Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T23:28:14.381Z Has data issue: false hasContentIssue false

6 - The use of dendrogeomorphology to recognize the spatiotemporal distribution of snow avalanches in Northern Iceland – case studies from Dalsmynni, Ljósavatnsskarð, and Fnjóskadalur

from Part III - Solute and sedimentary fluxes in subarctic and Arctic environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbolini, M., and Keylock, C. J. (2002). A new method for avalanche hazard mapping using a combination of statistical and deterministic models. Natural Hazards and Earth System Sciences 2, 239245.CrossRefGoogle Scholar
Bräker, O. U. (2002). Measuring and data processing in tree-ring research – a methodological introduction. Dendrochronologia 20, 203216.CrossRefGoogle Scholar
Bryant, C. L., Butler, D. R., and Vitek, J. D. (1989). A statistical analysis of tree-ring dating in conjunction with snow avalanches: comparison of on-path versus off-path responses. Environmental Geological Water Science 14, 5359.CrossRefGoogle Scholar
Brynjólfsson, S., and Ólafsson, H. (2009). Precipitation in the Svarfaðardalur region, North-Iceland. Meteorology and Atmospheric Physics 103, 5766.CrossRefGoogle Scholar
Butler, D. R., (1979). Snow avalanche path terrain and vegetation, Glacier National Park, Montana. Arctic and Alpine Research 11, 1732.CrossRefGoogle Scholar
Butler, D. P., and Malanson, G. P. (1985). A history of high-magnitude snow avalanches, Southern Glacier National Park, Montana, USA. Mountain Research and Development 5, 175182.CrossRefGoogle Scholar
Butler, D. R., Malanson, G. P., and Oelfke, J. G. (1987). Tree-ring analysis and natural hazard chronologies: minimum sample sizes and index values. The Professional Geographer 39, 4147.CrossRefGoogle Scholar
Butler, D. R., Sawyer, C. F., and Maas, J. A. (2010). Tree-ring dating of snow avalanches in Glacier National Park, Montana, USA. In: Stoffel, M., Bollschweiler, M., Butler, D. R., and Luckman, B. H., eds., Tree Rings and Natural Hazards, a State-of-the-Art. Heidelberg, Berlin, New York: Springer, pp. 3546.CrossRefGoogle Scholar
Carrara, P. E. (1979). The determination of snow avalanche frequency through tree-ring analysis and historical records at Ophir, Colorado. Geological Society of America Bulletin 90, 773780.2.0.CO;2>CrossRefGoogle Scholar
Corona, C., Rovéra, G., Lopez Saez, J., Stoffel, M., and Perfettini, P. (2010). Spatio-temporal reconstruction of snow avalanche activity using tree rings: Pierres Jean Jeanne avalanche talus, Massif de l'Oisans, France. Catena 83, 107118.Google Scholar
Corona, C., Lopez, Saez J., Stoffel, M., Rovéra, G., Edouard, J.-L., and Berger, F. (2012). Seven centuries of avalanche activity at Echalp (Queyras massif, southern French Alps) as inferred from tree rings. The Holocene 23, 292304.CrossRefGoogle Scholar
Decaulne, A. (2001). Mémoire collective et perception du risque lié aux avalanches et aux debris flows dans les fjords islandais: l'exemple du site d'Ísafjörður (Islande nord-occidentale). Revue de Géographie Alpine, T. 89, n°3, 6380.CrossRefGoogle Scholar
Decaulne, A., and Sæmundsson, Þ. (2010). Distribution and frequency of snow-avalanche debris transfer in the distal part of colluvial cones in Central North Iceland. Geografiska Annaler, 92A (2), 177147.CrossRefGoogle Scholar
Decaulne, A., Eggertsson, Ó., and Sæmundsson, Þ. (2012). A first dendrogeomorphologic approach of snow avalanche magnitude – frequency in Northern Iceland. Geomorphology 167–168, 3544.CrossRefGoogle Scholar
Decaulne, A., Sæmundsson, Þ., and Eggertsson, Ó. (2013). A multi-scale resolution of snow-avalanche activity based on geomorphological investigations at Fnjóskadalur, northern Iceland, Polar Record 49, 220229.CrossRefGoogle Scholar
Decaulne, A., Eggertsson, Ó., Laute, K., and Beylich, A. A. (2013). Dendrogeomorphic approach for snow-avalanche activity reconstruction in a maritime cold environment (upper Erdalen, Norway). Zeitschrift für Geomorphologie Suppl. Bd. 2, 5568.CrossRefGoogle Scholar
Decaulne, A., Eggertsson, Ó., Laute, K., and Beylich, A. A. (2014). A 100-year extreme snow-avalanche record based on tree-ring research in upper Bødalen, inner Nordfjord, western Norway. Geomorphology 218, 315.CrossRefGoogle Scholar
Dubé, S., Filion, L., and Hétu, B. (2004). Tree-ring reconstruction of high-magnitude snow avalanches in the northern Gaspé Peninsula, Québec, Canada. Arctic, Antarctic, and Alpine Research 36, 555564.CrossRefGoogle Scholar
Germain, D., Filion, L., and Hétu, B. (2005). Snow avalanche activity after fire and logging disturbances, northern Gaspé Peninsula, Quebec, Canada. Canadian Journal of Earth Sciences 42, 21032116.CrossRefGoogle Scholar
Germain, D., Filion, L., and Hétu, B. (2009). Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada. Climatic Change 92, 141167.CrossRefGoogle Scholar
Germain, D., Hétu, B., and Filion, L. (2010). Tree-ring based reconstruction of past snow avalanche events and risk assessment in Northern Gaspé Peninsula (Québec, Canada). In Stoffel, M., Bollschweiler, M., Butler, D. R., and Luckman, B. H., eds. Tree Rings and Natural Hazards, a State-of-the-Art. Heidelberg, Berlin, New York: Springer, pp. 5173.CrossRefGoogle Scholar
Grissino-Mayer, H. D. (2001). Evaluating cross-dating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research 57, 205221.Google Scholar
Haraldsdóttir, S. H., Tracy, L., Jensen, E. H., and Ólafsson, H. (2006). Avalanches in coastal towns in Iceland. Jökull 56, 125.CrossRefGoogle Scholar
Hewitt, K. (2004). Geomorphic hazards in mountain environments. In Owens, P. N., & Slaymaker, O.. Mountain Geomorphology, London: Arnold, 313 p.Google Scholar
Holmes, R. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43, 6978.Google Scholar
Jónsson, Þ. H. (2004). Stature of sub-arctic birch in relation to growth rate, lifespan and tree form. Annals of Botany 94, 753762.CrossRefGoogle ScholarPubMed
Khapayev, S. A. (1978). Dynamics of avalanche natural complexes: an example from the high-mountain Teberda State Reserve, Caucasus Mountains, USSR. Arctic and Alpine Research 10, 335344.CrossRefGoogle Scholar
Keylock, C. (1997). Snow avalanches. Progress in Physical Geography 21, 481500.CrossRefGoogle Scholar
Köse, N., Aydın, A., Akkemik, Ü., Yurtseven, H., and Güner, T. (2010). Using tree-ring signals and numerical model to identify the snow avalanche tracks in Kastamonu, Turkey. Natural Hazards and Earth System Sciences 54, 435449.CrossRefGoogle Scholar
Levanic, T., and Eggertsson, O. (2008). Climatic effects on birch (Betula pubescens) growth in Fnjoskadalur valley, northern Iceland. Dendrochronologica, 25, 135143.CrossRefGoogle Scholar
Lied, K., and Bakkehøi, S. (1980). Empirical calculations of snow-avalanche run-out distance based on topographic parameters. Journal of Glaciology 26, 165–77.CrossRefGoogle Scholar
Luckman, B. H. (1977). The geomorphic activity of avalanches. Geografiska Annaler 59, 3148.CrossRefGoogle Scholar
Luckman, B. H. (1978). Geomorphic work of snow avalanches in the Canadian Rocky Mountains. Arctic and Alpine Research 10, 261276.CrossRefGoogle Scholar
McClung, D., and Shaerer, P. (1993). The Avalanche Handbook. Seattle: The Mountaineers, 271 p.Google Scholar
Perla, R. I., Cheng, T. T., and McClung, D. M. (1980). A two-parameter model of snow avalanche motion. Journal of Glaciology 26, 197207.CrossRefGoogle Scholar
Potter, N. (1969). Tree-ring dating of snow avalanche tracks and the geomorphic activity of avalanches, northern Absaroka Mountains, Wyoming, Boulder, CO. Geological Society of America, Special Paper 123, pp. 141–165.CrossRefGoogle Scholar
Rapp, A. (1959). Avalanche boulder tongues in Lappland: a description of little known landforms of periglacial debris accumulation. Geografiska Annaler 41, 3448.CrossRefGoogle Scholar
Rapp, A. (1960). Recent developments of mountain slopes in Kärkevagge and surroundings, northern Scandinavia. Geografiska Annaler 42, 73200.Google Scholar
Rinntech. (2006). LINTAB - Precision Ring by Ring. http://www.rinntech.com/Products/LINTAB.htm. 2 pp.Google Scholar
Selby, M. J. (2005). Hillslope materials and processes. Oxford: Oxford University Press, 451 p.Google Scholar
Shroder, J. F. (1978). Dendrochronological analysis of mass movement on Table Cliffs, Utah. Quaternary Research, 9, 168185.CrossRefGoogle Scholar
Speer, J. H. (2010). Fundamentals of Tree-ring Research. Tucson: The University of Arizona Press.Google Scholar
Stoffel, M. (2005). Spatio-temporal Variations of Rockfall Activity into Forests - Results from Tree-ring and Tree Analysis. PhD thesis no. 1480, Department of Geosciences, Geography, GeoFocus 12. University of Fribourg, Fribourg, 188 pp.Google Scholar
Stoffel, M., Bollschweiler, M., and Hassler, G. R. (2006). Differentiating events on a cone influenced by debris-flow and snow avalanche activity – a dendrogeomorphological approach. Earth Surface Processes and Landforms 31, 14241437.CrossRefGoogle Scholar
Szymczak, S., Bollschweiler, M., Stoffel, M., and Dikau, R. (2010). Debris-flow activity and snow avalanches in a steep watershed of the Valais Alps (Switzerland): dendrogeomorphic event reconstruction and identification of triggers. Geomorphology 116, 107114.CrossRefGoogle Scholar
Voiculescu, M., and Onaca, A. (2014). Spatio-temporal reconstruction of snow avalanche activity using dendrogeomorphological approach in Bucegi Mountains Romanian Carpathians. Cold Region Science and Technology 104–105, 6375.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×