Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T16:58:56.566Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 November 2015

Lenny Taelman
Affiliation:
Universiteit van Amsterdam
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Sheaves and Functions Modulo p
Lectures on the Woods Hole Trace Formula
, pp. 121 - 124
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abramovich, D. & Karu, K. & Matsuki, K. & Włodarczyk, J.Torification and factorization of birational maps, J. Amer. Math. Soc. 15 (2002), 531–572.Google Scholar
[2] Anderson, G.W.t-Motives, Duke Math. J. 53 (1986), 457–502.Google Scholar
[3] Anderson, G.W.An Elementary Approach to L-Functions mod p, J. Number Theory 80 (2000), 291–303.Google Scholar
[4] Anderson, G.W. & Thakur, D.S.Tensor powers of the Carlitz module and zeta values, Ann. of Math. 132 (1990), 159–191.Google Scholar
[5] Artin, A. & Grothendieck, A. & Verdier, J.L.Théorie des topos et cohomologie étale des schémas (SGA 4). Lecture Notes in Mathematics 269, 270, 305, Springer, 1972.
[6] Atiyah, M.F. & Bott, R.A Lefschetz fixed point formula for elliptic differential operators, Bull. Amer. Math. Soc. 72 (1966), 245–250.Google Scholar
[7] Atiyah, M.F. & Bott, R.A Lefschetz Fixed Point Formula for Elliptic Complexes: I, Ann. of Math. 86 (1967), 374–407.Google Scholar
[8] Ax, J.Zeroes of polynomials over finite fields, Amer. J. Math. 86 (1964), 255–261.Google Scholar
[9] Beauville, A. — Formules de points fixes en cohomologie cohérente, Séminaire de géométrie algébrique de Orsay, Presses de l'ENS, 1972.
[10] Berthelot, P. & Bloch, S. & Esnault, H.On Witt vector cohomology for singular varieties, Compos. Math. 143 (2007), 363–392.Google Scholar
[11] Böckle, G. & Pink, R.Cohomological Theory of Crystals over Function Fields. EMS Tracts in Mathematics, Vol. 9, European Mathematical Society, 2009.Google Scholar
[12] Chatzistamatiou, A. & Rülling, K.Higher direct images of the structure sheaf in positive characteristic, Algebra Number Theory 5 (2011), 693– 775.Google Scholar
[13] Chevalley, C.Démonstration d'une hypothèse de M. Artin, Abh. Math. Sem. Univ. Hamburg 11 (1936), 73–75.Google Scholar
[14] Dold, A. & Puppe, D.Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier Grenoble 11 (1961), 201–312Google Scholar
[15] Deligne, P.Cohomologie à support propre et construction du foncteur f!, In: Hartshorne, R., Residues and Duality, Lecture Notes in Mathematics 20, Springer, 1966.
[16] Deligne, P.Cohomologie étale (SGA 4 1/2). Lecture Notes in Mathematics 569, Springer-Verlag, 1977.
[17] Deuring, M.Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197–272.Google Scholar
[18] Donovan, P.The Lefschetz-Riemann-Roch formula, Bull. Soc. Math. France 97 (1969), 257–273.Google Scholar
[19] Emerton, M. & Kisin, M.The Riemann-Hilbert correspondence for unit F-crystals, Astérisque 293 (2004).Google Scholar
[20] Emerton, M. & Kisin, M.An introduction to the Riemann-Hilbert correspondence for unit F-crystals, In: Geometric aspects of Dwork theory, 677– 700, Walter de Gruyter, 2004.
[21] Fang, J.X.Special L-values of abelian t-modules, J. Number Theory 147 (2015), 300–325.Google Scholar
[22] Fulton, W.A fixed point formula for varieties over finite fields, Math. Scand. 42 (1978), 189–196.Google Scholar
[23] Gabriel, P.Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.Google Scholar
[24] Goss, D.v-adic zeta functions, L-series and measures for function fields, Invent. Math. 55 (1979), 107–119.Google Scholar
[25] Goss, D.L-series of t-motives and Drinfeld modules, in The arithmetic of function fields (Columbus, OH, 1991), 313–402, Ohio State Univ. Math. Res. Inst. Publ., de Gruyter, 1992.
[26] Grothendieck, A.Sur quelques points d'algèbre homologique. Tôhoku Math. J. 9 (1957), 119–221.
[27] Grothendieck, A.Cohomologie l-adique et Fonctions L (SGA 5). Lecture notes in Mathematics 589, Springer-Verlag, 1977.
[28] Grothendieck, A.Le langage des schémas, EGA I, Publ. Math. Inst. Hautes Études Sci. 4 (1960).Google Scholar
[29] Grothendieck, A.Étude cohomologique des faisceaux cohérents, EGA III, Publ. Math. Inst. Hautes Études Sci. 11 (1961), 17 (1963).Google Scholar
[30] Hartshorne, R.Residues and duality, Lecture Notes in Mathematics 20, Springer, 1966.
[31] Hartshorne, R.Algebraic geometry, Graduate Texts in Mathematics 52, Springer-Verlag, 1977.
[32] Illusie, L.Complexe Cotangent et Déformations I, Lecture Notes in Mathematics 239, Springer-Verlag, 1971.
[33] Kato, K.Lectures on the approach to Iwasawa theory for Hasse-Weil Lfunctions via BdR I, in Arithmetic Algebraic Geometry, Trento, 1991, 50–163, Lecture Notes in Mathematics 1553, Springer, 1993.
[34] Katz, N.M.On a theorem of Ax, Amer. J. Math. 93 (1971), 485–499.Google Scholar
[35] Katz, N.M.p-adic properties of modular schemes and modular forms, in Modular functions of one variable, III, 69–190. Lecture Notes in Mathematics 350, Springer, 1973.
[36] Köck, B.Computing the homology of Koszul complexes, Trans. Amer. Math. Soc. 353 (2001), 3115–3147.Google Scholar
[37] Kunz, E.Characterizations of Regular Local Rings of Characteristic p, Amer. J. Math. 91 (1969), 772–784.Google Scholar
[38] Lafforgue, V.Valeurs spéciales des fonctions L en caractéristique p, J. Number Theory 129 (2009), 2600–2634.Google Scholar
[39] Laumon, G.Transformation de Fourier, constantes d’équations fonctionnelles et conjectures de Weil, Publ. Math. Inst. Hautes Études Sci. 65 (1987), 131–210.Google Scholar
[40] Lichtenbaum, S.Values of zeta-functions, étale cohomology, and algebraic K-theory, in Algebraic K-theory, II, pp. 489–501. Lecture Notes in Mathematics 342, Springer 1973.
[41] Lütkebohmert, W.On compactification of schemes, Manuscripta Math 80 (1993), 95–111.
[42] Milne, J.S. & Ramachandran, N.Integral motives and special values of zeta functions, J. Amer. Math. Soc. 17 (2004), 499–555.Google Scholar
[43] Nagata, M.A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ. 3 (1963), 89–102.Google Scholar
[44] Serre, J.P.Zeta and L-functions, in Arithmetical Algebraic Geometry, 82–91, Harper and Row, 1965.Google Scholar
[45] Stacks Projects Authors — Stacks Project, http://stacks.math. columbia.edu, 2014.
[46] Taelman, L.Special L-values of Drinfeld modules, Ann. of Math. 175 (2012), 369–391.Google Scholar
[47] Taguchi, Y. & Wan, D.L-functions of-sheaves and Drinfeld modules, J. Amer. Math. Soc. 9 (1996), 755–781.Google Scholar
[48] Thakur, D.S.On characteristic p zeta functions, Compositio Math. 99 (1995), 231–247.Google Scholar
[49] Tongring, N. & Penner, R.C. (eds) — Woods Hole mathematics. Perspectives in mathematics and physics. Series on Knots and Everything. World Scientific, 2004.
[50] Warning, E.Bemerkung zur vorstehenden Arbeit von Herrn Chevalley, Abh. Math. Sem. Univ. Hamburg 11 (1936), 76–83.Google Scholar
[51] Weibel, C.An introduction to homological algebra. Cambridge Univ. Press, 1994.
[52] Włodarczyk, J.Toroidal varieties and the weak factorization theorem, Invent. Math. 154 (2003), 223–331.Google Scholar
[53] Yu, J.Transcendence and special zeta values in characteristic p, Ann. of Math. 134 (1991), 1–23.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Lenny Taelman, Universiteit van Amsterdam
  • Book: Sheaves and Functions Modulo <I>p</I>
  • Online publication: 05 November 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316480687.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Lenny Taelman, Universiteit van Amsterdam
  • Book: Sheaves and Functions Modulo <I>p</I>
  • Online publication: 05 November 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316480687.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Lenny Taelman, Universiteit van Amsterdam
  • Book: Sheaves and Functions Modulo <I>p</I>
  • Online publication: 05 November 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316480687.011
Available formats
×