Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T20:12:24.690Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  31 March 2022

Thomas Mohaupt
Affiliation:
University of Liverpool
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldazabal, G., Marques, D., and Nunez, C. 2013. Double Field Theory: A Pedagogical Review. Class. Quant. Grav., 30, 163001.Google Scholar
Ammon, M. and Erdmenger, J. 2015. Gauge/Gravity Duality. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Antoniadis, Ignatios, Bachas, C. P., and Kounnas, C. 1987. Four-Dimensional Superstrings. Nucl. Phys. B, 289, 87.Google Scholar
Aspinwall, P. S., Bridgeland, T., Craw, A. et al. (eds.). 2009. Dirichlet Branes and Mirror Symmetry. Clay Mathematics Monographs, vol. 5. Providence, RI: American Mathematical Society.Google Scholar
Astashkevich, A. and Belopolsky, A. 1997. String Center-of-Mass Operator and Its Effect on BRST Cohomology. Commun. Math. Phys., 186, 109–36.CrossRefGoogle Scholar
Athanasopoulos, P., Faraggi, A. E., Groot Nibbelink, S., and Mehta, V. M. 2016. Heterotic Free Fermionic and Symmetric Toroidal Orbifold Models. JHEP, 04, 038.Google Scholar
Becker, K., Becker, M., and Schwarz, J. H.. 2007. String Theory and M Theory. Cambridge: Cambridge University Press.Google Scholar
Belopolsky, A. and Zwiebach, B. 1996. Who Changes the String Coupling? Nucl. Phys. B, 472, 109–38.Google Scholar
Bergshoeff, E., de Roo, M., Green, M. B., Papadopoulos, G., and Townsend, P. K. 1996. Duality of Type II 7 Branes and 8 Branes. Nucl. Phys. B, 470, 113–35.CrossRefGoogle Scholar
Berkovits, N. and Gomez, H. 2017 (11). An Introduction to Pure Spinor Superstring Theory. In: Quantization, Geometry and Noncommunicative Structures in Mathematics and Physics. Mathematical Physics Studies. Cham: Springer.Google Scholar
Berkovits, N., Sen, A., and Zwiebach, B. 2000. Tachyon Condensation in Superstring Field Theory. Nucl. Phys. B, 587, 147–78.Google Scholar
Bern, Z., Dennen, T., Huang, Y.-T., and Kiermaier, M. 2010a. Gravity as the Square of Gauge Theory. Phys. Rev. D, 82, 065003.Google Scholar
Bern, Z., Carrasco, J. J. M., and Johansson, H. 2010b. Perturbative Quantum Gravity as a Double Copy of Gauge Theory. Phys. Rev. Lett., 105, 061602.Google Scholar
Binetruy, P. 2008. Supersymmetry. Oxford: Oxford University Press.Google Scholar
Blumenhagen, R. and Plauschinn, E. 2009. Introduction to Conformal Field Theory. Lecture Notes in Physics, vol. 779. Berlin/Heidelberg: Springer.Google Scholar
Blumenhagen, R., Luest, D., and Theisen, S. 2013. Basic Concepts of String Theory. Berlin/Dordrecht/Heidelberg/London/New York: Springer.CrossRefGoogle Scholar
Bump, D. 2004. Lie Groups. New York: Springer.CrossRefGoogle Scholar
Cahn, R. N. 1984. Semi-Simple Lie Algebras and Their Representations. Benjamin and Cummings.Google Scholar
Callan, Jr, Curtis, G., Martinec, E. J., Perry, M. J., and Friedan, D. 1985. Strings in Background Fields. Nucl. Phys. B, 262, 593609.Google Scholar
Candelas, P. 1987. Lectures on Complex Manifolds. In: Alvarez-Gaume, L. (ed.), Superstrings’87. Singapore: World Scientific.Google Scholar
Coleman, S. 1985. Aspects of Symmetry. Selected Erice Lectures. Cambridge: Cambridge University Press.Google Scholar
Cornwell, R. 1997. Group Theory in Physics: An Introduction (vols 1 & 2). New York: Academic Press.Google Scholar
de Azcarraga, J. A. and Izquierdo, J. M. 1995. Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
de Boer, J., Cheng, M. C. N., Dijkgraaf, R., Manschot, J., and Verlinde, E. 2006. A Farey Tail for Attractor Black Holes. JHEP, 11, 024.CrossRefGoogle Scholar
de Wit, B. and Louis, J. 1999. Supersymmetry and Dualities in Various Dimensions. NATO Sci. Ser. C, 520, 33101.Google Scholar
Deligne, P., Etingof, P., Freed, D. S. et al. (eds.). 1999. Quantum Fields and Strings: A Course for Mathematicians. Providence, RI: American Mathematical Society.Google Scholar
D’Hoker, E. and Phong, D. H. 1988. The Geometry of String Perturbation Theory. Rev. Mod. Phys., 60, 917.Google Scholar
Di Francesco, P., Mathieu, P., and Sénéchal, D. 1997. Conformal Field Theory. New York: Springer.Google Scholar
Dijkgraaf, R., Verlinde, E. P., and Verlinde, H. L. 1988. C = 1 Conformal Field Theories on Riemann Surfaces. Commun. Math. Phys., 115, 649–90.CrossRefGoogle Scholar
Dijkgraaf, R., Maldacena, J. M., Moore, G., and Verlinde, E. P. 2000. A Black Hole Farey Tail. E-print arXiv:hep-th/0005003.Google Scholar
Dine, M. 2007. Supersymmetry and String Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Dirac, P. A. M. 1964. Lectures on Quantum Mechanics. Belfare Graduate School Monograph Series. New York: Academic Press.Google Scholar
Dixon, L. J., Friedan, D., Martinec, E. J., and Shenker, S. H. 1987. The Conformal Field Theory of Orbifolds. Nucl. Phys. B, 282, 1373.Google Scholar
Dixon, L. J., Harvey, J. A., Vafa, C., and Witten, E. 1985. Strings on Orbifolds. Nucl. Phys. B, 261, 678–86.Google Scholar
Dixon, L. J., Harvey, J. A., Vafa, C., and Witten, E. 1986. Strings on Orbifolds. 2. Nucl. Phys. B, 274, 285314.CrossRefGoogle Scholar
Doubek, M., Jurco, B., Markl, M., and Sachs, I. 2020. Algebraic Structures of String Field Theory. Lecture Notes in Physics. Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
Duff, M. J., Nilsson, B. E. W., and Pope, C. N. 1986. Kaluza–Klein Supergravity. Phys. Rept., 130, 1142.CrossRefGoogle Scholar
Duncan, A. 2012. The Conceptual Framework of Quantum Field Theory. Oxford: Oxford University Press.Google Scholar
Erbin, H. 2021. String Field Theory. Lecture Notes in Physics. Berlin/Heidelberg: Springer.Google Scholar
Erler, T. 2013. Analytic Solution for Tachyon Condensation in Berkovits’ Open Superstring Field Theory. JHEP, 11, 007.Google Scholar
Erler, T. 2019 (12). Four Lectures on Analytic Solutions in Open String Field Theory. E-print arXiv:1912.00521.Google Scholar
Erler, T. 2020. Four Lectures on Closed String Field Theory. Phys. Rept., 851, 136.Google Scholar
Frankel, T. 2004. The Geometry of Physics. Cambridge: Cambridge University Press.Google Scholar
Freedman, D. Z. and Van Proeyen, A. 2012. Supergravity. Cambridge: Cambridge University Press.Google Scholar
Frenkel, E. and Ben-Zvi, D. 2001. Vertex Algebras and Algebraic Curves. Providence, RI: American Mathematical Society.Google Scholar
Friedan, D., Martinec, E. J., and Shenker, S. H. 1986. Conformal Invariance, Supersymmetry and String Theory. Nucl. Phys. B, 271, 93165.Google Scholar
Fuchs, J. and Schweigert, C. 1997. Symmetries, Lie Algebras and Representations. Cambridge: Cambridge University Press.Google Scholar
Fulton, W. and Harris, J. 1991. Representation Theory. New York: Springer.Google Scholar
Gaberdiel, M. R. and Suchanek, P. 2012. Limits of Minimal Models and Continuous Orbifolds. JHEP, 03, 104.Google Scholar
Gilmore, R. 1974. Lie Groups, Lie Algebras and Some of Their Applications. London/New York/Sydney/Toronto: John Wiley & Sons.Google Scholar
Ginsparg, P. H. 1988. Applied Conformal Field Theory. E-print hep-th/9108028.Google Scholar
Giveon, A., Porrati, M., and Rabinovici, E. 1994. Target Space Duality in String Theory. Phys.Rept., 244, 77202.Google Scholar
Glimm, J. and Jaffe, A. 1981. Quantum Physics. A Functional Integral Point of View. New York: Springer.Google Scholar
Goddard, P. and Olive, D. I. 1986. Kac–Moody and Virasoro Algebras in Relation to Quantum Physics. Int. J. Mod. Phys. A, 1, 303.Google Scholar
Green, M. B., H., Schwarz, J., and Witten, E. 1987. Superstring Theory (2 vols). Cambridge: Cambridge University Press.Google Scholar
Greene, B. R. 1996. String Theory on Calabi–Yau Manifolds. Pages 543726 of: Fields, Strings and Duality. Proceedings, Summer School, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI’96, Boulder, USA, June 2-28, 1996.Google Scholar
Gutperle, M. and Strominger, A. 2002. Spacelike Branes. JHEP, 04, 018.Google Scholar
Haag, R. 1996. Local Quantum Physics. New York: Springer.Google Scholar
Hamermesh, M. 1962. Group Theory and its Application to Physical Problems. Reading, MA: Addison Wesley.Google Scholar
Hamidi, S. and Vafa, C. 1987. Interactions on Orbifolds. Nucl. Phys. B, 279, 465513.Google Scholar
Helgason, S. 1978. Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press.Google Scholar
Henneaux, M. and Teitelboim, C. 1992. Quantization of Gauge Systems. Princeton, NJ: Princeton University Press.Google Scholar
Hohm, O. and Samtleben, H. 2019. The Many Facets of Exceptional Field Theory. E-print arXiv:1905.08312.CrossRefGoogle Scholar
Hori, K., Katz, S., Klemm, A. et al. (eds). 2003. Mirror Symmetry. Clay Mathematics Monographs, vol. 1. Amer. Math. Soc.Google Scholar
Horowitz, G. T. and Polchinski, J. 1997. A Correspondence Principle for Black Holes and Strings. Phys. Rev. D, 55, 61896197.Google Scholar
Hubsch, T. 1991. Calabi–Yau Manifolds. Singapore: World Scientific.Google Scholar
Hull, C. M. 1998. Timelike T-duality, de Sitter Space, Large N Gauge Theories and Topological Field Theory. JHEP, 07, 021.Google Scholar
Hull, C. M. 2001. De Sitter Space in Supergravity and M Theory. JHEP, 11, 012.Google Scholar
Humphreys, J. E. 1972. Introduction to Lie Algebras and Representation Theory. New York: Springer.Google Scholar
Ibáñez, L. E. and Uranga, A. M. 2012. String Theory and Particle Physics. Cambridge: Cambridge University Press.Google Scholar
Johnson, C. V. 2003. D-Branes. Cambridge: Cambridge University Press.Google Scholar
Kac, V. G. 1990. Infinite Dimensional Lie Algebras. Cambridge: Cambridge University Press.Google Scholar
Kaku, M. 1988. Introduction to Superstrings. New York: Springer.Google Scholar
Kaku, M. 1991. Strings, Conformal Fields and Topology. New York: Springer.Google Scholar
Kaplunovsky, V. and Louis, J. 1994. Field Dependent Gauge Couplings in Locally Supersymmetric Effective Quantum Field Theories. Nucl. Phys. B, 422, 57124.Google Scholar
Kaplunovsky, V. and Louis, J. 1995. On Gauge Couplings in String Theory. Nucl. Phys. B, 444, 191244.Google Scholar
Kawai, H., Lewellen, D. C., and Tye, S.-H. H. 1986. A Relation Between Tree Amplitudes of Closed and Open Strings. Nucl. Phys. B, 269, 1.Google Scholar
Kawai, H., Lewellen, D. C., and Tye, S.-H. H. 1987. Construction of Fermionic String Models in Four-Dimensions. Nucl. Phys. B, 288, 1.Google Scholar
Kiritsis, E. 2007. String Theory in a Nutshell. Princeton, NJ: Princeton University Press.Google Scholar
Lawson, H. B. and Michelsohn, M.-L. 1989. Spin Geometry. Princeton, NJ: Princeton University Press.Google Scholar
Lerche, W., Schellekens, A. N., and Warner, N. P. 1989. Lattices and Strings. Phys. Rept., 177, 1.Google Scholar
Maharana, J. and Schwarz, J. H. 1993. Noncompact Symmetries in String Theory. Nucl. Phys., B 390, 332.Google Scholar
Maldacena, J. M. 1996. Black Holes in String Theory. Ph thesis, Princeton University.Google Scholar
Marnelius, R. 1982. Introduction to the Quantization of General Gauge Theories. Acta Phys. Polon. B, 13, 669.Google Scholar
Narain, K. S. 1986. New Heterotic String Theories in Uncompactified Dimensions < 10. Phys. Lett., B 169, 41.Google Scholar
Narain, K. S., Sarmadi, M. H., and Witten, E. 1987. A Note on Toroidal Compactification of Heterotic String Theory. Nucl. Phys., B 279, 369.Google Scholar
Nieto, J. A. 2001. Remarks on Weyl Invariant P-Branes and Dp-Branes. Mod. Phys. Lett. A, 16, 2567–78.Google Scholar
Ooguri, H. and Vafa, C. 2007. On the Geometry of the String Landscape and the Swampland. Nucl. Phys. B, 766, 2133.Google Scholar
Ortin, T. 2004. Gravity and Strings. Cambridge: Cambridge University Press.Google Scholar
Peskin, M. E. and Schroeder, D. V. 1996. An Introduction to Quantum Field Theory. Reading, MA: Addison Wesley.Google Scholar
Plauschinn, E. 2019. Non-geometric Backgrounds in String Theory. Phys. Rept., 798, 1122.Google Scholar
Polchinski, J. 1996 (11). Tasi Lectures on D-Branes. In: Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 96): Fields, Strings, and Duality.Google Scholar
Polchinski, J. 1998a. String Theory. Vol. 1: An Introduction to the Bosonic String. Cambridge: Cambridge University Press.Google Scholar
Polchinski, J. 1998b. String Theory. Vol. 2: Superstring Theory and Beyond. Cambridge: Cambridge University Press.Google Scholar
Polyakov, A. M. 1981a. Quantum Geometry of Bosonic Strings. Physics Letters B, 103(3), 207–10.Google Scholar
Polyakov, A. M. 1981b. Quantum Geometry of Fermionic Strings. Physics Letters B, 103(3), 211–13.Google Scholar
Polyakov, A. M. 1987. Gauge Fields and Strings. Chur: Harwood Academic Publishers.Google Scholar
Rajaraman, R. 1982. Solitons and Instantons. An Introduction to Solitons and Instantons in Quantum Field Theory. Amsterdam: North Holland.Google Scholar
Ramond, P. 2010. Group Theory. Cambridge: Cambridge University Press.Google Scholar
Rocek, M. and Verlinde, E. P. 1992. Duality, Quotients, and Currents. Nucl. Phys. B, 373, 630–46.Google Scholar
Roepstorff, G. 1994. Path Integral Approach to Quantum Physics. Berlin/Heidelberg: Springer.Google Scholar
Runkel, I. and Watts, G. M. T. 2002. A Nonrational CFT with Central Charge 1. Fortsch. Phys., 50, 959–65.Google Scholar
Sakamoto, M. 1989. A Physical Interpretation of Cocycle Factors in Vertex Operator Representations. Phys. Lett. B, 231(3), 258.Google Scholar
Scherk, J. 1975. An Introduction to the Theory of Dual Models and Strings. Rev. Mod. Phys., 47, 123–64.Google Scholar
Scherk, J. and Schwarz, J. H. 1979. How to Get Masses from Extra Dimensions. Nucl. Phys. B, 153, 6188.Google Scholar
Schomerus, V. 2017. A Primer on String Theory. Cambridge: Cambridge University Press.Google Scholar
Schottenloher, M. 1997. A Mathematical Introduction to Conformal Field Theory. Berlin/Heidelberg: Springer.Google Scholar
Schubert, C. 2001. Perturbative Quantum Field Theory in the String Inspired Formalism. Phys. Rept., 355, 73234.Google Scholar
Sen, A. 1998. Tachyon Condensation on the Brane Anti-Brane System. JHEP, 08, 012.Google Scholar
Sen, A. 2018. Background Independence of Closed Superstring Field Theory. JHEP, 02, 155.Google Scholar
Serre, J.-P. 1973. A Course in Arithmetic. New York: Springer.Google Scholar
Sexl, R. U., and Urbantke, H. K. 2001. Relativity, Groups, Particles. NewYork/ Vienna: Springer.Google Scholar
Siegel, W. 1988. Introduction to String Field Theory. Singapore: World Scientific.Google Scholar
Sonoda, H. 1988a. Sewing Conformal Field Theories I. Nucl. Phys. B, 311(2), 401–16.Google Scholar
Sonoda, H. 1988b. Sewing Conformal Field Theories II. Nucl. Phys. B, 311(2), 417432.Google Scholar
Streater, R. F. and Wightman, A. S. 1964. PCT, Spin and Statistics, and All That. W.A. Benjamin, Inc.Google Scholar
Strominger, A., Yau, S.-T., and Zaslow, E. 1996. Mirror Symmetry is T-Duality. Nucl. Phys. B, 479, 243259.Google Scholar
Strominger, A. and Vafa, C. 1996. Microscopic Origin of the Bekenstein–Hawking Entropy. Phys. Lett., B 379, 99104.Google Scholar
Sudarshan, E. C. G. and Mukunda, N. 1974. Classcial Mechanics: A Modern Perspective. Singpore: World Scientific.Google Scholar
Sundermeyer, K. 1982. Constrained Dynamics. Springer Lecture Notes in Physics 169. Berlin/Heidelberg/New York: Springer.Google Scholar
Townsend, P. K. 1997. M-Theory from Its Superalgebra. E-print hep-th/9712004.Google Scholar
Tseytlin, A. A. 1989. Sigma Model Approach to String Theory. Int. J. Mod. Phys. A, 4, 1257.Google Scholar
van Beest, M., Calderón-Infante, J., Mirfendereski, D., and Valenzuela, I. 2021 (2). Lectures on the Swampland Program in String Compactifications. E-print arXiv:2102.01111.Google Scholar
Van Proeyen, A. 1999. Tools for Supersymmetry. E-print hep-th/9910030.Google Scholar
Wald, R. M. 1984. General Relativity. Chicago: University of Chicago Press.Google Scholar
Weinberg, E. 2012. Classical Solutions in Quantum Field Theory. Cambridge: Cambridge University Press.Google Scholar
Weinberg, S. 1987. Covariant Path Integral Approach to String Theory. 3rd Jerusalem Winter School in Theoretical Physics.Google Scholar
Weinberg, S. 1995. The Quantum Theory of Fields. Cambridge: Cambridge University Press.Google Scholar
Wess, J. and Bagger, J. 1992. Supersymmetry and Supergravity. Princeton, NJ: Princeton University Press.Google Scholar
West, P. 1986. Introduction to Supersymmetry and Supergravity. Singapore: World Scientific.CrossRefGoogle Scholar
West, P. 2012. Introduction to Strings and Branes. Cambridge: Cambridge University Press.Google Scholar
Weyl, H. 1939. The Classical Groups. Princeton, NJ: Princeton University Press.Google Scholar
Woit, P. 2017. Quantum Theory, Groups and Representations. Cham: Springer.Google Scholar
Zwiebach, B. 2009. A First Course in String Theory. Cambridge: Cambridge University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Thomas Mohaupt, University of Liverpool
  • Book: A Short Introduction to String Theory
  • Online publication: 31 March 2022
  • Chapter DOI: https://doi.org/10.1017/9781108611619.029
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Thomas Mohaupt, University of Liverpool
  • Book: A Short Introduction to String Theory
  • Online publication: 31 March 2022
  • Chapter DOI: https://doi.org/10.1017/9781108611619.029
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Thomas Mohaupt, University of Liverpool
  • Book: A Short Introduction to String Theory
  • Online publication: 31 March 2022
  • Chapter DOI: https://doi.org/10.1017/9781108611619.029
Available formats
×