Book contents
- Frontmatter
- Contents
- Preface
- List of Participants
- Magnetic Noise and the Galactic Dynamo
- On the Oscillation in Model Z
- Nonlinear Dynamos in a Spherical Shell
- The Onset of Dynamo Action in Alpha-lambda Dynamos
- Multifractality, Near-singularities and the Role of Stretching in Turbulence
- Note on Perfect Fast Dynamo Action in a Large-amplitude SFS Map
- A Thermally Driven Disc Dynamo
- Magnetic Instabilities in Rapidly Rotating Systems
- Modes of a Flux Ring Lying in the Equator of a Star
- A Nonaxisymmetric Dynamo in Toroidal Geometry
- Simulating the Interaction of Convection with Magnetic Fields in the Sun
- Experimental Aspects of a Laboratory Scale Liquid Sodium Dynamo Model
- Influence of the Period of an ABC Flow on its Dynamo Action
- Numerical Calculations of Dynamos for ABC and Related Flows
- Local Helicity, a Material Invariant for the Odd-dimensional Incompressible Euler Equations
- On the Quasimagnetostrophic Asymptotic Approximation Related to Solar Activity
- Simple Dynamical Fast Dynamos
- A Numerical Study of Dynamos in Spherical Shells with Conducting Boundaries
- Non-axisymmetric Shear Layers in a Rotating Spherical Shell
- Testing for Dynamo Action
- Alpha-quenching in Cylindrical Magnetoconvection
- On the Stretching of Line Elements in Fluids: an Approach from Differential Geometry
- Instabilities of Tidally and Precessionally Induced Flows
- Probability Distribution of Passive Scalars with Nonlinear Mean Gradient
- Magnetic Fluctuations in Fast Dynamos
- A Statistical Description of MHD Turbulence in Laboratory Plasmas
- Compressible Magnetoconvection in Three Dimensions
- The Excitation of Nonaxisymmetric Magnetic Fields in Galaxies
- Localized Magnetic Fields in a Perfectly Conducting Fluid
- Turbulent Dynamo and the Geomagnetic Secular Variation
- On-Off Intermittency: General Description and Feedback Model
- Dynamo Action in a Nearly Integrable Chaotic Flow
- The Dynamo Mechanism in the Deep Convection Zone of the Sun
- Shearing Instabilities in Magnetoconvection
- On the Role of Rotation of the Internal Core Relative to the Mantle
- Evolution of Magnetic Fields in a Swirling Jet
- Analytic Fast Dynamo Solution for a Two-dimensional Pulsed Flow
- On Magnetic Dynamos in Thin Accretion Disks Around Compact and Young Stars
- The Strong Field Branch of the Childress–Soward Dynamo
- Evidence for the Suppression of the Alpha-effect by Weak Magnetic Fields
- Turbulent Magnetic Transport Effects and their Relation to Magnetic Field Intermittency
- Proving the Existence of Negative Isotropic Eddy Viscosity
- Dynamo Action Induced by Lateral Variation of Electrical Conductivity
- Spherical Inertial Oscillation and Convection
- Hydrodynamic Stability of the ABC Flow
- Dynamos with Ambipolar Diffusion
- Subject Index
Simulating the Interaction of Convection with Magnetic Fields in the Sun
Published online by Cambridge University Press: 11 May 2010
- Frontmatter
- Contents
- Preface
- List of Participants
- Magnetic Noise and the Galactic Dynamo
- On the Oscillation in Model Z
- Nonlinear Dynamos in a Spherical Shell
- The Onset of Dynamo Action in Alpha-lambda Dynamos
- Multifractality, Near-singularities and the Role of Stretching in Turbulence
- Note on Perfect Fast Dynamo Action in a Large-amplitude SFS Map
- A Thermally Driven Disc Dynamo
- Magnetic Instabilities in Rapidly Rotating Systems
- Modes of a Flux Ring Lying in the Equator of a Star
- A Nonaxisymmetric Dynamo in Toroidal Geometry
- Simulating the Interaction of Convection with Magnetic Fields in the Sun
- Experimental Aspects of a Laboratory Scale Liquid Sodium Dynamo Model
- Influence of the Period of an ABC Flow on its Dynamo Action
- Numerical Calculations of Dynamos for ABC and Related Flows
- Local Helicity, a Material Invariant for the Odd-dimensional Incompressible Euler Equations
- On the Quasimagnetostrophic Asymptotic Approximation Related to Solar Activity
- Simple Dynamical Fast Dynamos
- A Numerical Study of Dynamos in Spherical Shells with Conducting Boundaries
- Non-axisymmetric Shear Layers in a Rotating Spherical Shell
- Testing for Dynamo Action
- Alpha-quenching in Cylindrical Magnetoconvection
- On the Stretching of Line Elements in Fluids: an Approach from Differential Geometry
- Instabilities of Tidally and Precessionally Induced Flows
- Probability Distribution of Passive Scalars with Nonlinear Mean Gradient
- Magnetic Fluctuations in Fast Dynamos
- A Statistical Description of MHD Turbulence in Laboratory Plasmas
- Compressible Magnetoconvection in Three Dimensions
- The Excitation of Nonaxisymmetric Magnetic Fields in Galaxies
- Localized Magnetic Fields in a Perfectly Conducting Fluid
- Turbulent Dynamo and the Geomagnetic Secular Variation
- On-Off Intermittency: General Description and Feedback Model
- Dynamo Action in a Nearly Integrable Chaotic Flow
- The Dynamo Mechanism in the Deep Convection Zone of the Sun
- Shearing Instabilities in Magnetoconvection
- On the Role of Rotation of the Internal Core Relative to the Mantle
- Evolution of Magnetic Fields in a Swirling Jet
- Analytic Fast Dynamo Solution for a Two-dimensional Pulsed Flow
- On Magnetic Dynamos in Thin Accretion Disks Around Compact and Young Stars
- The Strong Field Branch of the Childress–Soward Dynamo
- Evidence for the Suppression of the Alpha-effect by Weak Magnetic Fields
- Turbulent Magnetic Transport Effects and their Relation to Magnetic Field Intermittency
- Proving the Existence of Negative Isotropic Eddy Viscosity
- Dynamo Action Induced by Lateral Variation of Electrical Conductivity
- Spherical Inertial Oscillation and Convection
- Hydrodynamic Stability of the ABC Flow
- Dynamos with Ambipolar Diffusion
- Subject Index
Summary
The detailed dynamics of the Solar dynamo presents a significant challenge to our understanding of the interaction of convection and magnetic fields in the Solar interior. In this paper we discuss certain aspects of this interaction, such as modification of convective energy transport, and turbulent dissipation of magnetic fields. The latter controls the spatial distribution of the magnetic field and its time dependence. We also discuss how these results may influence current Solar dynamo calculations.
MOTIVATION
Solar activity manifests itself in many forms but perhaps most importantly through the presence of a magnetic field. The topic of this meeting is that of dynamos, in Solar and planetary contexts. In the case of the Sun the dynamo, which seems likely to be responsible for at least part of the Solar activity we observe, acts on a global scale. That is, the period of the dynamo is 22 years (a timescale distinct from those usually encountered on the Sun), sunspots appear within latitude bands and their numbers (in terms of monthly or yearly running means) increase and decrease over one cycle. There is however, a strong asymmetry of the Solar cycle in time, i.e. the growth phase is shorter (and dependent of the amount of activity) than the decay, or descending phase. In addition, the polar field of the Sun is observed to reverse around Solar maximum, again with a distinct asymmetry between hemispheres. Despite these global-scale features, the Solar magnetic field has many spatial components (Stenflo 1991) and the majority of the magnetic flux appears in small elements.
- Type
- Chapter
- Information
- Solar and Planetary Dynamos , pp. 83 - 90Publisher: Cambridge University PressPrint publication year: 1994