Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T13:49:56.183Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  18 December 2013

Adelchi Azzalini
Affiliation:
Università degli Studi di Padova, Italy
Antonella Capitanio
Affiliation:
Università di Bologna
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, T. and Pewsey, A. 2011. Sine-skewed circular distributions. Statist. Papers, 52, 683–707. [210]CrossRefGoogle Scholar
Adcock, C. J. 2004. Capital asset pricing in UK stocks under the multivariate skew-normal distribution. Chap. 11, pages 191–204 of: Genton, M. G. (ed.), Skew-elliptical Distributions and their Applications: A Journey Beyond Normality. Boca Raton, FL: Chapman & Hall/CRC. [159]Google Scholar
Adcock, C. J. 2007. Extensions of Stein's lemma for the skew-normal distribution. Commun. Statist. Theory Methods, 36, 1661–1671. [163, 200]CrossRefGoogle Scholar
Adcock, C. J. 2010. Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution. Ann. Oper. Res., 176, 221–234. [183, 186]CrossRefGoogle Scholar
Adcock, C. J. and Shutes, K. 1999. Portfolio selection based on the multivariate-skew normal distribution. Pages 167–177 of: Skulimowski, A. M. J. (ed.), Financial Modelling. Krakow: Progress and Business Publishers. Available in 2001. [142, 158, 186]Google Scholar
Aigner, D. J., Lovell, C. A. K., and Schmidt, P. 1977. Formulation and estimation of stochastic frontier production function model. J. Economet., 6, 21–37. [91]CrossRefGoogle Scholar
Aitchison, J. 1986. The Statistical Analysis of Compositional Data. London: Chapman & Hall. [210, 211]CrossRefGoogle Scholar
Anděl, J., Netuka, I., and Zvára, K. 1984. On threshold autoregressive processes. Ky-bernetika, 20, 89–106. Prague: Academia. [43]Google Scholar
Arellano-Valle, R. B. 2010. The information matrix of the multivariate skew-t distribution. Metron, LXVIII, 371–386. [180]Google Scholar
Arellano-Valle, R. B. and Azzalini, A. 2006. On the unification of families of skew-normal distributions. Scand. J. Statist., 33, 561–574. [200, 201]CrossRefGoogle Scholar
Arellano-Valle, R. B. and Azzalini, A. 2008. The centred parametrization for the multivariate skew-normal distribution. J. Multiv. Anal., 99, 1362–1382. Corrigendum: vol. 100 (2009), p. 816. [146, 149]CrossRefGoogle Scholar
Arellano-Valle, R. B. and Azzalini, A. 2013. The centred parameterization and related quantities of the skew-t distribution. J. Multiv. Anal., 113, 73–90. Available online 12 June 2011. [114, 180]CrossRefGoogle Scholar
Arellano-Valle, R. B. and del Pino, G. E. 2004. From symmetric to asymmetric distributions: a unified approach. Chap. 7, pages 113–130 of: Genton, M. G. (ed.), Skew-elliptical Distributions and their Applications: A Journey Beyond Normality. Boca Raton, FL: Chapman & Hall/CRC. [14]Google Scholar
Arellano-Valle, R. B. and Genton, M. G. 2005. On fundamental skew distributions. J. Multiv. Anal., 96, 93–116. [14, 23, 200]CrossRefGoogle Scholar
Arellano-Valle, R. B. and Genton, M. G. 2007. On the exact distribution of linear combinations of order statistics from dependent random variables. J. Multiv. Anal., 98, 1876–1894. Corrigendum: 99 (2008) 1013. [203]CrossRefGoogle Scholar
Arellano-Valle, R. B. and Genton, M. G. 2010a. An invariance property of quadratic forms in random vectors with a selection distribution, with application to sample variogram and covariogram estimators. Ann. Inst. Statist. Math., 62, 363–381. [14]CrossRefGoogle Scholar
Arellano-Valle, R. B. and Genton, M. G. 2010b. Multivariate extended skew-t distributions and related families. Metron, LXVIII, 201–234. [183, 184, 194]Google Scholar
Arellano-Valle, R. B. and Genton, M. G. 2010c. Multivariate unified skew-elliptical distributions. Chil. J. Statist., 1, 17–33. [201]Google Scholar
Arellano-Valle, R. B. and Richter, W.-D. 2012. On skewed continuous 1n,p-symmetric distributions. Chil. J. Statist., 3, 195–214. [212, 213]Google Scholar
Arellano-Valle, R. B., del Pino, G., and San Martin, E. 2002. Definition and probabilistic properties of skew-distributions. Statist. Probab. Lett., 58, 111–121. [14]CrossRefGoogle Scholar
Arellano-Valle, R. B., Gomez, H. W., and Quintana, F. A. 2004. A new class of skew-normal distributions. Commun. Statist. Theory Methods, 33, 1465–1480. [48]CrossRefGoogle Scholar
Arellano-Valle, R. B., Bolfarine, H., and Lachos, V. H. 2005a. Skew-normal linear mixed models. J. Data Science, 3, 415–438. [94, 219]Google Scholar
Arellano-Valle, R. B., Goimez, H. W., and Quintana, F. A. 2005b. Statistical inference for a general class of asymmetric distributions. J. Statist. Plann. Inference, 128, 427–443. [22]CrossRefGoogle Scholar
Arellano-Valle, R. B., Branco, M. D., and Genton, M. G. 2006. A unified view on skewed distributions arising from selections. Canad. J. Statist., 34, 581–601. [14, 22]CrossRefGoogle Scholar
Arellano-Valle, R. B., Bolfarine, H., and Lachos, V. H. 2007. Bayesian inference for skew-normal linear mixed models. J. Appl. Statist., 34, 663–682. [219]CrossRefGoogle Scholar
Arellano-Valle, R. B., Genton, M. G., and Loschi, R. H. 2009. Shape mixtures of multivariate skew-normal distributions. J. Multiv. Anal., 100, 91–101. [49]CrossRefGoogle Scholar
Arellano-Valle, R. B., Contreras-Reyes, J. E., and Genton, M. G. 2013. Shannon entropy and mutual information for multivariate skew-elliptical distributions. Scand. J. Statist., 40, 42–62. Available online 27 February 2012 (corrected 4 April 2012). [142]CrossRefGoogle Scholar
Arnold, B. C. and Beaver, R. J. 2000a. Hidden truncation models. Sankhya, ser. A, 62, 22–35. [158]Google Scholar
Arnold, B. C. and Beaver, R. J. 2000b. The skew-Cauchy distribution. Statist. Probab. Lett., 49, 285–290. [190, 194]CrossRefGoogle Scholar
Arnold, B. C. and Beaver, R. J. 2002. Skewed multivariate models related to hidden truncation and/or selective reporting (with discussion). Tesi, 11, 7–54. [14]Google Scholar
Arnold, B. C. and Lin, G. D. 2004. Characterizations of the skew-normal and generalized chi distributions. Sankhya, 66, 593–606. [50]Google Scholar
Arnold, B. C., Beaver, R. J., Groeneveld, R. A., and Meeker, W. Q. 1993. The non-truncated marginal of a truncated bivariate normal distribution. Psychometrika, 58, 471–478. [43, 87]CrossRefGoogle Scholar
Arnold, B. C., Castillo, E., and Sarabia, J. M. 2002. Conditionally specified multivariate skewed distributions. Sankhya, ser. A, 64, 206–226. [23]Google Scholar
Azzalini, A. 1985. A class of distributions which includes the normal ones. Scand. J. Statist., 12, 171–178. [11, 43, 71, 72]Google Scholar
Azzalini, A. 1986. Further results on a class of distributions which includes the normal ones. Statistica, XLVI, 199–208. [11, 43, 101, 116, 123]Google Scholar
Azzalini, A. 1996. Statistical Inference Based on the Likelihood. London: Chapman & Hall. [237]Google Scholar
Azzalini, A. 2001. A note on regions of given probability of the skew-normal distribution. Metron, LIX, 27–34. [161]Google Scholar
Azzalini, A. 2005. The skew-normal distribution and related multivariate families (with discussion). Scand. J. Statist., 32, 159–188 (C/R 189-200). [44]CrossRefGoogle Scholar
Azzalini, A. 2012. Selection models under generalized symmetry settings. Ann. Inst. Statist. Math., 64, 737–750. Available online 5 March 2011. [17, 23]CrossRefGoogle Scholar
Azzalini, A. and Arellano-Valle, R. B. 2013. Maximum penalized likelihood estimation forskew-normal and skew-t distributions. J. Statist. Plann. Inference, 143, 419–433. Available online 30 June 2012. [80, 82, 112]CrossRefGoogle Scholar
Azzalini, A. and Bacchieri, A. 2010. A prospective combination of phase II and phase III in drug development. Metron, LXVIII, 347–369. [200, 225]Google Scholar
Azzalini, A. and Capitanio, A. 1999. Statistical applications of the multivariate skew normal distribution. J. R. Statist. Soc., ser. B, 61, 579–602. Full version of the paper at arXiv.org:8911.2893. [11, 17, 71, 141, 145, 165, 175]CrossRefGoogle Scholar
Azzalini, A. and Capitanio, A. 2003. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew-t distribution. J. R. Statist. Soc., ser. B, 65, 367–389. Full version of the paper at arXiv.org:8911.2342. [11, 105, 111, 175, 178, 179, 193, 194]CrossRefGoogle Scholar
Azzalini, A. and Chiogna, M. 2004. Some results on the stress-strength model for skew-normal variates. Metron, LXII, 315–326. [225]Google Scholar
Azzalini, A. and Dalla Valle, A. 1996. The multivariate skew-normal distribution. Bio-metrika, 83, 715–726. [140, 165]Google Scholar
Azzalini, A. and Genton, M. G. 2008. Robust likelihood methods based on the skew-t and related distributions. Int. Statist. Rev., 76, 106–129. [112, 116, 145]CrossRefGoogle Scholar
Azzalini, A. and Regoli, G. 2012a. Some properties of skew-symmetric distributions. Ann. Inst. Statist. Math., 64, 857–879. Available online 9 September 2011. [11, 19, 175, 189]CrossRefGoogle Scholar
Azzalini, A. and Regoli, G. 2012b. The work of Fernando de Helguero on non-normality arising fromselection. Chil. J. Statist., 3, 113–129. [46]Google Scholar
Azzalini, A., Dal Cappello, T., and Kotz, S. 2003. Log-skew-normal and log-skew-t distributions as model for family income data. J. Income Distrib., 11, 12–20. [54]Google Scholar
Azzalini, A., Genton, M. G., and Scarpa, B. 2010. Invariance-based estimating equations for skew-symmetric distributions. Metron, LXVIII, 275–298. [55, 206]Google Scholar
Balakrishnan, N. 2002. Comment to a paper by B. C. Arnold & R. Beaver. Test, 11, 37–39. [201, 202]Google Scholar
Balakrishnan, N. and Scarpa, B. 2012. Multivariate measures of skewness for the skew-normal distribution. J. Multiv. Anal., 104, 73–87. [141]CrossRefGoogle Scholar
Basso, R. M., Lachos, V. H., Cabral, C. R. B., and Ghosh, P. 2010. Robust mixture modeling based on scale mixtures of skew-normal distributions. Comp. Statist. Data An., 54, 2926–2941. [221]Google Scholar
Bayes, C. L. and Branco, M. D. 2007. Bayesian inference for the skewness parameter of the scalar skew-normal distribution. Brazilian J. Probab. Stat., 21, 141–163. [83, 84]Google Scholar
Bazain, J. L., Branco, M. D., and Bolfarine, H. 2006. A skew item response model. BayesianAnal., 1, 861–892. [227]Google Scholar
Behboodian, J., Jamalizadeh, A., and Balakrishnan, N. 2006. A new class of skew-Cauchy distributions. Statist. Probab. Lett., 76, 1488–1493. [120]CrossRefGoogle Scholar
Berlik, S. 2006. Directed Evolutionary Algorithms. Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften, Universität Dortmund, Fachbereich Informatik, Dortmund. [218]Google Scholar
Birnbaum, Z. W. 1950. Effect of linear truncation on a multinormal population. Ann. Math. Statist., 21, 272–279. [42]CrossRefGoogle Scholar
Bolfarine, H., Montenegro, L. C., and Lachos, V. H. 2007. Influence diagnostics for skew-normal linear mixed models. Sankhya, 69, 648–670. [220]Google Scholar
Box, G. P. and Tiao, G. C. 1973. Bayesian Inference in Statistical Analysis. New York: Addison-Wesley. [95]Google Scholar
Branco, M. D. and Dey, D. K. 2001. A general class of multivariate skew-elliptical distributions. J. Multiv. Anal., 79, 99–113. [104, 175, 178]CrossRefGoogle Scholar
Branco, M. D. and Dey, D. K. 2002. Regression model under skew elliptical error distribution. J. Math.Sci.(NewSeries),Delhi, 1, 151–168. [111]Google Scholar
Cabral, C. R. B., Lachos, V. H., and Prates, M. O. 2012. Multivariate mixture modeling using skew-normal independent distributions. Comp. Statist. Data An., 56, 126–142. [221]Google Scholar
Cabras, S. and Castellanos, M. E. 2009. Default Bayesian goodness-of-fit tests for the skew-normal model. J. Appl. Statist., 36, 223–232. [87]CrossRefGoogle Scholar
Cabras, S., Racugno, W., Castellanos, M. E., and Ventura, L. 2012. A matching prior for the shape parameter of the skew-normal distribution. Scand. J. Statist., 39, 236–247. [84]CrossRefGoogle Scholar
Callegaro, A. and Iacobelli, S. 2012. The Cox shared frailty model with log-skew-normal frailties. Statist. Model., 12, 399–418. [228]CrossRefGoogle Scholar
Canale, A. 2011. Statistical aspects of the scalar extended skew-normal distribution. Metron, LXIX, 279–295. [55, 87]Google Scholar
Capitanio, A. 2010. On the approximation of the tail probability of the scalar skew-normal distribution. Metron, LXVIII, 299–308. [53]Google Scholar
Capitanio, A. 2012. On the canonical form of scale mixtures of skew-normal distributions. Available at arXiv.org:1287.8797. [123, 141, 175, 195]
Capitanio, A. and Pacillo, S. 2008. A Wald's test for conditional independence skew normal graphs. Pages 421–428 of: Proceedings in Computational Statistics: CompStat 2008. Heidelberg: Physica-Verlag. [158]Google Scholar
Capitanio, A., Azzalini, A., and Stanghellini, E. 2003. Graphical models for skew-normal variates. Scandi. J. Statist., 30, 129–144. [87, 158]Google Scholar
Cappuccio, N., Lubian, D., and Raggi, D. 2004. MCMC Bayesian estimation of a skew-GED stochastic volatility model. Studies in Nonlinear Dynamics and Econometrics, 8, Article 6. [101]CrossRefGoogle Scholar
Carmichael, B. and Coen, A. 2013. Asset pricing with skewed-normal return. Finance Res. Letters, 10, 50–57. Available online 1 February 2013. [159]CrossRefGoogle Scholar
Carota, C. 2010. Tests for normality in classes of skew-t alternatives. Statist. Probab. Lett., 80, 1–8. [122]CrossRefGoogle Scholar
Chai, H. S. and Bailey, K. R. 2008. Use of log-skew-normal distribution in analysis of continuous data with a discrete component at zero. Statist. Med., 27, 3643–3655. [54]CrossRefGoogle ScholarPubMed
Chang, C.-H., Lin, J.-J., Pal, N., and Chiang, M.-C. 2008. A note on improved approximation of the binomial distribution by the skew-normal distribution. Amer. Statist., 62, 167–170. [215]CrossRefGoogle Scholar
Chang, S.-M. and Genton, M. G. 2007. Extreme value distributions for the skew-symmetric family of distributions. Commun. Statist. Theory Methods, 36, 1705–1717. [53, 122]CrossRefGoogle Scholar
Chen, J. T. and Gupta, A. K. 2005. Matrix variate skew normal distributions. Statistics, 39, 247–253. [212]CrossRefGoogle Scholar
Chen, M.-H. 2004. Skewed link models for categorical response data. Chap. 8, pages 131–152 of: Genton, M. G. (ed.), Skew-elliptical Distributions and their Applications: A Journey Beyond Normality. Boca Raton, FL: Chapman & Hall/CRC. [226]Google Scholar
Chen, M.-H., Dey, D. K., and Shao, Q.-M. 1999. A new skewed link model for dicho-tomous quantal response data. J. Amer. Statist. Assoc., 94, 1172–1186. [226]CrossRefGoogle Scholar
Chiogna, M. 1998. Some results on the scalar skew-normal distribution. J. Ital. Statist. Soc., 7, 1–13. [43, 51, 54]CrossRefGoogle Scholar
Chiogna, M. 2005. A note on the asymptotic distribution of the maximum likelihood estimator for the scalar skew-normal distribution. Stat. Meth. & Appl., 14, 331–341. [72]CrossRefGoogle Scholar
Chu, K. K., Wang, N., Stanley, S., and Cohen, N. D. 2001. Statistical evaluation of the regulatory guidelines for use of furosemide in race horses. Biometrics, 57, 294–301. [160]CrossRefGoogle ScholarPubMed
Churchill, E. 1946. Information given by odd moments. Ann. Math. Statist., 17, 244–246. [123]CrossRefGoogle Scholar
Coelli, T. J., Prasada Rao, D. S., O'Donnell, C., and Battese, G. E. 2005. An Intro- duction to Efficiency and Productivity Analysis, 2nd edn. Berlin: Springer-Verlag. [91]Google Scholar
Contreras-Reyes, J. E. and Arellano-Valle, R. B. 2012. Kullback-Leibler divergence measure for multivariate skew-normal distributions. Entropy, 14, 1606–1626. [142]CrossRefGoogle Scholar
Copas, J. B. and Li, H. G. 1997. Inference for non-random samples (with discussion). J. R. Statist. Soc., ser. B, 59, 55–95. [89]CrossRefGoogle Scholar
Corns, T. R. A. and Satchell, S. E. 2007. Skew Brownian motion and pricing European options. European J. Finance, 13, 523–544. [223]CrossRefGoogle Scholar
Corns, T. R. A. and Satchell, S. E. 2010. Modelling conditional heteroskedasticity and skewness using the skew-normal distribution one-sided coverage intervals with survey data. Metron, LXVIII, 251–263. [224]Google Scholar
Cox, D. R. 1977. Discussion of ‘Do robust estimators work with real data?’ by Stephen M. Stigler. Ann. Statist., 5, 1083. [97]Google Scholar
Cox, D. R. 2006. Principles ofStatistical Inference. Cambridge: Cambridge University Press. [69]CrossRefGoogle Scholar
Cox, D. R. and Wermuth, N. 1996. Multivariate Dependencies: Models, Analysis and Interpretation. London: Chapman & Hall. [154]Google Scholar
Cramér, H. 1946. Mathematical Methods of Statistics. Princeton, NJ: Princeton University Press. [33, 61]Google Scholar
Dalla Valle, A. 1998. La Distribuzione Normale Asimmetrica: Problematiche e Utilizzi nelle Applicazioni. Tesi di dottorato, Dipartimento di Scienze Statistiche, Università di Padova, Padova, Italia. [56]Google Scholar
Dalla Valle, A. 2007. A test for the hypothesis of skew-normality in a population. J. Statist. Comput. Simul., 77, 63–77. [86]CrossRefGoogle Scholar
de Helguero, F. 1909a. Sulla rappresentazione analitica delle curve abnormali. Pages 288–299 of: Castelnuovo, G. (ed.), Atti del IV Congresso Internazionale dei Matematici (Roma, 6-11 Aprile 1908), vol. III, sezione III-B. Roma: R. Accademia dei Lincei. Available at http://www.mathunion.Org/ICM/ICM1988.3/Main/icm1988.3.8288.e299.ocr.pdf. [44]Google Scholar
de Helguero, F. 1909b. Sulla rappresentazione analitica delle curve statistiche. Giornale degli Economisti, XXXVIII, serie 2, 241–265. [44]Google Scholar
De Luca, G. and Loperfido, N. M. R. 2004. A skew-in-mean GARCH model. Chap. 12, pages 205–222 of: Genton, M. G. (ed.), Skew-elliptical Distributions and their Applications: A Journey Beyond Normality. Boca Raton, FL: Chapman & Hall/CRC. [224]Google Scholar
De Luca, G., Genton, M. G., and Loperfido, N. 2005. A multivariate skew-GARCH model. Adv. Economet., 20, 33–57. [224]Google Scholar
Dharmadhikari, S. W. and Joag-dev, K. 1988. Unimodality, Convexity, and Applications. New York: Academic Press. [19, 189]Google Scholar
DiCiccio, T. J. and Monti, A. C. 2004. Inferential aspects of the skew exponential power distribution. J. Amer. Statist. Assoc., 99, 439–450. [101]CrossRefGoogle Scholar
DiCiccio, T. J. and Monti, A. C. 2011. Inferential aspects of the skew t-distribution. Quaderni di Statistica, 13, 1–21. [112]Google Scholar
Domínguez-Molina, J. A. and Rocha-Arteaga, A. 2007. On the infinite divisibility of some skewed symmetric distributions. Statist. Probab. Lett., 77, 644–648. [54]CrossRefGoogle Scholar
Domínguez-Molina, J. A., Gonzalez-Farias, G., and Ramos-Quiroga, R. 2004. Skew-normality in stochastic frontier analysis. Chap. 13, pages 223–242 of: Genton, M. G. (ed.), Skew-elliptical Distributions and their Applications: A Journey Beyond Normality. Boca Raton, FL: Chapman & Hall/CRC. [225]Google Scholar
Efron, B. 1981. Nonparametric standard errors and confidence intervals (with discussion). Canad. J. Statist., 9, 139–172. [55]CrossRefGoogle Scholar
Elal-Olivero, D., Goimez, H. W., and Quintana, F. A. 2009. Bayesian modeling using a class of bimodal skew-elliptical distributions. J. Statist. Plann. Inference, 139, 1484–1492. [213]CrossRefGoogle Scholar
Elandt, R. C. 1961. The folded normal distribution: two methods of estimating parameters from moment. Technometrics, 3, 551–562. [52]CrossRefGoogle Scholar
Ellison, B. E. 1964. Two theorems for inferences about the normal distribution with applications in acceptance sampling. J. Amer. Statist. Assoc., 59, 89–95. [26, 233]CrossRefGoogle Scholar
Fang, B. Q. 2003. The skew elliptical distributions and their quadratic forms. J. Multiv. Anal., 87, 298–314. [175, 193]CrossRefGoogle Scholar
Fang, B. Q. 2005a. Noncentral quadratic forms of the skew elliptical variables. J. Multiv. Anal., 95, 410–430. [175]CrossRefGoogle Scholar
Fang, B. Q. 2005b. The t statistic of the skew elliptical distributions. J. Statist. Plann. Inference, 134, 140–157. [175]CrossRefGoogle Scholar
Fang, B. Q. 2006. Sample mean, covariance and T2 statistic of the skew elliptical model. J. Multiv. Anal., 97, 1675–1690. [175]CrossRefGoogle Scholar
Fang, B. Q. 2008. Noncentral matrix quadratic forms of the skew elliptical variables. J. Multiv. Anal., 99, 1105–1127. [175]CrossRefGoogle Scholar
Fang, K.-T. and Zhang, Y.-T. 1990. Generalized Multivariate Analysis. Berlin: Springer Verlag. [168]Google Scholar
Fang, K.-T., Kotz, S., and Ng, K. W. 1990. Symmetric Multivariate and Related Distributions. London: Chapman & Hall. [168]CrossRefGoogle Scholar
Fechner, G. T. 1897. Kollectivmasslehre. Leipzig: Verlag von Wilhelm Engelmann. Published posthumously, completed and edited by G. F. Lipps. [21]Google Scholar
Fernández, C. and Steel, M. F. J. 1998. On Bayesian modeling of fat tails and skewness. J. Amer. Statist. Assoc., 93, 359–371. [22]Google Scholar
Firth, D. 1993. Bias reduction of maximum likelihood estimates. Biometrika, 80, 27–38. Amendment: vol. 82, 667. [79]CrossRefGoogle Scholar
Flecher, C., Allard, D., and Naveau, P. 2010. Truncated skew-normal distributions: moments, estimation by weighted moments and application to climatic data. Metron, LXVIII, 331–345. [52]Google Scholar
Forina, M., Armanino, C., Castino, M., and Ubigli, M. 1986. Multivariate data analysis as a discriminating method of the origin of wines. Vitis, 25, 189–201. [59]Google Scholar
Frederic, P. 2011. Modeling skew-symmetric distributions using B-spline and penalties. J. Statist. Plann. Inference, 141, 2878–2890. [204]CrossRefGoogle Scholar
Fruhwirth-Schnatter, S. and Pyne, S. 2010. Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions. Biostatistics, 11, 317–336. [221, 222]CrossRefGoogle ScholarPubMed
Fung, T. and Seneta, E. 2010. Tail dependence for two skew t distributions. Statist. Probab. Lett., 80, 784–791. [193]CrossRefGoogle Scholar
Genton, M. G. (ed.). 2004. Skew-elliptical Distributions and their Applications: A Journey Beyond Normality. Boca Raton, FL: Chapman & Hall/CRC. [186]CrossRef
Genton, M. G. 2005. Discussion of ‘The skew-normal’. Scand. J. Statist., 32, 189–198. [204]CrossRefGoogle Scholar
Genton, M. G. and Loperfido, N. 2005. Generalized skew-elliptical distributions and their quadratic forms. Ann. Inst. Statist. Math., 57, 389–401. [11,175]CrossRefGoogle Scholar
Genton, M. G., He, L., and Liu, X. 2001. Moments of skew-normal random vectors and their quadratic forms. Statist. Probab. Lett., 51, 319–325. [142]CrossRefGoogle Scholar
Ghizzoni, T., Roth, G., and Rudari, R. 2010. Multivariate skew-t approach to the design of accumulation risk scenarios for the flooding hazard. Advances in Water Resources, 33, 1243–1255. [186]CrossRefGoogle Scholar
Ghizzoni, T., Roth, G., and Rudari, R. 2012. Multisite flooding hazard assessment in the Upper Mississippi River. J. Hydrology, 412-413, 101–113. [186]CrossRefGoogle Scholar
Ghosh, P., Branco, M. D., and Chakraborty, H. 2007. Bivariate random effect model using skew-normal distribution with application to HIV-RNA. Statist. Med., 26, 1255–1267. [220]CrossRefGoogle ScholarPubMed
Giorgi, E. 2012. Indici non Parametrici per Famiglie Parametriche con Particolare Riferimento alla t Asimmetrica. Tesi di laurea magistrale, Universita di Padova. http://tesi.cab.unipd.it/48181/. [180]Google Scholar
González-Farías, G., Dominguez-Molina, J. A., and Gupta, A. K. 2004a. Additive properties of skew normal random vectors. J. Statist. Plann. Inference, 126, 521–534. [200]CrossRefGoogle Scholar
González-Farías, G., Domínguez-Molina, J. A., and Gupta, A. K. 2004b. The closed skew-normal distribution. Chap. 2, pages 25–42 of: Genton, M. G. (ed.), Skew-elliptical Distributions and their Applications: A Journey Beyond Normality. Boca Raton, FL: Chapman & Hall/CRC. [200]Google Scholar
Greco, L. 2011. Minimum Hellinger distance based inference for scalar skew-normal and skew-t distributions. Tesi, 20, 120–137. [82]Google Scholar
Grilli, L. and Rampichini, C. 2010. Selection bias in linear mixed models. Metron, LXVIII, 309–329. [200]Google Scholar
Guolo, A. 2008. A flexible approach to measurement error correction in case-control studies. Biometrics, 64, 1207–1214. [216]CrossRefGoogle ScholarPubMed
Gupta, A. K. 2003. Multivariate skew t-distribution. Statistics, 37, 359–363. [105, 178]Google Scholar
Gupta, A. K. and Huang, W.-J. 2002. Quadratic forms in skew normal variates. J. Math. Anal.Appl., 273, 558–564. [142]CrossRefGoogle Scholar
Gupta, A. K. and Kollo, T. 2003. Density expansions based on the multivariate skew normal distribution. Sankhya, 65, 821–835. [216]Google Scholar
Gupta, A. K., Chang, F. C., and Huang, W.-J. 2002. Some skew-symmetric models. Random Op. Stochast. Eq., 10, 133–140. [120]Google Scholar
Gupta, A. K., González-Farías, G., and Domínguez-Molina, J. A. 2004. A multivariate skew normal distribution. J. Multiv. Anal., 89, 181–190. [200]CrossRefGoogle Scholar
Gupta, R. C. and Brown, N. 2001. Reliability studies of the skew-normal distribution and its application to a strength-stress model. Commun. Statist. Theory Methods, 30, 2427–2445. [225]CrossRefGoogle Scholar
Gupta, R. C. and Gupta, R. D. 2004. Generalized skew normal model. Test, 13, 501–524. [202]CrossRefGoogle Scholar
Hallin, M. and Ley, C. 2012. Skew-symmetric distributions and Fisher information – a tale of two densities. Bernoulli, 18, 747–763. [188]CrossRefGoogle Scholar
Hampel, F. R., Rousseeuw, P. J., Ronchetti, E. M., and Stahel, W. A. 1986. Robust Statistics: The Approach Based on Influence Functions. New York: J. Wiley & Sons. [116]Google Scholar
Hansen, B. 1994. Autoregressive conditional density estimation. Int. Econ. Rev., 35, 705–730. [22]CrossRefGoogle Scholar
Harrar, S. W. and Gupta, A. K. 2008. On matrix variate skew-normal distributions. Statistics, 42, 179–184. [212]CrossRefGoogle Scholar
Healy, M. J. R. 1968. Multivariate normal plotting. Appl. Statist., 17, 157–161. [144]CrossRefGoogle Scholar
Heckman, J. J. 1976. The common structure of statistical models of truncation, sample selection and limited dependent variables, and a simple estimator for such models. Ann. Econ. Soc. Meas., 5, 475–492. [89, 90]Google Scholar
Henze, N. 1986. A probabilistic representation of the ‘skew-normal’ distribution. Scand. J. Statist., 13, 271–275. [43, 54]Google Scholar
Hernández-Sánchez, E. and Scarpa, B. 2012. A wrapped flexible generalized skew-normal model for a bimodal circular distribution of wind directions. Chil. J. Statist., 3, 131–143. [208]Google Scholar
Hill, M. A. and Dixon, W. J. 1982. Robustness in real life: a study of clinical laboratory data. Biometrics, 38, 377–396. [96]CrossRefGoogle ScholarPubMed
Hinkley, D. V. and Revankar, N. S. 1977. Estimation of the Pareto law from underreported data. J. Economet., 5, 1–11. [22]CrossRefGoogle Scholar
Ho, H.-J. and Lin, T.-I. 2010. Robust linear mixed models using the skew t distribution with application to schizophrenia data. Biometr. J., 52, 449–469. [220]CrossRefGoogle Scholar
Huang, W.-J. and Chen, Y.-H. 2007. Generalized skew-Cauchy distribution. Statist. Probab. Lett., 77, 1137–1147. [19]CrossRefGoogle Scholar
Huber, P. J. 1981. Robust Statistics. New York: J.Wiley & Sons. [116]CrossRefGoogle Scholar
Huber, P. J. and Ronchetti, E. M. 2009. Robust Statistics, 2nd edn. New York: J. Wiley & Sons. [118]CrossRefGoogle Scholar
Jamalizadeh, A. and Balakrishnan, N. 2008. On order statistics from bivariate skew-normal and skew-tv distributions. J. Statist. Plann. Inference, 138, 4187–4197. [202]CrossRefGoogle Scholar
Jamalizadeh, A. and Balakrishnan, N. 2009. Order statistics from trivariate normal and tv-distributions in terms of generalized skew-normal and skew-tv distributions. J. Statist. Plann. Inference, 139, 3799–3819. [202, 203]CrossRefGoogle Scholar
Jamalizadeh, A. and Balakrishnan, N. 2010. Distributions of order statistics and linear combinations of order statistics from an elliptical distribution as mixtures of unified skew-elliptical distributions. J. Multiv. Anal., 101, 1412–1427. [201, 203]CrossRefGoogle Scholar
Jamalizadeh, A., Khosravi, M., and Balakrishnan, N. 2009a. Recurrence relations for distributions of a skew-t and a linear combination of order statistics from a bivariate-t. Comp. Statist. Data An., 53, 847–852. [121]Google Scholar
Jamalizadeh, A., Mehrali, Y., and Balakrishnan, N. 2009b. Recurrence relations for bivariate t and extended skew-t distributions and an application to order statistics from bivariate t. Comp. Statist. Data An., 53, 4018–4027. [183, 186]Google Scholar
Jamshidi, A. A. and Kirby, M. J. 2010. Skew-radial basis function expansions for empirical modeling. SIAM J. Sci. Comput., 31,4715–4743. [217]CrossRefGoogle Scholar
Jara, A., Quintana, F., and San Martin, E. 2008. Linear mixed models with skew-elliptical distributions: a Bayesian approach. Comp. Statist. Data An., 52, 5033–5045. [220]Google Scholar
Javier, W. and Gupta, A. K. 2009. Mutual information for certain multivariate distributions. Far East J. Theor. Stat., 29, 39–51. [142]Google Scholar
Jiménez-Gamero, M. D., Alba-Fernández, V., Muñoz-García, J., and Chalco-Cano, Y. 2009. Goodness-of-fit tests based on empirical characteristic functions. Comp. Statist. Data An., 53, 3957–3971. [146]Google Scholar
Jones, M. C. 2001. A skew t distribution. Pages 269–278 of: Charalambides, C. A., Koutras, M. V., and Balakrishnan, N. (eds), Probability and Statistical Models with Applications: A Volume in Honor of Theophilos Cacoullos. London: Chapman & Hall. [106]Google Scholar
Jones, M. C. 2012. Relationship between distributions with certain symmetries. Statist. Probab. Lett., 82, 1737–1744. [21]CrossRefGoogle Scholar
Jones, M. C. 2013. Generating distributions by transformation of scale. Statist. Sinica, to appear. [20, 21]Google Scholar
Jones, M. C. and Faddy, M. J. 2003. A skew extension of the t-distribution, with applications. J. R. Statist. Soc., ser.B, 65, 159–174. [106, 108]CrossRefGoogle Scholar
Jones, M. C. and Larsen, P. V. 2004. Multivariate distributions with support above the diagonal. Biometrika, 91, 975–986. [107]CrossRefGoogle Scholar
Kano, Y. 1994. Consistency property of elliptical probability density functions. J. Multiv. Anal., 51, 139–147. [107, 171]CrossRefGoogle Scholar
Kim, H. J. 2002. Binary regression with a class of skewed t link models. Commun. Statist. Theory Methods, 31, 1863–1886. [227]CrossRefGoogle Scholar
Kim, H.-J. 2008. A class of weighted multivariate normal distributions and its properties. J. Multiv. Anal., 99, 1758–1771. [166]CrossRefGoogle Scholar
Kim, H.-M. and Genton, M. G. 2011. Characteristic functions of scale mixtures of multivariate skew-normal distributions. J. Multiv. Anal., 102, 1105–1117. [51, 175]CrossRefGoogle Scholar
Kim, H.-M. and Mallick, B. K. 2003. Moments of random vectors with skew t distribution and their quadratic forms. Statist. Probab. Lett., 63, 417–423. Corrigendum: vol. 79 (2009), 2098-2099. [178]CrossRefGoogle Scholar
Kim, H.-M. and Mallick, B. K. 2004. A Bayesian prediction using the skew Gaussian distribution. J. Statist. Plann. Inference, 120, 85–101. [224]CrossRefGoogle Scholar
Kim, H.-M., Ha, E. and Mallick, B. K. 2004. Spatial prediction of rainfall using skew-normal processes. Chap. 16, pages 279–289 of: Genton, M. G. (ed.), Skew-elliptical Distributions and their Applications: A Journey Beyond Normality. Boca Raton, FL: Chapman & Hall/CRC. [224]Google Scholar
Kozubowski, T. J. and Nolan, J. P. 2008. Infinite divisibility of skew Gaussian and Laplace laws. Statist. Probab. Lett., 78, 654–660. [54]CrossRefGoogle Scholar
Lachos, V. H., Ghosh, P., and Arellano-Valle, R. B. 2010a. Likelihood based inference for skew-normal independent linear mixed models. Statist. Sinica, 20, 303–322. [175]Google Scholar
Lachos, V. H., Labra, F. V., Bolfarine, H., and Ghosh, P. 2010b. Multivariate measurement error models based on scale mixtures of the skew-normal distribution. Statistics, 44, 541–556. Available online 28 October 2009. [179]CrossRefGoogle Scholar
Lagos Áilvarez, B. and Jimeinez Gamero, M. D. 2012. A note on bias reduction of maximum likelihood estimates for the scalar skew t distribution. J. Statist. Plann. Inference, 142, 608–612. Available online 8 September 2011. [112]Google Scholar
Lange, K. L., Little, R. J. A., and Taylor, J. M. G. 1989. Robust statistical modeling using the t-distribution. J. Amer. Statist. Assoc., 84, 881–896. [95]Google Scholar
Lauritzen, S. L. 1996. Graphical Models. Oxford: Oxford University Press. [154]Google Scholar
Leadbetter, M. R., Lindgren, G., and Rootzein, H. 1983. Extremes and Related Properties ofRandom Sequences and Processes. Berlin: Springer-Verlag. [55, 122]CrossRefGoogle Scholar
Lee, S. and McLachlan, G. J. 2012. Finite mixtures of multivariate skew t-distributions: some recent and new results. Statist. Comput., to appear. Available online 20 October 2012. [192]Google Scholar
Lee, S., Genton, M. G., and Arellano-Valle, R. B. 2010. Perturbation of numerical confidential data via skew-t distributions. Manag. Sci., 56, 318–333. [185]CrossRefGoogle Scholar
Ley, C. and Paindaveine, D. 2010a. On Fisher information matrices and profile log-likelihood functions in generalized skew-elliptical models. Metron, LXVIII, 235–250. [180]Google Scholar
Ley, C. and Paindaveine, D. 2010b. On the singularity of multivariate skew-symmetric models. J. Multiv. Anal., 101, 1434–1444. [188]CrossRefGoogle Scholar
Lin, G. D. and Stoyanov, J. 2009. The logarithmic skew-normal distributions are moment-indeterminate. J. Appl. Prob., 46, 909–916. [54]CrossRefGoogle Scholar
Lin, T. I., 2009. Maximum likelihood estimation for multivariate skew normal mixture models. J. Multiv. Anal., 100, 257–265. [221]CrossRefGoogle Scholar
Lin, T.-I. 2010. Robust mixture modeling using multivariate skew t distributions. Statist. Comput., 20, 343–356. [192, 221]CrossRefGoogle Scholar
Lin, T.-I. and Lin, T.-C. 2011. Robust statistical modelling using the multivariate skew t distribution with complete and incomplete data. Statist. Model., 11, 253–277. [192]CrossRefGoogle Scholar
Lin, T. I., Lee, J. C., and Hsieh, W. J. 2007a. Robust mixture modeling using the skew t distribution. Statist. and Comput., 17, 81–92. [221]CrossRefGoogle Scholar
Lin, T. I., Lee, J. C., and Yen, S. Y. 2007b. Finite mixture modelling using the skew normal distribution. Statist. Sinica, 17, 909–927. [94, 221]Google Scholar
Liseo, B. 1990. La classe delle densita normali sghembe: aspetti inferenziali da un punto di vista bayesiano. Statistica, L, 59–70. [77]Google Scholar
Liseo, B. and Loperfido, N. 2003. A Bayesian interpretation of the multivariate skew-normal distribution. Statist. Probab. Lett., 61, 395–401. [200]CrossRefGoogle Scholar
Liseo, B. and Loperfido, N. 2006. A note on reference priors for the scalar skew-normal distribution. J. Statist. Plann. Inference, 136, 373–389. [82, 83]CrossRefGoogle Scholar
Loperfido, N. 2001. Quadratic forms of skew-normal random vectors. Statist. Probab. Lett., 54, 381–387. [141]CrossRefGoogle Scholar
Loperfido, N. 2002. Statistical implications of selectively reported inferential results. Statist. Probab. Lett., 56, 13–22. [43]CrossRefGoogle Scholar
Loperfido, N. 2008. Modelling maxima of longitudinal contralateral observations. Test, 17, 370–380. [141]CrossRefGoogle Scholar
Loperfido, N. 2010. Canonical transformations of skew-normal variates. Test, 19, 146–165. [141]CrossRefGoogle Scholar
Lysenko, N., Roy, P., and Waeber, R. 2009. Multivariate extremes of generalized skew-normal distributions. Statist. Probab. Lett., 79, 525–533. [23, 193]CrossRefGoogle Scholar
Ma, Y. and Genton, M. G. 2004. Flexible class of skew-symmetric distributions. Scand. J. Statist., 31, 459–468. [50, 203, 204]CrossRefGoogle Scholar
Ma, Y., Genton, M. G., and Tsiatis, A. A. 2005. Locally efficient semiparametric estimators for generalized skew-elliptical distributions. J. Amer. Statist. Assoc., 100, 980–989. [205]CrossRefGoogle Scholar
Maddala, G. S. 2006. Limited dependent variables models. In: Encyclopedia of Statistical Sciences. New York: J. Wiley & Sons. [89, 90]Google Scholar
Malkovich, J. F. and Afifi, A. A. 1973. Measures of multivariate skewness and kurtosis with applications. J. Amer. Statist. Assoc., 68, 176–179. [138]Google Scholar
Marchenko, Y. V. and Genton, M. G. 2012. A Heckman selection-t model. J. Amer. Statist. Assoc., 107, 304–317. [185, 186]CrossRefGoogle Scholar
Mardia, K. 1970. Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519–530. [132]CrossRefGoogle Scholar
Mardia, K. V. 1974. Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies. Sankhyā, ser. B, 36, 115–128. [132, 174]Google Scholar
Mardia, K. V. and Jupp, P. E. 1999. Directional Statistics. New York: J. Wiley & Sons. [208]CrossRefGoogle Scholar
Mardia, K. V., Kent, J. T., and Bibby, J. M. 1979. Multivariate Analysis. New York: Academic Press. [137]Google Scholar
Martinez, E. H., Varela, H., Gomez, H. W., and Bolfarine, H. 2008. A note on the likelihood and moments of the skew-normal distribution. SORT, 32, 57–66. [54, 94]Google Scholar
Mateu-Figueras, G. and Pawlowsky-Glahn, V. 2007. The skew-normal distribution on the simplex. Commun. Statist. Theory Methods, 36, 1787–1802. [211]CrossRefGoogle Scholar
Mateu-Figueras, G., Pawlowsky-Glahn, V., and Barceloi-Vidal, C. 2005. Additive logistic skew-normal on the simplex. Stochast. Environ. Res. Risk Assess., 19, 205–214. [211]CrossRefGoogle Scholar
Mateu-Figueras, G., Puig, P., and Pewsey, A. 2007. Goodness-of-fit tests for the skew-normal distribution when the parameters are estimated from the data. Commun. Statist. Theory Methods, 36, 1735–1755. [87]CrossRefGoogle Scholar
Mazzuco, S. and Scarpa, B. 2013. Fitting age-specific fertility rates by a flexible generalized skew-normal probability density function. J. R. Statist. Soc., ser. A, under revision. [217]Google Scholar
McLachlan, G. J. and Peel, D. 2000. Finite Mixture Models. New York: J. Wiley & Sons. [221]CrossRefGoogle Scholar
Meeusen, W. and van den Broeck, J. 1977. Efficiency estimation from Cobb-Douglas production function with composed error. Int. Econ. Rev., 18, 435–444. [91]CrossRefGoogle Scholar
Meintanis, S. G. 2007. A Kolmogorov-Smirnov type test for skew normal distributions based on the empirical moment generating function. J. Statist. Plann. Inference, 137, 2681–2688. 5th St. Petersburg Workshop on Simulation. [87]CrossRefGoogle Scholar
Meintanis, S. G. and Hlávka, Z. 2010. Goodness-of-fit tests for bivariate and multivariate skew-normal distributions. Scand. J. Statist., 37, 701–714. [146]CrossRefGoogle Scholar
Meucci, A. 2006. Beyond Black-Litterman: views on non-normal markets. Risk Magazine, 19, 87–92. [186]Google Scholar
Minozzo, M. and Ferracuti, L. 2012. On the existence of some skew-normal stationary processes. Chil. J. Statist., 3, 159–172. [224]Google Scholar
Montenegro, L. C., Lachos, V. H., and Bolfarine, H. 2009. Local influence analysis for skew-normal linear mixed models. Commun. Statist. Theory Methods, 38, 484–496. [220]CrossRefGoogle Scholar
Mudholkar, G. S. and Hutson, A. D. 2000. The epsilon-skew-normal distribution for analysing near-normal data. J. Statist. Plann. Inference, 83, 291–309. [22]CrossRefGoogle Scholar
Nagaraja, H. N. 1982. A note on linear functions of ordered correlated normal random variables. Biometrika, 69, 284–285. [52]CrossRefGoogle Scholar
Nathoo, F. S. 2010. Space-time regression modeling of tree growth using the skew-t distribution. Environmetrics, 21, 817–833. [220]CrossRefGoogle Scholar
Naveau, P., Genton, M. G., and Ammann, C. 2004. Time series analysis with a skewed Kalman filter. Chap. 15, pages 259–278 of: Genton, M. G. (ed.), Skew-elliptical Distributions and their Applications: A Journey Beyond Normality. Boca Raton, FL: Chapman & Hall/CRC. [224]Google Scholar
Naveau, P., Genton, M. G., and Shen, X. 2005. A skewed Kalman filter. J. Multiv. Anal., 94, 382–400. [224]CrossRefGoogle Scholar
Nelson, L. S. 1964. The sum of values from a normal and a truncated normal distribution. Technometrics, 6, 469–471. [42]Google Scholar
O'Hagan, A. and Leonard, T. 1976. Bayes estimation subject to uncertainty about parameter constraints. Biometrika, 63, 201–202. [42]CrossRefGoogle Scholar
Owen, D. B. 1956. Tables for computing bivariate normal probabilities. Ann. Math. Statist., 27, 1075–1090. [34, 234, 235]CrossRefGoogle Scholar
Owen, D. B. 1957. The bivariate normal probability distribution. Tech. rept. SC-3831 (TR), Systems Analysis. Sandia Corporation. Available from the Office of Technical Services, Dept. of Commerce, Washington, D.C.25 [235]Google Scholar
Pacillo, S. 2012. Selection of conditional independence graph models when the distribution is extended skew normal. Chil. J. Statist., 3, 183–194. [158]Google Scholar
Padoan, S. A. 2011. Multivariate extreme models based on underlying skew-t and skew-normal distributions. J. Multiv. Anal., 102, 977–991. [53, 122, 193]CrossRefGoogle Scholar
Pérez Rodríguez, P., and Villasenor Alva, J. A. 2010. On testing the skew normal hypothesis. J. Statist. Plann. Inference, 140, 3148–3159. [87]CrossRefGoogle Scholar
Pewsey, A. 2000a. Problems of inference for Azzalini's skew-normal distribution. J. Appl. Statist., 27, 859–870. [76]CrossRefGoogle Scholar
Pewsey, A. 2000b. The wrapped skew-normal distribution on the circle. Commun. Statist. Theory Methods, 29, 2459–2472. [51, 208]CrossRefGoogle Scholar
Pewsey, A. 2003. The characteristic functions of the skew-normal and wrapped skew-normal distributions. Pages 4383–4386 of: XXVII Congreso Nacional de Estadística e Investigación Operativa. SEIO, Lleida (España). [51, 208]Google Scholar
Pewsey, A. 2006a. Modelling asymmetrically distributed circular data using the wrapped skew-normal distribution. Environ. Ecol. Statist., 13, 257–269. [208]CrossRefGoogle Scholar
Pewsey, A. 2006b. Some observations on a simple means of generating skew distributions. Pages 75–84 of: Balakrishnan, N., Castillo, E., and Sarabia, J. M. (eds), Advances in Distribution Theory, Order Statistics and Inference. Boston, MA: Birkhausen [94, 188]Google Scholar
Potgieter, C. J. and Genton, M. G. 2013. Characteristic function-based semiparametric inference for skew-symmetric models. Scand. J. Statist., 40, 471–490. Available online 26 December 2012. [207]CrossRefGoogle Scholar
Pourahmadi, M. 2007. Skew-normal ARMA models with nonlinear heteroscedastic predictors. Commun. Statist. Theory Methods, 36, 1803–1819. [222]CrossRefGoogle Scholar
Pyne, S., Hu, X., Wang, K., Rossin, E., Lin, T.-I., Maier, L. M., et al. 2009. Automated high-dimensional flow cytometric data analysis. PNAS, 106, 8519–8524. [221]CrossRefGoogle ScholarPubMed
R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3900051-07-0. [75]
Rao, C. R. 1973. Linear Statistical Inference and its Applications, 2nd edn. New York: J. Wiley & Sons. [137]CrossRefGoogle Scholar
Roberts, C. 1966. A correlation model useful in the study of twins. J. Amer. Statist. Assoc., 61, 1184–1190. [42, 54]CrossRefGoogle Scholar
Rotnitzky, A., Cox, D. R., Bottai, M., and Robins, J. 2000. Likelihood-based inference with singular information matrix. Bernoulli, 6, 243–284. [68, 69, 72]CrossRefGoogle Scholar
Sahu, S. K. and Dey, D. K. 2004. On a Bayesian multivariate survival model with a skewed frailty. Chap. 19, pages 321–338 of: Genton, M. G. (ed.), Skew-elliptical Distributions and their Applications: A Journey Beyond Normality. Boca Raton, FL: Chapman & Hall/CRC. [192, 228]Google Scholar
Sahu, K., Dey, D. K., and Branco, M. D. 2003. A new class of multivariate skew distributions with applications to Bayesian regression models. Canad. J. Statist., 31, 129–150. Corrigendum: vol.37 (2009), 301-302. [190, 192, 194, 200]CrossRefGoogle Scholar
Salvan, A. 1986. Test localmente più potenti tra gli invarianti per la verifica dell'ipotesi di normalita. Pages 173–179 of: Atti della XXXIII Riunione Scientifica della Societal Italiana di Statistica, vol. II. Bari: Cacucci. [86]Google Scholar
Sartori, N. 2006. Bias prevention of maximum likelihood estimates for scalar skew normal and skew t distributions. J. Statist. Plann. Inference, 136, 4259–4275. [79]CrossRefGoogle Scholar
Serfling, R. 2006. Multivariate symmetry and asymmetry. Pages 5338–5345 of: Kotz, S., Balakrishnan, N., Read, C. B., and Vidakovic, B. (eds), Encyclopedia ofStatist-ical Sciences, II edn, vol. 8. New York: J. Wiley & Sons. [2]Google Scholar
Sharafi, M. and Behboodian, J. 2008. The Balakrishnan skew-normal density. Statist. Papers, 49, 769–778. [202]CrossRefGoogle Scholar
Shun, Z., Lan, K. K. G., and Soo, Y. 2008. Interim treatment selection using the normal approximation approach in clinical trials. Statist. Med., 27, 597–618. [225]CrossRefGoogle ScholarPubMed
ŠSidák, Z. 1967. Rectangular confidence regions for the means of multivariate normal distributions. J. Amer. Statist. Assoc., 62, 626–633. [166]Google Scholar
Soriani, N. 2007. La Distribuzione t Asimmetrica: Analisi Discriminante e Regioni di Tollerenza. Tesi di laurea, Facoltà di Scienze Statistiche, Universita di Padova. http://tesi.cab.unipd.it/7115/. [179]Google Scholar
Stanghellini, E. and Wermuth, N. 2005. On the identification of path analysis models with one hidden variable. Biometrika, 92, 337–350. [158]CrossRefGoogle Scholar
Stingo, F. C., Stanghellini, E., and Capobianco, R. 2011. On the estimation of a binary response model in a selected population. J. Statist. Plann. Inference, 141, 3293–3303. [227]CrossRefGoogle Scholar
Subbotin, M. T. 1923. On the law of frequency of error. Mat. Sbornik, 31, 296–301. [96]Google Scholar
Tchumtchoua, S. and Dey, D. K. 2007. Bayesian estimation of stochastic frontier models with multivariate skew t error terms. Commun. Statist. Theory Methods, 36, 907–916. [192, 225]CrossRefGoogle Scholar
Thompson, K. R. and Shen, Y. 2004. Coastal flooding and the multivariate skew-t distribution. Chap. 14, pages 243–258 of: Genton, M. G. (ed.), Skew-elliptical Dis¬tributions and their Applications: A Journey Beyond Normality. Boca Raton, FL: Chapman & Hall/CRC. [186]Google Scholar
Tong, H. 1990. Non-linear Time Series: A Dynamical System Approach. Oxford: Oxford University Press. [223]Google Scholar
Tsai, T.-R. 2007. Skew normal distribution and the design of control charts for averages. Int. J. Rel. Qual. Saf. Eng., 14, 49–63. [225]CrossRefGoogle Scholar
Tyler, D. E., Critchley, F., Dumbgen, L., and Oja, H. 2009. Invariant co-ordinate selection (with discussion). J. R. Statist. Soc., ser. B, 71, 549–692. [160]CrossRefGoogle Scholar
Umbach, D. 2006. Some moment relationships for skew-symmetric distributions. Statist. Probab. Lett., 76, 507–512. [11]CrossRefGoogle Scholar
Umbach, D. 2007. The effect of the skewing distribution on skew-symmetric families. Soochow Journal of Mathematics, 33, 657–668. [47]Google Scholar
Umbach, D. and Jammalamadaka, S. R. 2009. Building asymmetry into circular distributions. Statist. Probab. Lett., 79, 659–663. [208, 210]CrossRefGoogle Scholar
Umbach, D. and Jammalamadaka, S. R. 2010. Some moment properties of skew-symmetric circular distributions. Metron, LXVIII, 265–273. [208]Google Scholar
Van Oost, K., Van Muysen, W., Govers, G., Heckrath, G., Quine, T. A., and Poesen, J. 2003. Simulation of the redistribution of soil by tillage on complex topographies. European J. Soil Sci., 54, 63–76. [160]CrossRefGoogle Scholar
Vernic, R. 2006. Multivariate skew-normal distributions with applications in insurance. Insurance: Math. Econ., 38, 413–426. [159, 160]Google Scholar
Vianelli, S. 1963. La misura della variabilita condizionata in uno schema generale delle curve normali di frequenza. Statistica, 33, 447–474. [96]Google Scholar
Walls, W. D. 2005. Modeling heavy tails and skewness in film returns. Appl. Financial Econ., 15, 1181–1188. [119]CrossRefGoogle Scholar
Wang, J. and Genton, M. G. 2006. The multivariate skew-slash distribution. J. Statist. Plann. Inference, 136, 209–220. [195]CrossRefGoogle Scholar
Wang, J., Boyer, J., and Genton, M. G. 2004. A skew-symmetric representation of multivariate distributions. Statist. Sinica, 14, 1259–1270. [11, 175]Google Scholar
Weinstein, M. A. 1964. The sum of values from a normal and a truncated normal distribution. Technometrics, 6, 104–105. [42]CrossRefGoogle Scholar
Whitt, W. 2006. Stochastic ordering. Pages 8260–8264 of: Kotz, S., Balakrishnan, N., Read, C. B., and Vidakovic, B. (eds), Encyclopedia ofStatistical Sciences, II edn, vol. 13. New York: J.Wiley & Sons. [10]Google Scholar
Yohai, V. J. 1987. High breakdown-point and high efficiency robust estimates for regression. Ann. Statist., 15, 642–656. [112, 114, 115]CrossRefGoogle Scholar
Zacks, S. 1981. Parametric Statistical Inference. Oxford: Pergamon Press. [26]Google Scholar
Zhang, H. and El-Shaarawi, A. 2010. On spatial skew-Gaussian processes and applications. Environmetrics, 21, 33–47. Available online 17 March 2009. [223]Google Scholar
Zhou, T. and He, X. 2008. Three-step estimation in linear mixed models with skew-t distributions. J. Statist. Plann. Inference, 138, 1542–1555. [220]CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Adelchi Azzalini, Università degli Studi di Padova, Italy
  • In collaboration with Antonella Capitanio, Università di Bologna
  • Book: The Skew-Normal and Related Families
  • Online publication: 18 December 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139248891.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Adelchi Azzalini, Università degli Studi di Padova, Italy
  • In collaboration with Antonella Capitanio, Università di Bologna
  • Book: The Skew-Normal and Related Families
  • Online publication: 18 December 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139248891.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Adelchi Azzalini, Università degli Studi di Padova, Italy
  • In collaboration with Antonella Capitanio, Università di Bologna
  • Book: The Skew-Normal and Related Families
  • Online publication: 18 December 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139248891.013
Available formats
×