Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T11:13:02.692Z Has data issue: false hasContentIssue false

10 - Measurements of bedload flux in a high Arctic environment

from Part III - Solute and sedimentary fluxes in subarctic and Arctic environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashworth, P. J., and Ferguson, R. I. (1986). Interrelationships of channel processes, changes and sediments in a proglacial braided river. Geografiska Annaler, 68A, 361371.CrossRefGoogle Scholar
Bartoszewski, S. (1998). Regime of outflow of the Wedel Jarlsberg’s Land rivers (Spitsbergen). Faculty of Biology and Earth Sciences MCSU in Lublin. Habilitation dissertations, 40, 167 pp. (in Polish).Google Scholar
Bartoszewski, S., Gluza, A., Siwek, K., and Zagórski, P. (2009). Temperature and rainfall control of outflow from the Scott Glacier catchment (Svalbard) in the summers of 2005 and 2006. Norsk Geografisk Tidsskrift – Norwegian Journal of Geography, 1502–5292, 63, 107114.CrossRefGoogle Scholar
Beylich, A. A. (2007). Quantitative studies on sediment fluxes and sediment budgets in changing cold environments – potential and expected benefit of coordinated data exchange and the unification of methods. Landform Analysis, 5, 910.Google Scholar
Beylich, A. A., and Kneisel, C. (2009). Sediment budget and relief development in Hrafndalur, subarctic oceanic Eastern Iceland. Arctic, Antarctic, and Alpine Research, 41, 317.CrossRefGoogle Scholar
Beylich, A. A., and Warburton, J., eds. (2007). Analysis of source-to-sink fluxes and sediment budgets in changing high-latitude and high-altitude cold environments. SEDIFLUX Manual. Trondheim: Norwegian Geological Survey Report.Google Scholar
Beylich, A. A., Lamoureux, S. F., and Decaulne, A. (2012). Sediment budgets in cold environments programme: ongoing activities and selected key tasks for the coming years, Geomorphology, 167–168, 23.CrossRefGoogle Scholar
Beylich, A. A., Laute, K., and Liermann, S. 2013. Integrating field measurements and flume experiments for analyzing fluvial bedload transport and channel morphodynamics in steep mountain streams. Geophysical Research Abstracts, 15 (EGU 2013–1179).Google Scholar
Beylich, A. A., and Laute, K. (2013). Combining impact sensor field and laboratory flume measurements with other techniques for studying fluvial bedload transport in steep mountain streams, Geomorphology, 218, 7287CrossRefGoogle Scholar
Beylich, A. A., and Laute, K. (2015). Sediment sources, spatiotemporal variability and rates of fluvial bedload transport in glacier-connected steep mountain valleys in western Norway (Erdalen and Bødalen drainage basins). Geomorphology, 228, 552567CrossRefGoogle Scholar
Bogen, J., and Møen, K. (2003). Bedload measurements with a new passive acoustic sensor. In Bogen, J., Fergus, T., and Walling, D. E., eds., Erosion and Sediment Transport Measurement in Rivers: Technological and Methodological Advances. IAHS Publication, 283. Wallingford: IAHS, pp. 181192.Google Scholar
Bogen, J., Fergus, T., and Walling, D. E., eds. (2003). Erosion and Sediment Transport in Rivers: Technological and Methodological Advances. IAHS Publication, 283. Wallingford: IAHS.Google Scholar
Brandt, M. (1990). Generation, transport and deposition of suspended and dissolved material – Examples from Swedish rivers. Geografiska Annaler, 72A, 273283.CrossRefGoogle Scholar
Bunte, K., and Abt, S. R. (2009). Transport Relationships Between Bedload Traps and a 3-Inch Helley-Smith Sampler in Coarse Gravel-Bed Streams and Development of Adjustment Functions. Report submitted to the Federal Interagency Sedimentation Project, Vicksburg, MS, 138 pp.Google Scholar
Bunte, K., and Abt, S. (2003). Sampler size and sampling time affect measured bedload transport rates and particle sizes measured with bedload traps in gravel-bed streams. In Bogen, J., Fergus, T., and Walling, D. E., eds., Erosion and Sediment Transport Measurement in Rivers. Technological and Methodological Advances. Wallingford: IAHS, 283, pp. 126133.Google Scholar
Bunte, K., Abt, S. R., Potyondy, J. P., and Ryan, S. E. (2004). Measurement of coarse gravel and cobble transport using a portable bedload trap. Journal of Hydraulic Engineering, 130, 879893.CrossRefGoogle Scholar
Bunte, K., Swingle, K. W., and Abt, S. R. (2007). Guidelines for using bedload traps in coarse-bedded mountain streams: Construction, installation, operation, and sample processing: General Technical Report, USDA Forest Service, Rocky Mountain Research Station, 93.Google Scholar
Carson, M. A., and Griffiths, G. A. (1987). Bedload transport in gravel channels. Journal of Hydrology (New Zealand), 26, 1151.Google Scholar
Church, M., and Gilbert, R. (1975). Proglacial fluvial and lacustrine environments. In Jopling, A. V. and McDonald, B. C., eds., Glaciofluvial and Glaciolacustrine Sedimentation. Tulsa, OK: Society of Economic Paleontologists and Mineralogists. Special Publication 23, pp. 22100.CrossRefGoogle Scholar
Church, M., and Hassan, M. A. (2002). Mobility of bed material in Harris Creek. Water Resources Research, 38,1237, doi:10.1029/2001WR000753.CrossRefGoogle Scholar
Church, M., and Zimmermann, A. (2007). Form and stability of step-pool channels: research progress. Water Resour. Res., 43, W03415. http://dx.doi.org/1 0.1029/2006WR005037.CrossRefGoogle Scholar
Comiti, F., and Mao, L. (2012). Recent advances in the dynamics of steep channels. In Church, M., Biron, P., and Roy, A., eds., Gravel Bed Rivers: Processes, Tools, Environments. Chichester: Wiley, pp. 353377.Google Scholar
Downing, J. P., Farley, P. J., Bunte, K., Swingle, K., Ryan, S. E., and Dixon, M. (2003). Acoustic gravel-transport sensor: description and field tests in Little Granite Creek, Wyoming, USA. In Bogen, J., Fergus, T., Walling, D. E., eds., Erosion and Sediment Transport Measurement in Rivers: Technological and Methodological Advances. Wallingford: IAHS Publication 283, pp. 193200.Google Scholar
Emmett, W. W. (1980). A field calibration of the sediment-trapping characteristics of the Helley–Smith bed load sampler. US Geological Survey Professional Paper 1139. Washington DC: U.S. Government Printing Office, 44 pp.CrossRefGoogle Scholar
Ergenzinger, P., and Conrady, J. (1982). A new tracer technique for measuring bedload in natural channels. Catena, 9, 7780.CrossRefGoogle Scholar
Ergenzinger, P., and Schmidt, K.-H., eds. (1994). Dynamics and Geomorphology of Mountain Rivers. Lecture Notes in Earth Sciences, 52. Heidelberg: Springer, Berlin (326 pp.).CrossRefGoogle Scholar
Garcia, C., Laronne, J. B., and Sala, M. (2000). Continuous monitoring of bedload flux in a mountain gravel-bed river. Geomorphology, 34, 2331.CrossRefGoogle Scholar
Gilbert, R., and Church, M. (1983). Contemporary sedimentary environments on Baffin Island, N.W.T., Canada: reconnaissance of lakes on Cumberland Peninsula. Arctic and Alpine Research, 15, 321332.CrossRefGoogle Scholar
Gray, J. R., Laronne, J. B., and Marr, J. D. G. (2010). Bedload-surrogate monitoring technologies. U.S. Geological Survey Scientific Investigations Report 2010–5091. Reston, VA: U.S. Geological Survey (http://pubs/usgs.gov/sir/2010/5091).Google Scholar
Gurnell, A. M., and Clark, M. J. eds. (1987). Glacio-Fluvial Sediment Transfer: An Alpine Perspective. Chichester: Wiley, 524 pp.Google Scholar
Gurnell, A. M., Warburton, J., and Clark, M. J. (1988). A comparison of the sediment transport and yield characteristics of two adjacent glacier basins, Val d’Herens, Switzerland. In Bordas, M. P., and Walling, D.E., eds., Sediment Budgets (Proceedings Porto Alegre Symposium December 1988). Wallingford: IAHS Publication 174, pp. 431441.Google Scholar
Hagen, J. O., and Lefauconnier, B. (1995). Reconstructed runoff from the High Arctic basin Bayelva based on mass balance measurements. Nordic Hydrology, 26, 285296.CrossRefGoogle Scholar
Hammer, K. M., and Smith, N. D. (1983). Sediment production and transport in proglacial stream: Hilda Glacier, Alberta, Canada. Boreas, 12, 91106.CrossRefGoogle Scholar
Hasholt, B. (1976). Hydrology and transport of material in the Sermilik area 1972. Geografisk Tidsskrift, 75, 3039.CrossRefGoogle Scholar
Hassan, M. A., Church, M., Lisle, T. E., Brardinoni, F., Benda, L., and Grant, G. E. (2005). Sediment transport and channel morphology of small, forested streams. Journal of the American Water Resources Association, 41, 853876.CrossRefGoogle Scholar
Hayward, J. A., and Sutherland, A. J. (1974). The Torlesse stream vortex-tube sediment trap. Journal of Hydrology (New Zealand), 13, 4153.Google Scholar
Helley, E. J., and Smith, W. (1971). Development and calibration of a pressure-difference bedload sampler. US Geological Survey Open-File Report, 18 pp.CrossRefGoogle Scholar
Hey, R. D., and Meigh, J. R. (1992). Distribution and sedimentary characteristics of bedload transport in gravel-bed rivers. In Jaeggi, M., and Hunziker, R., eds., Proceedings of the I.A.H.R. International Grain Sorting Seminar. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie 117, Zurich: ETH, pp. 371398.Google Scholar
Kjeldsen, O., and Østrem, G. (1980). Materialtrans-portundersokelser i Norske Breelver 1979. NorgesVassdragsogElektrisitetsvesen. Vassdragsdirektoratet Hydrologisk Avdeling Rapport, 80 pp.Google Scholar
Kociuba, W. (2014). Application of Terrestrial Laser Scanning in the assessment of the role of small debris flow in river sediment supply in the cold climate environment. Annales UMCS B, 69, 1, 7991.Google Scholar
Kociuba, W. (2016). Effective Method for Continuous Measurement of Bedload Transport Rates by Means of River Bedload Trap (RBT) in a Small Glacial High Arctic Gravel-Bed River. In Rowiński, P., Marion, A., eds., GeoPlanet: Earth Planetary Sciences, Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces. Springer, 279292.Google Scholar
Kociuba, W., and Janicki, G. (2013). Fluvial processes. In Zagórski, P., Harasimiuk, M., and Rodzik, J., eds., The Geographical Environment of NW Part of Wedel Jarlsberg Land (Spitsbergen, Svalbard). Lublin: Wydawnictwo UMCS, 192211.Google Scholar
Kociuba, W., and Janicki, G. (2014). Continuous measurements of bedload transport rates in a small glacial river catchment in the summer season (Spitsbergen), Geomorphology, 212, 5871.CrossRefGoogle Scholar
Kociuba, W., and Janicki, G. (2015). Changeability of movable bed-surface particles in natural, gravel-bed channels and its relation to bedload grain size distribution (Scott River, Svalbard). Geografiska Annaler A, 9(3), 507521.CrossRefGoogle Scholar
Kociuba, W., Janicki, G., and Siwek, K. (2010). Dynamics of changes the bed load outflow from a small glacial catchment (West Spitsbergen). In de Wrachien, D., and Brebbia, C. A., eds. Monitoring, Simulation, Prevention and Remediation of Dense Debris Flow III. Southampton, Boston: WIT Press, 261270.CrossRefGoogle Scholar
Kociuba, W., Janicki, G., and Siwek, K. (2014). Variability of sediment transport in the Scott River catchment (Svalbard) during the hydrologically active season of 2009. Quaestiones Geographicae, 33(1), 3949.CrossRefGoogle Scholar
Kociuba, W., Janicki, G., Siwek, K., and Gluza, A. (2012). Bedload transport as an indicator of contemporary transformations of arctic fluvial systems. In de Wrachien, D., Brebbia, C. A., and Mambretti, S., eds., Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows IV. Southampton, Boston: WIT Press, pp. 125135.CrossRefGoogle Scholar
Laronne, J. B., Alexandrov, Y., Bergman, N., Cohen, H., Garcia, C., Habersack, H., Powell, D. M., and Reid, I. (2003). The continuous monitoring of bed load flux in various fluvial environments. IAHS Publication, 283, 134145.Google Scholar
Lewis, J. (1991). An improved bedload sampler. In Proceedings of the Fifth Federal Interagency Sedimentation Conference, Las Vegas, Nev., Subcommittee of the Interagency Advisory Committee on Water Data, pp. 61–68.Google Scholar
Milhous, R. (1973). Sediment transport in a gravel-bottomed stream. Ph.D. thesis, Oregon State University, Corvallis, USA, 232 pp.Google Scholar
Morche, D., and Schmidt, K. H. (2012). Sediment transport in an alpine river before and after a dambreak flood event Earth Surf. Process. Landforms, 37, 347353.CrossRefGoogle Scholar
Orwin, J. F., and Smart, C. C. (2004). The evidence for paraglacial sedimentation and its temporal scale in the deglacierizing basin of Small River Glacier, Canada. Geomorphology, 58, 175202.CrossRefGoogle Scholar
Orwin, J. F., Lamoureux, S. F., Warburton, J., and Beylich, A. A. (2010). A framework for characterizing fluvial sediment fluxes from source to sink in cold environments. Geografiska Annaler, 92 A, 155176.CrossRefGoogle Scholar
Østrem, G., Bridge, C. W., and Rannie, W. F. (1967). Glacio-hydrology, discharge and sediment transport in the Decade Glacier area, Baffin Island, N.W.T. Geografiska Annaler, 49A, 268282.Google Scholar
Pearce, J. T., Pazzaglia, F. J., Evenson, E. B., Lawson, D. E., Alley, R. B., Germanoski, D., and Denner, J. D. (2003). Bedload component of glacially discharged sediment: Insights from the Matanuska Glacier, Alaska. Geology, 31, 710.2.0.CO;2>CrossRefGoogle Scholar
Powell, D. M., Reid, I., Laronne, J. B., and Frostick, L. E. (1998). Cross stream variability of bed-load flux in narrow and wide ephemeral channels during desert flash floods. In Klingeman, P.C., Beschta, R. L., Komar, P. D., and Bradley, J. B., eds., Gravel-Bed Rivers in the Environment. Highlands Ranch, CO: Water Resources Publications LLC, pp.177196.Google Scholar
Rachlewicz, G. (2007). Floods in high Arctic Valley systems and their geomorfologic effects (examples from Billefjorden, Central Spitsbergen). Landform Analysis, 5, 6670.Google Scholar
Raven, E., Lane, S. N., and Ferguson, R. (2010). Using sediment impact sensors to improve the morphological sediment budget approach for estimating bedload transport rates. Geomorphology, 119, 125134.CrossRefGoogle Scholar
Reid, I., Laronne, J. B., and Powell, M. (2002). The nahal bedload database: sediment dynamics in a gravel-bed ephemeral stream. Earth Surface Processes and Landforms, 20(9), 845857.CrossRefGoogle Scholar
Reid, I., Layman, J. T., and Frostick, L. E. (1980). The continuous measurement of bedload discharge. Journal of Hydraulic Research, 18, 243249.CrossRefGoogle Scholar
Rickenmann, D., and McArdell, B. W. (2007). Continuous measurement of sediment transport in the Erlenbach stream using piezoelectric bedload impact sensors. Earth Surf. Process. Landforms, 32, 13621378.CrossRefGoogle Scholar
Rickenmann, D., Turowski, J. M., Fritschi, B., Klaiber, A., and Ludwig, A. (2012). Bedload transport measurements at the Erlenbach stream with geophones and automated basket samplers. Earth Surf. Process. Landforms, 37, 10001011.CrossRefGoogle Scholar
Sear, D. A., Damon, W., Booker, D. J., and Anderson, D. G. (2000). A load cell based continuous recording bedload trap. Earth Surface Processes and Landforms, 25, 689672.3.0.CO;2-5>CrossRefGoogle Scholar
Tacconi, P., and Billi, P. (1987). Bed load transport measurement by a vortex-tube trap on Virginio Creek, Italy. In Thorne, C. R., Bathurst, J. C., Hey, R.D., eds., Sediment Transport in Gravel-Bed Rivers. Chichester: Wiley, pp. 583615.Google Scholar
Turowski, J. M., Rickenmann, D., and Dadson, S. J. (2010). The partitioning of the total sediment load of a river into suspended load and bedload: a review of empirical data. Sedimentology, 57, 11261146.CrossRefGoogle Scholar
Turowski, J. M., Badoux, A., and Rickenmann, D. (2011). Start and end of bedload transport in gravel-bed streams. Geophys. Res. Lett., 38, L04401. http://dx.doi.org/10.1029/ 2010GL046558.CrossRefGoogle Scholar
Vatne, G., Naas, Ø. T., Skarholen, T., Beylich, A. A., and Berthling, I. (2008). Bed load transport in a steep snowmelt-dominated mountain stream as inferred from impact sensors. Norsk Geografisk Tidsskrift – Norwegian Journal of Geography, 62, 6674.CrossRefGoogle Scholar
Warburton, J. (1990). An alpine proglacial fluvial sediment budget. Geografiska Annaler, 72A, 261272.CrossRefGoogle Scholar
Zwoliński, Z. (1989). Geomorphic adjustment of the Parsęta channel to the present-day river regime. Dokumentacja Geograficzna, 3/4, 144 pp. (in Polish).Google Scholar
Zwoliński, Z. (1993). Dynamics of bed load transport in the Parsęta River channel, Poland. In Marzo, M. and Puigdefábregas, C., eds., Alluvial Sedimentation. International Association of Sedimentologists, Special Publications 17. Chichester: Wiley 7787.CrossRefGoogle Scholar
Zwoliński, Z. (2007). Hydrological polar monitoring – methodical proposition. Monitoring of Natural Environment, 8, 2939 (in Polish).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×