E. (2003) Shapes and functions of species–area curves: A review of possible modelsJournal of Biogeography30, 827835.Google Scholar
Triantis, K. A., Guilhaumon, F. & Whittaker, R. J. (2012) The island species–area relationship: Biology and statisticsJournal of Biogeography39, 215231.Google Scholar
Williams, M. R. (1995) An extreme‐value function model of the species incidence and species‐area relationsEcology76, 26072616.Google Scholar
Williams, M. R., Lamont, B. B. & Henstridge, J. D. (2009) Species–area functions revisitedJournal of Biogeography36, 19942004.Google Scholar

References

Arfken, G. B. & Weber, H. J. (2005) Mathematical methods for physicists, 6th ed. Burlington, MA: Elsevier Academic Press.Google Scholar
Brown, J., Gillooly, J., Allen, A., Savage, V. & West, G. (2004) Toward a metabolic theory of ecology. Ecology, 85, 17711789.Google Scholar
Cavender-Bares, J., Kozak, K. H., Fine, P. V. & Kembel, S. W. (2009) The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693715.Google Scholar
Darwin, C. (1859) On the origin of species by means of natural selection, or the preservation of races in the struggle for life. London: John Murray.Google Scholar
Dewar, R. C. & Porté, A. (2008) Statistical mechanics unifies different ecological patterns. Journal of Theoretical Biology, 251, 389403.Google Scholar
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E. & Yates, C. J. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 4357.Google Scholar
Frieden, B. R. (1972) Restoring with maximum likelihood and maximum entropy. Journal of the Optical Society of America, 62, 511518.Google Scholar
Golan, A. (2018) Foundations of info-metrics: Modeling, inference, and imperfect information. Oxford: Oxford University Press.Google Scholar
Golan, A., Judge, G. & Miller, D. (1996) Maximum entropy econometrics: Robust estimation with limited data. New York: Wiley.Google Scholar
Graham, C. H., Parra, J. L., Rahbek, C. & McGuire, J. A. (2009) Phylogenetic structure in tropical hummingbird communities. Proceedings of the National Academy of Sciences USA, 106, 1967319678.Google Scholar
Green, J. L., Holmes, A. J., Westoby, M., Oliver, I., Briscoe, D., Dangerfield, M., Gillings, M. & Beattie, A. (2004) Spatial scaling of microbial eukaryote diversity. Nature, 430, 135138.Google Scholar
Gull, S. F. & Newton, T. J. (1986) Maximum entropy tomography. Applied Optics, 25, 156160.Google Scholar
Haegeman, B. & Loreau, M. (2009) Trivial and nontrivial applications of entropy maximization in ecology: A reply to Shipley. Oikos, 118, 12701278.Google Scholar
Harte, J. (2011) Maximum entropy and ecology: A theory of abundance, distribution, and energetics. Oxford: Oxford University Press.Google Scholar
Harte, J. & Kitzes, J. (2014Inferring regional-scale species diversity from small-plot censusesPLoS One, 10, e0117527.Google Scholar
Harte, J. & Newman, E. A. (2014) Maximum information entropy: A foundation for ecological theory. Trends in Ecology & Evolution, 29, 384389.Google Scholar
Harte, J., Kitzes, J., Newman, E. & Rominger, A. (2013) Taxon categories and the universal species–area relationship. The American Naturalist, 181, 282287.Google Scholar
Harte, J., Rominger, A. & Zhang, Y. (2015) Extending the maximum entropy theory of ecology to higher taxonomic levels. Ecology Letters, 18, 10681077.Google Scholar
Harte, J., Smith, A. & Storch, D. (2009) Biodiversity scales from plots to biomes with a universal species area curve. Ecology Letters, 12, 789797.Google Scholar
Harte, J., Zillio, T., Conlisk, E. & Smith, A. (2008) Maximum entropy and the state variable approach to macroecology. Ecology, 89, 27002711.Google Scholar
Harvey, B. J. & Holzman, B. A. (2014) Divergent successional pathways of stand development following fire in a California closed‐cone pine forestJournal of Vegetation Science25, 8899.Google Scholar
Horner-Devine, M., Lage, M., Hughes, J. & Bohannan, B. J. M. (2004) A taxa–area relationship for bacteria. Nature, 432, 750753.Google Scholar
Hubbell, S. P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Jaynes, E. T. (1957a) Information theory and statistical mechanics: I. Physical Review, 106, 620630.Google Scholar
Jaynes, E. T. (1957b) Information theory and statistical mechanics: II. Physical Review, 108, 171191.Google Scholar
Jaynes, E. T. (1963) Information theory and statistical mechanics. Brandeis Summer Institute 1962, statistical physics (ed. by Ford, K.), pp. 181218. New York: Benjamin.Google Scholar
Jaynes, E. T. (1968) Prior probabilities. IEEE Transactions on Systems Science and Cybernetics, 4, 227240.Google Scholar
Jaynes, E. T. (1979) Where do we stand on maximum entropy. The maximum entropy principle (ed. by Levine, R. and Tribus, M.), pp. 15118. Cambridge, MA: MIT Press.Google Scholar
Jaynes, E. T. (1982) On the rationale of maximum entropy methods. Proceedings of the IEEE, 70, 939952.Google Scholar
Kempton, R. A. & Taylor, L. R. (1974) Log-series and log-normal parameters as diversity discriminants for the Lepidoptera. Journal of Animal Ecology, 43, 381399.Google Scholar
Kitzes, J. & Wilber, M. (2016macroeco: Reproducible ecological pattern analysis in PythonEcography39, 361367.CrossRefGoogle Scholar
Kraft, N. J., Cornwell, W. K., Webb, C. O. & Ackerly, D. D. (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. The American Naturalist, 170, 271283.Google Scholar
Krishnamani, R., Kumar, A. & Harte, J. (2004) Estimating species richness at large spatial scales using data from small discrete plots. Ecography, 27, 637642.Google Scholar
Kunin, W., Harte, J., He, F., Hui, C., Jobe, J., Ostling, A., Polce, C., Šizling, A., Smith, A., Smith, K., Smart, S., Storch, D., Tjørve, E., Ugland, K., Ulrich, W. & Varma, V. (2018) Upscaling biodiversity: Estimating the species–area relationship from small samples. Ecological Monographs, 88, 170187.Google Scholar
Lozano, F. & Schwartz, M. (2005) Patterns of rarity and taxonomic group size in plants. Biological Conservation, 126, 146154.Google Scholar
Marquet, P. A., Allen, A. P., Brown, J. H., Dunne, J. A., Enquist, B. J., Gillooly, J. F., Gowaty, P. A., Green, J. L., Harte, J., Hubbell, S. P., O’Dwyer, J., Okie, J. G., Ostling, A., Ritchie, M., Storch, D. & West, G. B. (2014) On theory in ecology. BioScience, 64, 701710.Google Scholar
Meshulam, L., Gauthier, J., Brody, C., Tank, D. & Bialek, W. (2017) Collective behavior of place and non-place neurons in the hippocampal network. Neuron, 96, 11781191.Google Scholar
Mora, T., Walczak, A., Bialek, W. & Callan, C. (2010) Maximum entropy models for antibody diversity. Proceedings of the National Academy of Sciences USA, 107, 54055410.Google Scholar
Newman, E. A., Wilber, M. Q., Kopper, K. E., Moritz, M. A., Falk, D. A., McKenzie, D. & Harte, J. (2020) A comparative study of community structure metrics in a high-severity disturbance regime. Ecosphere, 11(1):e3022.10.1002/ecs2.3022.Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231259.Google Scholar
Rominger, A. J. & Merow, C. (2016) meteR: An R package for testing the maximum entropy theory of ecology. Methods in Ecology and Evolution, 8, 241247.Google Scholar
Rominger, A. J., Goodman, K. R., Lim, J. Y., Armstrong, E. E., Becking, L. E., Bennett, G. M., Brewer, M. S., Cotoras, D. D., Ewing, C. P., Harte, J., Martinez, N. D., O’Grady, P. M., Percy, D. M., Price, D. K., Roderick, G. K., Shaw, K. L., Valdovinos, F. S., Gruner, D. S. & Gillespie, R. G. (2016) Community assembly on isolated islands. Global Ecology & Biogeography, 25 , 769780.Google Scholar
Rosenzweig, M. L. (1995) Species diversity in space and time. Cambridge: Cambridge University Press.Google Scholar
Roussev, V. (2010) Data fingerprinting with similarity digests. Advances in digital forensics VI (ed. by Chow, K.-P. and Shenoi, S.), pp. 207226. Heidelberg, Germany: Springer.Google Scholar
Russell, B. (1912) On the notion of cause. Proceedings of the Aristotelian Society, 13, 126.Google Scholar
Schwartz, M. & Simberloff, D. (2001) Taxon size predicts rates of rarity in vascular plants. Ecology Letters, 4, 464469.Google Scholar
Shipley, B., Ville, D. & Garnier, E. (2006) From plant traits to plant communities: A statistical mechanics approach to biodiversity. Science, 314, 812814.Google Scholar
Skilling, J. (1984) Theory of maximum entropy image reconstruction. Maximum entropy and Bayesian methods in applied statistics (ed. by Justice, J. H.), pp. 156178. Cambridge: Cambridge University Press.Google Scholar
Smith, F. A., Brown, J. H., Haskell, J. P., Lyons, S. K., Alroy, J., Charnov, E. L., Dayan, T., Enquist, B. J., Morgan Ernest, S. K., Hadly, E. A. & Jones, K. E. (2004) Similarity of mammalian body size across the taxonomic hierarchy and across space and time. The American Naturalist, 163, 672691.Google Scholar
Steinbach, P. J., Ionescu, R. & Matthews, C. R. (2002) Analysis of kinetics using a hybrid maximum-entropy/nonlinear-least-squares method: Application to protein folding. Biophysical Journal, 82, 22442255.Google Scholar
Supp, S. R., Xiao, X., Ernest, S. & White, E. (2012) An experimental test of the response of macroecological patterns to altered species interactions. Ecology, 93, 25052511.Google Scholar
Swenson, N. G., Enquist, B. J., Pither, J., Thompson, J. & Zimmerman, J. K. (2006) The problem and promise of scale dependency in community phylogenetics. Ecology, 87, 24182424.Google Scholar
ter Steege, H., Pitman, N. C. A., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., Phillips, O. L., Castilho, C. V., Magnusson, W. E., Molino, J.-F., Monteagudo, A., Núñez Vargas, P., Montero, J. C., Feldpausch, T. R., Coronado, E. N. H., Killeen, T. J., Mostacedo, B., Vasquez, R., Assis, R. L., Terborgh, J., Wittmann, F., Andrade, A., Laurance, W. F., Laurance, S. G. W., Marimon, B. S., Marimon, B.-H., Guimarães Vieira, I. C., Amaral, I. L., Brienen, R., Castellanos, H., Cárdenas López, D., Duivenvoorden, J. F., Mogollón, H. F., Matos, F. D. d. A., Dávila, N., García-Villacorta, R., Stevenson Diaz, P. R., Costa, F., Emilio, T., Levis, C., Schietti, J., Souza, P., Alonso, A., Dallmeier, F., Montoya, A. J. D., Fernandez Piedade, M. T., Araujo-Murakami, A., Arroyo, L., Gribel, R., Fine, P. V. A., Peres, C. A., Toledo, M., Aymard, C. G. A., Baker, T. R., Cerón, C., Engel, J., Henkel, T. W., Maas, P., Petronelli, P., Stropp, J., Zartman, C. E., Daly, D., Neill, D., Silveira, M., Paredes, M. R., Chave, J., Lima Filho, D. d. A., Jørgensen, P. M., Fuentes, A., Schöngart, J., Cornejo Valverde, F., Di Fiore, A., Jimenez, E. M., Peñuela Mora, M. C., Phillips, J. F., Rivas, G., van Andel, T. R., von Hildebrand, P., Hoffman, B., Zent, E. L., Malhi, Y., Prieto, A., Rudas, A., Ruschell, A. R., Silva, N., Vos, V., Zent, S., Oliveira, A. A., Schutz, A. C., Gonzales, T., Trindade Nascimento, M., Ramirez-Angulo, H., Sierra, R., Tirado, M., Umaña Medina, M. N., van der Heijden, G., Vela, C. I. A., Vilanova Torre, E., Vriesendorp, C., Wang, O., Young, K. R., Baider, C., Balslev, H., Ferreira, C., Mesones, I., Torres-Lezama, A., Urrego Giraldo, L. E., Zagt, R., Alexiades, M. N., Hernandez, L., Huamantupa-Chuquimaco, I., Milliken, W., Palacios Cuenca, W., Pauletto, D., Valderrama Sandoval, E., Valenzuela Gamarra, L., Dexter, K. G., Feeley, K., Lopez-Gonzalez, G. & Silman, M. R. (2013) Hyperdominance in the Amazonian tree flora. Science, 342, 1243092.Google Scholar
Tolstoy, L. (1952) Anna Karenina (trans by Garnett, C.), p. 1. New York: Heritage Press.Google Scholar
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475505.Google Scholar
White, E. P., Thibault, K. & Xiao, X. (2012) Characterizing species abundance distributions across taxa and ecosystems using a simple maximum entropy model. Ecology, 93, 17721778.Google Scholar
Williams, R. J. (2010) Simple MaxEnt models explain food web degree distributions. Theoretical Ecology, 3, 4552.Google Scholar
Xiao, X., McGlinn, D. & White, E. (2015) A strong test of the maximum entropy theory of ecology. The American Naturalist, 185, E70E80.Google Scholar

References

Abramowitz, M. & Stegun, I. A. (eds.) (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables, 10th Printing. National Bureau of Standards Applied Mathematics Series 55. Washington, DC: US Government Printing Office.Google Scholar
Allouche, O. & Kadmon, R. (2009) Demographic analysis of Hubbell’s neutral theory of biodiversity. Journal of Theoretical Biology, 258, 274280.Google Scholar
Alzate, A., Janzen, T., Bonte, D., Rosindell, J. & Etienne, R. S. (2019) A simple spatially explicit neutral model explains the range size distribution of reef fishes. Global Ecology & Biogeography, 28, 875890.Google Scholar
Bell, G. (2001) Neutral macroecology. Science, 293, 24132418.Google Scholar
Bewick, S., Chisholm, R. A., Akçay, E. & Godsoe, W. (2015) A stochastic biodiversity model with overlapping niche structure. Theoretical Ecology, 8, 81109.Google Scholar
Chisholm, R. A. & Lichstein, J. W. (2009) Linking dispersal, immigration and scale in the neutral theory of biodiversity. Ecology Letters, 12, 13851393.Google Scholar
Chisholm, R. A. & Pacala, S. W. (2010) Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proceedings of the National Academy of Sciences USA, 107, 1582115825.Google Scholar
Chisholm, R. A., Fung, T., Chimalakonda, D. & O’Dwyer, J. P. (2016) Maintenance of biodiversity on islands. Proceedings of the Royal Society B: Biological Sciences, 283, 20160102.Google Scholar
Chisholm, R. A., Lim, F., Yeoh, Y. S., Seah, W. W., Condit, R. & Rosindell, J. (2018) Species–area relationships and biodiversity loss in fragmented landscapes. Ecology Letters, 21, 804813.Google Scholar
Clark, J. S. (2009) Beyond neutral science. Trends in Ecology & Evolution, 24, 815.Google Scholar
Clark, J. S. (2012) The coherence problem with the unified neutral theory of biodiversity. Trends in Ecology & Evolution, 27, 198202.Google Scholar
Clark, J. S., Silman, M., Kern, R., Macklin, E. & HilleRisLambers, J. (1999) Seed dispersal near and far: Patterns across temperate and tropical forests. Ecology, 80, 14751494.Google Scholar
Diamond, J. M. (1975) The island dilemma: Lessons of modern biogeographic studies for the design of natural reserves. Biological Conservation, 7, 129146.Google Scholar
Durrett, R. & Levin, S. (1996) Spatial models for species–area curves. Journal of Theoretical Biology, 179, 119127.Google Scholar
Etienne, R. S. & Alonso, D. (2005) A dispersal-limited sampling theory for species and alleles. Ecology Letters, 8, 11471156.Google Scholar
Haegeman, B. & Etienne, R. S. (2017) A general sampling formula for community structure data. Methods in Ecology and Evolution, 8, 15061519.Google Scholar
Halley, J. M. & Iwasa, Y. (2011) Neutral theory as a predictor of avifaunal extinctions after habitat loss. Proceedings of the National Academy of Sciences USA, 108, 23162321.Google Scholar
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O. & Townshend, J. R. G. (2013) High-resolution global maps of 21st-century forest cover change. Science, 342, 850853.Google Scholar
Hanski, I., Zurita, G. A., Bellocq, M. I. & Rybicki, J. (2013) Species–fragmented area relationship. Proceedings of the National Academy of Sciences USA, 110, 1271512720.Google Scholar
He, F. (2005) Deriving a neutral model of species abundance from fundamental mechanisms of population dynamicsFunctional Ecology19, 187193.Google Scholar
He, F. & Legendre, P. (2002) Species diversity patterns derived from species–area models. Ecology, 83, 11851198.Google Scholar
Heaney, L. R. (2000) Dynamic disequilibrium: A long‐term, large‐scale perspective on the equilibrium model of island biogeography. Global Ecology & Biogeography, 9, 5974.Google Scholar
Holley, R. A. & Liggett, T. M. (1975) Ergodic theorems for weakly interacting systems and the voter model. The Annals of Probability, 3, 643663.Google Scholar
Hubbell, S. P. (1997) A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral Reefs, 16, S9S21.Google Scholar
Hubbell, S. P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Kingman, J. F. C. (1982) The coalescent. Stochastic Processes and their Applications, 13, 235248.Google Scholar
Lewis, O. T. (2006) Climate change, species–area curves and the extinction crisis. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 163171.Google Scholar
Lomolino, M. V. & Weiser, M. D. (2001) Towards a more general species–area relationship: Diversity on all islands, great and small. Journal of Biogeography, 28, 431445.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1963) An equilibrium theory of insular zoogeography. Evolution, 17, 373387.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Millennium Ecosystem Assessment (2005) Ecosystems and human bell-being. Washington, DC: Island Press.Google Scholar
McGarigal, K. & Marks, B. J. (1995) FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. General Technical Report PNW-GTR-351. Portland, OR: Northwest Research Station, USDA-Forest Service.Google Scholar
McGill, B. J. (2003) A test of the unified neutral theory of biodiversity. Nature, 422, 881885.Google Scholar
Niering, W. A. (1963) Terrestrial ecology of Kapingamarangi Atoll, Caroline Islands. Ecological Monographs, 33, 131160.Google Scholar
O’Dwyer, J. P. & Cornell, S. J. (2018) Cross-scale neutral ecology and the maintenance of biodiversity. Scientific Reports, 8, 10200.Google Scholar
O’Dwyer, J. P. & Green, J. L. (2010) Field theory for biogeography: A spatially explicit model for predicting patterns of biodiversity. Ecology Letters, 13, 8795.Google Scholar
Pigolotti, S. & Cencini, M. (2009) Speciation-rate dependence in species–area relationships. Journal of Theoretical Biology, 260, 8389.Google Scholar
Plotkin, J. B., Potts, M. D., Yu, D. W., Bunyavejchewin, S., Condit, R., Foster, R., Hubbell, S., LaFrankie, J., Manokaran, N., Seng, L. H., Sukumar, R., Nowak, M. A. & Ashton, P. S. (2000) Predicting species diversity in tropical forests. Proceedings of the National Academy of Sciences USA, 97, 1085010854.Google Scholar
Preston, F. W. (1960) Time and space variation of species. Ecology, 41, 611627.Google Scholar
Ricklefs, R. E. (2006) The unified neutral theory of biodiversity: Do the numbers add up? Ecology, 87, 14241431.Google Scholar
Rosindell, J. & Cornell, S. J. (2007) Species–area relationships from a spatially explicit neutral model in an infinite landscape. Ecology Letters, 10, 586595.Google Scholar
Rosindell, J. & Cornell, S. J. (2009) Species–area curves, neutral models, and long-distance dispersal. Ecology, 90, 17431750.Google Scholar
Rosindell, J. & Phillimore, A. B. (2011) A unified model of island biogeography sheds light on the zone of radiation. Ecology Letters, 14, 552560.Google Scholar
Rosindell, J., Cornell, S. J., Hubbell, S. P. & Etienne, R. S. (2010) Protracted speciation revitalizes the neutral theory of biodiversity. Ecology Letters, 13, 716727.Google Scholar
Rosindell, J., Hubbell, S. P. & Etienne, R. S. (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends in Ecology & Evolution, 26, 340348.Google Scholar
Rosindell, J., Hubbell, S. P., He, F., Harmon, L. J. & Etienne, R. S. (2012a) The case for ecological neutral theory. Trends in Ecology & Evolution, 27, 203208.CrossRefGoogle ScholarPubMed
Rosindell, J., Jansen, P. A. & Etienne, R. S. (2012b) Age structure in neutral theory resolves inconsistencies related to reproductive-size thresholdJournal of Plant Ecology5, 6471.Google Scholar
Rosindell, J., Wong, Y. & Etienne, R. S. (2008) A coalescence approach to spatial neutral ecology. Ecological Informatics, 3, 259271.Google Scholar
Scheiner, S. M. (2003) Six types of species–area curves. Global Ecology & Biogeography, 12, 441447.CrossRefGoogle Scholar
Storch, D., Keil, P. & Jetz, W. (2012) Universal species–area and endemics–area relationships at continental scales. Nature, 488, 7881.Google Scholar
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., Siqueira, M. F. D., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Jaarsveld, A. S. V., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L. & Williams, S. E. (2004) Extinction risk from climate change. Nature, 427, 145148.Google Scholar
Thompson, S. E., Chisholm, R. A. & Rosindell, J. (2019) Characterising extinction debt following habitat fragmentation using neutral theory. Ecology Letters, 22, 20872096.Google Scholar
Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. (1994) Habitat destruction and the extinction debt. Nature, 371, 6566.Google Scholar
Vallade, M. & Houchmandzadeh, B. (2003) Analytical solution of a neutral model of biodiversity. Physical Review E, 68, 06190210619025.Google Scholar
Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. (2003) Neutral theory and relative species abundance in ecology. Nature, 424, 10351037.Google Scholar
Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. (2007) Patterns of relative species abundance in rainforests and coral reefs. Nature, 450, 4549.Google Scholar
Wright, S. J., Jaramillo, M. A., Pavon, J., Condit, R., Hubbell, S. P. & Foster, R. B. (2005) Reproductive size thresholds in tropical trees: Variation among individuals, species and forests. Journal of Tropical Ecology, 21, 307315.Google Scholar
Zillio, T., Volkov, I., Banavar, J., Hubbell, S. P. & Maritan, A. (2005) Spatial scaling in model plant communities. Physical Review Letters, 95, 098101.Google Scholar

References

Adler, P. B., Hille Ris Lambers, J. & Levine, J. M. (2007) A niche for neutrality. Ecology Letters, 10, 95104.Google Scholar
Aizen, M. A., Sabatino, M. & Tylianakis, J. M. (2012) Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science, 335, 14861489.Google Scholar
Alonso, D., Pinyol-Gallemi, A., Alcoverro, T. & Arthur, R. (2015) Fish community reassembly after a coral mass mortality: Higher trophic groups are subject to increased rates of extinction. Ecology Letters, 18, 451461.Google Scholar
Amarasekare, P. (2008) Spatial dynamics of foodwebs. Annual Review of Ecology and Systematics, 39, 479500.Google Scholar
Anderson, W. B. & Wait, D. A. (2001) Subsidized island biogeography: Another new twist on an old theory. Ecology Letters, 4, 289291.Google Scholar
Bagchi, R., Brown, L. M., Elphick, C. S., Wagner, D. L. & Singer, M. S. (2018) Anthropogenic fragmentation of landscapes: Mechanisms for eroding the specificity of plant-herbivore interactions. Oecologia, 187, 521533.Google Scholar
Baiser, B., Gotelli, N. J., Buckley, H. L., Miller, T. E. & Ellison, A. M. (2012) Geographic variation in network structure of a Nearctic aquatic food web. Global Ecology & Biogeography, 21, 579591.Google Scholar
Brown, J. H., West, G. B. & Enquist, B. J. (2000) Scaling in biology: Patterns and processes, causes and consequences. Scaling in biology (ed. by Brown, J. H. and West, G. B.), pp. 124. Oxford: Oxford University Press.Google Scholar
Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. (2014) Empirical evaluation of neutral interactions in host-parasite networks. The American Naturalist, 183, 468479.Google Scholar
Canard, E., Mouquet, N., Marescot, L., Gaston, K. J., Gravel, D. & Mouillot, D. (2012) Emergence of structural patterns in neutral trophic networks. PLoS One, 7, e38295.Google Scholar
Chase, J. M., Gooriah, L., May, F., Ryberg, W. A., Schuler, M. S., Craven, D. & Knight, T. M. (2019) A framework for disentangling ecological mechanisms underlying the island species–area relationship. Frontiers of Biogeography, 11, e40844.Google Scholar
Chave, J. (2004) Neutral theory and community ecology. Ecology Letters, 7, 241253.Google Scholar
Chesson, P. (2018) Updates on mechanisms of maintenance of species diversity. Journal of Ecology, 107, 17731794.Google Scholar
Chisholm, R. A., Fung, T., Chimalakonda, D. & O’Dwyer, J. P. (2016) Maintenance of biodiversity on islands. Proceedings of the Royal Society B: Biological Sciences, 283, 20160102.Google Scholar
Chisholm, R. A., Lim, F., Yeoh, Y. S., Seah, W. W., Condit, R. & Rosindell, J. (2018) Species–area relationships and biodiversity loss in fragmented landscapes. Ecology Letters, 21, 804813.Google Scholar
Cirtwill, A. R. & Stouffer, D. B. (2016) Knowledge of predator–prey interactions improves predictions of immigration and extinction in island biogeography. Global Ecology & Biogeography, 25, 900911.Google Scholar
Cohen, J. E. (1977) Ratio of prey to predators in community food webs. Nature, 270, 165166.Google Scholar
Cohen, J. E. & Briand, F. (1984) Trophic links of community food webs. Proceedings of the National Academy of Sciences USA, 81, 41054109.Google Scholar
Cohen, J. E. & Newman, C. M. (1991) Community area and food-chain length: Theoretical predictions. The American Naturalist, 138, 15421554.Google Scholar
Cohen, J. E., Jonsson, T. & Carpenter, S. R. (2003) Ecological community description using the food web, species abundance, and body sizeProceedings of the National Academy of Sciences USA100, 17811786.CrossRefGoogle ScholarPubMed
Colling, G. & Matthies, D. (2004) The effects of plant population size on the interactions between the endangered plant Scorzonera humilis (Asteraceae), a specialized herbivore, and a phytopathogenic fungus. Oikos, 105, 7178.Google Scholar
Connor, E. F., Courtney, A. C. & Yoder, J. M. (2000) Individuals–area relationships: The relationship between animal population density and area. Ecology, 81, 34748.Google Scholar
Donohue, I., Petchey, O. L., Kefi, S., Genin, A., Jackson, A. L., Yang, Q. & O’Connor, N. E. (2017) Loss of predator species, not intermediate consumers, triggers rapid and dramatic extinction cascades. Global Change Biology, 23, 29622972.Google Scholar
Drakare, S., Lennon, J. J. & Hillebrand, H. (2006) The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecology Letters, 9, 215227.Google Scholar
Elton, C. (1927; reprinted 2001) Animal ecology. Chicago, IL: University of Chicago Press.Google Scholar
Elton, C. (1966) The pattern of animal communities. New York: John Wiley.Google Scholar
Etienne, R. S. & Alonso, D. (2005) A dispersal-limited sampling theory for species and alleles. Ecology Letters, 8, 11471156.Google Scholar
Fenoglio, M. S., Srivastava, D., Valladares, G., Cagnolo, L. & Salvo, A. (2012) Forest fragmentation reduces parasitism via species loss at multiple trophic levels. Ecology, 93, 24072420.Google Scholar
Fenoglio, M. S., Videla, M. A., Salvo, M. A. & Valladares, G. (2013) Beneficial insects in urban environments: Parasitism rates increase in large and less isolated plant patches via enhanced parasitoid species richness. Biological Conservation, 164, 8289.Google Scholar
Franzen, M., Schweiger, O. & Betzholtz, P.-E. (2012) Species–area relationships are controlled by species traits. PLoS One, 7, e37359.Google Scholar
Galiana, N., Lurgi, M., Claramunt-Lopez, B., Fortin, M.-J., Leroux, S., Cazelles, K., Gravel, D. & Montoya, J. M. (2018) The spatial scaling of species interaction networks. Nature Ecology & Evolution, 2, 782790.Google Scholar
Genua, L., Start, D. & Gilbert, B. (2017) Fragment size affects plant herbivory via predator loss. Oikos, 126, 13571365.Google Scholar
Graham, N. A. J., Wilson, S. K., Carr, P., Hoey, A. S., Jennings, S. & MacNeil, M. A. (2018) Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature, 559, 250253.Google Scholar
Grainger, T. N., Germain, R. M., Jones, N. T. & Gilbert, B. (2017) Predators modify biogeographic constraints on species distributions in an insect metacommunity. Ecology, 98, 851860.Google Scholar
Gravel, D., Baiser, B., Dunne, J. A., Kopelke, J.-P., Martinez, N. D., Nyman, T., Poisot, T., Stouffer, D. B., Tylianakis, J. M., Wood, S. A. & Roslin, T. (2018) Bringing Elton and Grinnell together: A quantitative framework to represent the biogeography of ecological interaction networks. Ecography, 41, 115.Google Scholar
Gravel, D., Massol, F., Canard, E., Mouillot, D. & Mouquet, N. (2011) Trophic theory of island biogeography. Ecology Letters, 14, 10101016.Google Scholar
Guzman, L. M., Germain, R. M., Forbes, C., Straus, S., O’Connor, M. I., Gravel, D., Srivastava, D. S. & Thompson, P. L. (2019) Towards a multi-trophic extension of metacommunity ecology. Ecology Letters, 22, 1933.Google Scholar
Harfoot, M. B., Newbold, T., Tittensor, D. P., Emmott, S., Hutton, J., Lyutsarev, V., Smith, M. J., Scharlemann, J. P. & Purves, D. W. (2014) Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem modelPLoS Biology12, e1001841.Google Scholar
Harvey, E. & MacDougall, A. S. (2014) Trophic island biogeography drives spatial divergence of community establishment. Ecology, 95, 28702878.Google Scholar
Hastings, A. (1977) Spatial heterogeneity and the stability of predator-prey systems. Theoretical Population Biology, 12, 3748.Google Scholar
Heatwole, H. (2018) Trophic structure stability in insular biotic communities. The truth is the whole: Essays in honor of Richard Levins (ed. by Awerbuch, T., Clark, M. S. and Taylor, P. J.), pp. 220243. Arlington, MA: The Pumping Station.Google Scholar
Heatwole, H. & Levins, R. (1972) Trophic structure stability and faunal change during recolonization. Ecology, 53, 531534.Google Scholar
Holt, R. D. (1977) Predation, apparent competition, and the structure of prey communities. Theoretical Population Biology, 12, 197229.Google Scholar
Holt, R. D. (1992) A neglected facet of island biogeography: The role of internal spatial dynamics in area effects. Theoretical Population Biology, 41, 354371.Google Scholar
Holt, R. D. (1993) Ecology at the mesoscale: The influence of regional processes on local communities. Species diversity in ecological communities (ed. by Ricklefs, R. and Schluter, D.), pp. 7788. Chicago, IL: University of Chicago Press.Google Scholar
Holt, R. D. (1996) Food webs in space: An island biogeographic perspective. Food webs: Contemporary perspectives (ed. by Polis, G. and Winemiller, K.), pp. 313323. New York: Chapman and Hall.Google Scholar
Holt, R. D. (1997) From metapopulation dynamics to community structure: Some consequences of spatial heterogeneity. Metapopulation biology (ed. by Hanski, I. and Gilpin, M.), pp. 149164. New York: Academic Press.Google Scholar
Holt, R. D. (2010) Towards a trophic island biogeography: Reflections on the interface of island biogeography and food web ecology. The theory of island biogeography revisited (ed. by Losos, J. B. and Ricklefs, R. E.), pp. 143185. Princeton, NJ: Princeton University Press.Google Scholar
Holt, R. D. & Hoopes, M. F. (2005) Food web dynamics in a metacommunity context: Modules and beyond. Metacommunities: Spatial dynamics and ecological communities (ed. by Holyoak, M., Leibold, M. A. and Holt, R. D.), pp. 6894. Chicago, IL: University of Chicago Press.Google Scholar
Holt, R. D., Grover, J. & Tilman, D. (1994) Simple rules for interspecific dominance in systems with exploitative and apparent competition. The American Naturalist, 144, 741777.Google Scholar
Holt, R. D., Lawton, J. H., Polis, G. A. & Martinez, N. (1999) Trophic rank and the species–area relation. Ecology, 80, 14951504.Google Scholar
Hubbell, S. P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Huffaker, C. B. (1958) Experimental studies on predation: Dispersion factors and predator-prey oscillations. Hilgardia, 27, 343383.Google Scholar
Jacquet, C., Mouillot, D., Kulbicki, M. & Gravel, D. (2017) Extensions of island biogeography theory predict the scaling of functional trait composition with habitat area and isolation. Ecology Letters, 20, 135146.Google Scholar
Kinlan, B. P. & Gaines, S. D. (2003) Propagule dispersal in marine and terrestrial environments: A community perspectiveEcology84, 20072020.Google Scholar
Krishna, A., Guimaraes, P. R. Jr., Jordano, P. & Bascompte, J. (2008) A neutral-niche theory of nestedness in mutualistic networks. Oikos, 117, 16091618.Google Scholar
Lafferty, K. D. & Dunne, J. A. (2010) Stochastic ecological network occupancy (SENO) models: A new tool for modeling ecological networks across spatial scales. Theoretical Ecology, 3, 123135.Google Scholar
Lampert, A. & Hastings, A. (2016) Stability and distribution of predator–prey systems: Regional mechanisms and patterns. Ecology Letters, 19, 279288.Google Scholar
LeCraw, R. M., Kratina, P. & Srivastava, D. S. (2014) Food web complexity and stability across habitat connectivity gradients. Oecologia, 176, 903915.Google Scholar
Leibold, M. A. & Chase, J. M. (2018) Metacommunity ecology. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R, Tilman, D., Loreau, M. & Gonzalez, A. (2004) The metacommunity concept: A framework for multi-scale community ecology. Ecology Letters, 7, 601613.Google Scholar
Liao, J., Bearup, D. & Blasius, B. (2017) Food web persistence in fragmented landscapes. Proceedings of the Royal Society B: Biological Sciences, 284, 20170350.Google Scholar
Lomolino, M. V. (1984) Immigrant selection, predation, and the distribution of Microtus pennsylvanicus and Blarina brevicauda on islands. The American Naturalist, 123, 468483.Google Scholar
Losos, J. B. & Schluter, D. (2000) Analysis of an evolutionary species–area relationship. Nature, 408, 847850.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Martinson, H. M. & Fagan, W. F. (2014) Trophic disruption: A meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems. Ecology Letters, 17, 11781189.Google Scholar
Massol, F., Dubart, M., Calcagno, V., Cazelles, K., Jacquet, C., Kefi, S. & Gravel, D. (2017) Island biogeography of food webs. Advances in Ecological Research, 56, 183262.CrossRefGoogle Scholar
Massol, F., Gravel, D., Mouquet, N., Cadotte, M. W., Fukami, T. & Leibold, M. A. (2011) Linking community and ecosystem dynamics through spatial ecology. Ecology Letters, 14, 313323.Google Scholar
Matthews, T. J., Guilhaumon, F., Triantis, K. A., Borregaard, M. K. & Whitaker, R. J. (2016) On the form of species–area relationships in habitat islands and true islands. Global Ecology & Biogeography, 25, 847858.Google Scholar
McCann, K. S., Rasmussen, J. B. & Umbanhowar, J. (2005) The dynamics of spatially coupled food webs. Ecology Letters, 8, 513523.Google Scholar
Montoya, J. M. & Galiana, N. (2018) Integrating species interaction networks and biogeography. Adaptive food webs: Stability and transitions of real and model ecosystems (ed. by Moore, J. C., de Ruiter, P. C., McCann, K. S. and Wolters, V.), pp. 289304. Cambridge: Cambridge University Press.Google Scholar
Murakami, M. & Hirao, T. (2010) Lizard predation alters the effect of habitat area on the species richness of insect assemblages on Bahamian isles. Diversity and Distributions, 16, 952958.Google Scholar
van Noordwijk, C. G. E., Verberk, W. C. E. P., Turin, H., Heuerman, T., Alders, K., Dekoninck, W., Hannig, K., Regan, E., McCormack, S., Brown, M. J. F., Remke, E., Siepel, H., Berg, M. P. & Bonte, D. (2015) Species–area relationships are modulated by trophic rank, habitat affinity and dispersal ability. Ecology, 96, 518531.CrossRefGoogle ScholarPubMed
O’Dwyer, J. P. & Cornell, S. J. (2018) Cross-scale neutral ecology and the maintenance of biodiversity. Science Reports, 8, 10200.Google Scholar
Odum, E. P. (1971) Fundamentals of ecology. Philadelphia, PA: W.B. Saunders.Google Scholar
Oksanen, L., Oksanen, T., Dahlgren, J., Hambäck, P., Ekerholm, P., Lindgren, Å. & Olofsson, J. (2010) Islands as tests of the green world hypothesis. Trophic cascades: Predators, prey, and the changing dynamics of nature (ed. by Terborgh, J. and Estes, J. A.), pp. 163178. Washington, DC: Island Press.Google Scholar
Olff, H., Alonso, D., Berg, M. P., Eriksson, B. P., Loreau, M., Piersma, T. & Rooney, N. (2009) Parallel ecological networks in ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 17551779.Google Scholar
Orrock, J. L. & Fletcher, R. J. Jr. (2005) Changes in community size affect the outcome of competition. The American Naturalist, 166, 107111.Google Scholar
Ostman, O., Griffin, N. W., Strasburg, J. L., Brisson, J. A., Templeton, A. R., Knight, T. M. & Chase, J. M. (2007) Habitat area affects arthropod communities directly and indirectly through top predators. Ecography, 30, 359366.Google Scholar
Ovaskainen, O. & Hanski, I. (2003) The species–area relationship derived from species-specific incidence functions. Ecology Letters, 6, 903909.Google Scholar
Piechnik, D. A., Lawler, S. P. & Martinez, N. D. (2008) Food-web assembly during a classic biogeographic study: Species ‘trophic breadth’ corresponds to colonization order. Oikos, 117, 665674.Google Scholar
Pillai, P., Loreau, M. & Gonzalez, A. (2010) A patch-dynamic framework for food web metacommunities. Theoretical Ecology, 3, 223237.Google Scholar
Piovia-Scott, J., Yang, L. H., Wright, A. N., Spiller, D. A. & Schoener, T. W. (2017) The effect of lizards on spiders and wasps: Variation with island size and marine subsidy. Ecosphere, 8, e01909.Google Scholar
Polis, G. A., Anderson, W. B. & Holt, R. D. (1997) Toward an integration of landscape ecology and food web ecology: The dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics, 28, 289316.Google Scholar
Polis, G. A., Holt, R. D., Menge, B. A. & Winemiller, K. O. (1996) Time, space, and life history: Influences on food webs. Food webs: Integration of patterns and dynamics (ed. by Polis, G. A. and Winemiller, K. O.), pp. 435460. London: Chapman and Hall.Google Scholar
Ritchie, M. E. (1999) Biodiversity and reduced extinction risks spatially isolated rodent populations. Ecology Letters, 2, 1113.Google Scholar
Rizzuto, M., Carbone, C. & Pawar, S. (2018) Foraging constraints reverse the scaling of activity time in carnivoresNature Ecology & Evolution2, 247253.Google Scholar
Rooney, N., McCann, K. S. & Moore, J. C. (2008) A landscape theory for food web architecture. Ecology Letters, 11, 867881.Google Scholar
Rosindell, J. & Cornell, S. J. (2007) Species–area relationships from a spatially explicit neutral model in an infinite landscape. Ecology Letters, 10, 586595.Google Scholar
Rosindell, J. & Cornell, S. J. (2009) Species–area curves, neutral models, and long-distance dispersal. Ecology, 90, 17431750.Google Scholar
Roslin, T., Várkonyi, G., Koponen, M., Vikberg, V. & Nieminen, M. (2014) Species–area relationships across four trophic levels – decreasing island size truncates food chains. Ecography, 37, 443453.Google Scholar
Ryberg, R. A. & Chase, J. M. (2007) Predator-dependent species–area relationships. The American Naturalist, 170, 636642.Google Scholar
Ryberg, W. A., Smith, K. G. & Chase, J. M. (2012) Predators alter the scaling of diversity in prey metacommunities. Oikos, 121, 19952000.Google Scholar
Sang, A., Teder, T., Helm, A. & Partel, M. (2010) Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biological Conservation, 143, 14051413.Google Scholar
Santos, A. M. C. & Quicke, D. L. J. (2011) Large-scale diversity patterns of parasitoid insects. Entomological Science, 14, 371382.Google Scholar
Scheiner, S. M. (2003) Six types of species–area curves. Global Ecology & Biogeography, 12, 441447.Google Scholar
Scherber, C., Andert, H., Niedringhaus, R. & Tscharntke, T. (2018) A barrier island perspective on species–area relationships. Ecology and Evolution, 8, 1287912889.Google Scholar
Schmitz, O. J., Miller, J. R., Trainor, A. M. & Abrahms, B. (2017) Toward a community ecology of landscapes: Predicting multiple predator–prey interactions across geographic space. Ecology, 98, 22812292.Google Scholar
Schoener, T. W. & Spiller, D. A. (2010) Trophic cascades on islands. Trophic cascades: Predators, prey, and the changing dynamics of nature (ed. by Terborgh, J. and Estes, J. A.), pp. 179202. Washington, DC: Island Press.Google Scholar
Schoener, T. W., Spiller, D. A. & Piovia-Scott, J. (2016) Variation in ecological interaction strength with island area: Theory and data from the Bahamian archipelago. Global Ecology & Biogeography, 25, 891899.Google Scholar
Spiller, D. A. & Schoener, T. W. (2009) Species–area relationship. Encyclopedia of islands (ed. by Gillespie, R. G. and Clague, D. A.), pp. 857861. Berkeley, CA: University of California Press.Google Scholar
Steffan-Dewenter, I. & Tscharntke, T. (2000) Butterfly community structure in fragmented habitats. Ecology Letters, 3, 449456.Google Scholar
Stier, A. C., Hanson, K. M., Holbrook, S. J., Schmitt, R. J. & Brooks, A. J. (2014b) Predation and landscape characteristics independently affect reef fish community organization. Ecology, 95, 12941307.Google Scholar
Stier, A. C., Hein, A. M., Parravicini, V. & Kulbicki, M. (2014a) Larval dispersal drives trophic structure across Pacific coral reefs. Nature Communications, 5, 5575.Google Scholar
Summerhayes, V. S. & Elton, C. S. (1923) Contributions to the ecology of Spitsbergen and Bear Island. Journal of Ecology, 11, 214286.Google Scholar
Terborgh, J. (2010) The trophic cascade on islands. The theory of island biogeography revisited (ed. by Losos, J. B. and Ricklefs, R. E.), pp. 116142. Princeton, NJ: Princeton University Press.Google Scholar
Thornton, I. W. B. (1996) Krakatau – The destruction and reassembly of an island ecosystem. Cambridge, MA: Harvard University Press.Google Scholar
Toft, A. & Schoener, T. W. (1983) Abundance and diversity of orb spiders on 106 Bahamian Islands: Biogeography at an intermediate trophic level. Oikos, 41, 411426.Google Scholar
Triantis, K. A., Guilhaumon, F. & Whittaker, R. J. (2012) The island species–area relationship: Biology and statistics. Journal of Biogeography, 39, 215231.CrossRefGoogle Scholar
Wang, S. & Loreau, M. (2014) Ecosystem stability in space: α, β and δ variability. Ecology Letters, 17, 891901.Google Scholar
Warren, B. H., Simberloff, D., Ricklefs, R. E., Aguilée, R., Condamine, F. L., Gravel, D., Morlon, H., Mouquet, N., Rosindel, J., Casquet, J., Conti, E., Cornuault, J., Fernández‐Palacios, J. M., Hengl, T., Norder, S. J., Rijsdijk, K. F., Sanmartín, I., Strasberg, D., Triantis, K. A., Valente, L. M., Whittaker, R. J., Gillespie, R. G., Emerson, B. C. & Thébaud, C. (2015) Islands as model systems in ecology and evolution: Prospects fifty years after MacArthur-Wilson. Ecology Letters, 18, 200217.Google Scholar
Whittaker, R. J. & Fernández-Palacios, J. M. (2007) Island biogeography: Ecology, evolution, and conservation, 2nd ed. Oxford: Oxford University Press.Google Scholar
Wilson, H. B., Holt, R. D. & Hassell, M. P. (1998) Persistence and area effects in a stochastic tritrophic model. The American Naturalist, 151, 587596.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×