Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T03:04:54.914Z Has data issue: false hasContentIssue false

Chapter 3 - Morphisms of sheaves and presheaves

Published online by Cambridge University Press:  20 March 2010

Get access

Summary

In this chapter we first give an account of the elementary language of category theory, and show how this gives a unified way of looking at many of the ideas we have been considering. We are led to look for convenient properties of the categories of sheaves and of presheaves over a given topological space, and we find that they each have a list of such properties which are summarised in the definition of abelian category.

However, the construction of cokernels differs in the two categories; this expresses what is perhaps the basic question in sheaf theory: to what extent does a sheaf epimorphism (a map of sheaves which is ‘locally’ surjective) have surjective section maps? This is studied further when we consider cohomology (Chapter 5).

Lastly, we consider what happens in a change of base space by a continuous map. We find that there is a covariant (that is, going in the same direction as the map) method of changing the base space of presheaves, and a contraviant (opposite direction) construction which is a generalisation of sheaf if ication. These are connected by an adjointness relation, which may be interpreted as expressing their universal nature. In the case of an inclusion map of a locally closed subspace, we also consider the process of extension by zero.

Type
Chapter
Information
Sheaf Theory , pp. 31 - 72
Publisher: Cambridge University Press
Print publication year: 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×