Book contents
- Frontmatter
- Contents
- Preface
- List of Participants
- Magnetic Noise and the Galactic Dynamo
- On the Oscillation in Model Z
- Nonlinear Dynamos in a Spherical Shell
- The Onset of Dynamo Action in Alpha-lambda Dynamos
- Multifractality, Near-singularities and the Role of Stretching in Turbulence
- Note on Perfect Fast Dynamo Action in a Large-amplitude SFS Map
- A Thermally Driven Disc Dynamo
- Magnetic Instabilities in Rapidly Rotating Systems
- Modes of a Flux Ring Lying in the Equator of a Star
- A Nonaxisymmetric Dynamo in Toroidal Geometry
- Simulating the Interaction of Convection with Magnetic Fields in the Sun
- Experimental Aspects of a Laboratory Scale Liquid Sodium Dynamo Model
- Influence of the Period of an ABC Flow on its Dynamo Action
- Numerical Calculations of Dynamos for ABC and Related Flows
- Local Helicity, a Material Invariant for the Odd-dimensional Incompressible Euler Equations
- On the Quasimagnetostrophic Asymptotic Approximation Related to Solar Activity
- Simple Dynamical Fast Dynamos
- A Numerical Study of Dynamos in Spherical Shells with Conducting Boundaries
- Non-axisymmetric Shear Layers in a Rotating Spherical Shell
- Testing for Dynamo Action
- Alpha-quenching in Cylindrical Magnetoconvection
- On the Stretching of Line Elements in Fluids: an Approach from Differential Geometry
- Instabilities of Tidally and Precessionally Induced Flows
- Probability Distribution of Passive Scalars with Nonlinear Mean Gradient
- Magnetic Fluctuations in Fast Dynamos
- A Statistical Description of MHD Turbulence in Laboratory Plasmas
- Compressible Magnetoconvection in Three Dimensions
- The Excitation of Nonaxisymmetric Magnetic Fields in Galaxies
- Localized Magnetic Fields in a Perfectly Conducting Fluid
- Turbulent Dynamo and the Geomagnetic Secular Variation
- On-Off Intermittency: General Description and Feedback Model
- Dynamo Action in a Nearly Integrable Chaotic Flow
- The Dynamo Mechanism in the Deep Convection Zone of the Sun
- Shearing Instabilities in Magnetoconvection
- On the Role of Rotation of the Internal Core Relative to the Mantle
- Evolution of Magnetic Fields in a Swirling Jet
- Analytic Fast Dynamo Solution for a Two-dimensional Pulsed Flow
- On Magnetic Dynamos in Thin Accretion Disks Around Compact and Young Stars
- The Strong Field Branch of the Childress–Soward Dynamo
- Evidence for the Suppression of the Alpha-effect by Weak Magnetic Fields
- Turbulent Magnetic Transport Effects and their Relation to Magnetic Field Intermittency
- Proving the Existence of Negative Isotropic Eddy Viscosity
- Dynamo Action Induced by Lateral Variation of Electrical Conductivity
- Spherical Inertial Oscillation and Convection
- Hydrodynamic Stability of the ABC Flow
- Dynamos with Ambipolar Diffusion
- Subject Index
Magnetic Fluctuations in Fast Dynamos
Published online by Cambridge University Press: 11 May 2010
- Frontmatter
- Contents
- Preface
- List of Participants
- Magnetic Noise and the Galactic Dynamo
- On the Oscillation in Model Z
- Nonlinear Dynamos in a Spherical Shell
- The Onset of Dynamo Action in Alpha-lambda Dynamos
- Multifractality, Near-singularities and the Role of Stretching in Turbulence
- Note on Perfect Fast Dynamo Action in a Large-amplitude SFS Map
- A Thermally Driven Disc Dynamo
- Magnetic Instabilities in Rapidly Rotating Systems
- Modes of a Flux Ring Lying in the Equator of a Star
- A Nonaxisymmetric Dynamo in Toroidal Geometry
- Simulating the Interaction of Convection with Magnetic Fields in the Sun
- Experimental Aspects of a Laboratory Scale Liquid Sodium Dynamo Model
- Influence of the Period of an ABC Flow on its Dynamo Action
- Numerical Calculations of Dynamos for ABC and Related Flows
- Local Helicity, a Material Invariant for the Odd-dimensional Incompressible Euler Equations
- On the Quasimagnetostrophic Asymptotic Approximation Related to Solar Activity
- Simple Dynamical Fast Dynamos
- A Numerical Study of Dynamos in Spherical Shells with Conducting Boundaries
- Non-axisymmetric Shear Layers in a Rotating Spherical Shell
- Testing for Dynamo Action
- Alpha-quenching in Cylindrical Magnetoconvection
- On the Stretching of Line Elements in Fluids: an Approach from Differential Geometry
- Instabilities of Tidally and Precessionally Induced Flows
- Probability Distribution of Passive Scalars with Nonlinear Mean Gradient
- Magnetic Fluctuations in Fast Dynamos
- A Statistical Description of MHD Turbulence in Laboratory Plasmas
- Compressible Magnetoconvection in Three Dimensions
- The Excitation of Nonaxisymmetric Magnetic Fields in Galaxies
- Localized Magnetic Fields in a Perfectly Conducting Fluid
- Turbulent Dynamo and the Geomagnetic Secular Variation
- On-Off Intermittency: General Description and Feedback Model
- Dynamo Action in a Nearly Integrable Chaotic Flow
- The Dynamo Mechanism in the Deep Convection Zone of the Sun
- Shearing Instabilities in Magnetoconvection
- On the Role of Rotation of the Internal Core Relative to the Mantle
- Evolution of Magnetic Fields in a Swirling Jet
- Analytic Fast Dynamo Solution for a Two-dimensional Pulsed Flow
- On Magnetic Dynamos in Thin Accretion Disks Around Compact and Young Stars
- The Strong Field Branch of the Childress–Soward Dynamo
- Evidence for the Suppression of the Alpha-effect by Weak Magnetic Fields
- Turbulent Magnetic Transport Effects and their Relation to Magnetic Field Intermittency
- Proving the Existence of Negative Isotropic Eddy Viscosity
- Dynamo Action Induced by Lateral Variation of Electrical Conductivity
- Spherical Inertial Oscillation and Convection
- Hydrodynamic Stability of the ABC Flow
- Dynamos with Ambipolar Diffusion
- Subject Index
Summary
One theory for the origin of the galactic field is that it grows from a very weak seed field by fast dynamo action associated with turbulent motions. However, the dynamo also amplifies small scale fields faster than the large scale. In this paper we calculate the time evolution of the spectrum of small scale fields. We show that the magnetic turbulence reaches the resistive scale in a reasonably short time where some damping occurs. We also show that the damping is not strong enough to stop the exponential growth of the random turbulence which grows to equipartition with the turbulent power in a time short compared to the dynamo growth time for the large scale fields. Our conclusion is that a dynamo origin from a weak seed field is not plausible.
A hotly debated topic is the origin of the large scale galactic magnetic field. Originally, it was supposed by Fermi and others that the field had a primordial origin and was maintained against Ohmic decay by the large inductance of the galactic disk. (The time scale for Ohmic decay by ordinary Spitzer resistivity is extremely long, of order 1026 years.) However, there have been several objections to the primordial theory (Parker 1979). One objection is that turbulent resistivity is sufficiently large to destroy the field in a Hubble time. A second objection is that if it is not destroyed by turbulent resistivity, it can escape from the galactic disc by ambipolar diffusion. Probably the strongest objection has been that there seems no known way to produce a magnetic field in the early universe on a large enough scale and of sufficient strength to provide a primordial origin.
- Type
- Chapter
- Information
- Solar and Planetary Dynamos , pp. 195 - 202Publisher: Cambridge University PressPrint publication year: 1994
- 1
- Cited by