Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T18:00:42.819Z Has data issue: false hasContentIssue false

27 - Sport Performance

Motor Expertise and Observational Learning in Sport

from Part VI - Shared Representations in Applied Contexts

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

The ability to form anticipatory representations of on-going actions is crucial for effective interactions in dynamic environments, especially in time demanding sports. Previous studies have shown that we use previous motor experience for predicting the future of on-going actions, thus building internal anticipatory models. Indeed, previous research with elite athletes has shown that they own a unique ability to predict the future of opponents’ actions compared to novices. The present chapter reviews studies providing this evidence, and clarifies associations between these superior perceptual abilities and differential activations in the motor cortex and in body-related visual areas. Hence, achieving excellence in sport implies not only superior motor performance but also the ability to read body kinematics and predict others’ actions ahead of their realization. However, motor and visual expertise may exert a differential contribution to the development of elite action perception abilities. In sum, while we need to simulate others’ actions to anticipate their future behavior, in some circumstances, for example when faced with deceptive intentions, we may need to flexibly inhibit such shared representations to favor a more abstract aspect of social perception based on visual models of others’ actions. These findings point to the need for complimentary use of motor and visual modelling strategies in sports training.
Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 565 - 587
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernethy, B., & Zawi, K. (2007). Pickup of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39, 353367.CrossRefGoogle ScholarPubMed
Abernethy, B., Zawi, K., & Jackson, R. C. (2008). Expertise and attunement to kinematic constraints. Perception, 37, 931948.CrossRefGoogle ScholarPubMed
Abreu, A. M., Macaluso, E., Azevedo, R. T., Cesari, P., Urgesi, C., & Aglioti, S. M. (2012). Action anticipation beyond the action observation network: A functional magnetic resonance imaging study in expert basketball players. European Journal of Neuroscience, 35, 16461654.CrossRefGoogle ScholarPubMed
Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 11091116.CrossRefGoogle ScholarPubMed
Alaerts, K., Heremans, E., Swinnen, S. P., & Wenderoth, N. (2009). How are observed actions mapped to the observer’s motor system? Influence of posture and perspective. Neuropsychologia, 47, 415422.CrossRefGoogle Scholar
Ashford, D., Davids, K., & Bennett, S. J. (2007). Developmental effects influencing observational modelling: A meta-analysis. Journal of Sports Sciences, 25, 547558.CrossRefGoogle ScholarPubMed
Avenanti, A., Annella, L., Candidi, M., Urgesi, C., & Aglioti, S. M. (2013a). Compensatory plasticity in the action observation network: Virtual lesions of STS enhance anticipatory simulation of seen actions. Cerebral Cortex, 23, 570580.CrossRefGoogle ScholarPubMed
Avenanti, A., Candidi, M., & Urgesi, C. (2013b). Vicarious motor activation during action perception: Beyond correlational evidence. Frontiers in Human Neuroscience, 7, 185.CrossRefGoogle ScholarPubMed
Avenanti, A., Urgesi, C. (2011). Understanding ‘what’ others do: Mirror mechanisms play a crucial role in action perception. Social Cognitive and Affective Neuroscience, 6, 257259.Google Scholar
Borroni, P., Montagna, M., Cerri, G., & Baldissera, F. (2005). Cyclic time course of motor excitability modulation during the observation of a cyclic hand movement. Brain Research, 1065, 115124.CrossRefGoogle ScholarPubMed
Brault, S., Bideau, B., Craig, C. M., & Kulpa, R. (2010). Balancing deceit and disguise: How to successfully fool the defender in a 1 vs. 1 situation in rugby. Human Movement Science, 29, 412425.CrossRefGoogle Scholar
Brown, L. E., Wilson, E. T., & Gribble, P. L. (2009). Repetitive transcranial magnetic stimulation to the primary motor cortex interferes with motor learning by observing. Journal of Cognitive Neuroscience, 21, 10131022.CrossRefGoogle Scholar
Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16, 19051910.CrossRefGoogle ScholarPubMed
Cañal-Bruland, R., van der Kamp, J., & van Kesteren, J. (2010). An examination of motor and perceptual contributions to the recognition of deception from others’ actions. Human Movement Science, 29, 94102.CrossRefGoogle Scholar
Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16, 6974.CrossRefGoogle ScholarPubMed
Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50, 11481167.CrossRefGoogle ScholarPubMed
Censor, N., & Cohen, L. G. (2011). Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory. Journal of Physiology, 589, 2128.CrossRefGoogle Scholar
Correia, V., Araujo, D., Craig, C., & Passos, P. (2011). Prospective information for pass decisional behavior in rugby union. Human Movement Science, 30, 984997.CrossRefGoogle ScholarPubMed
Correia, V., Araújo, D., Cummins, A., & Craig, C. M. (2012). Perceiving and acting upon spaces in a VR rugby task: Expertise effects in affordance detection and task achievement. Journal of Sport & Exercise Psychology, 34, 305321.CrossRefGoogle Scholar
Craig, C. M. (2013). Understanding perception and action in sport: How can virtual reality technology help? Sports Technology, 6, 161169.CrossRefGoogle Scholar
Craig, C. M., Bastin, J., & Montagne, G. (2011). How information guides movement: Intercepting curved free kicks in soccer. Human Movement Science, 30, 931941.CrossRefGoogle ScholarPubMed
Craig, C. M., Goulon, C., Berton, E., Rao, G., Fernandez, L., & Bootsma, R. J. (2009). Optic variables used to judge future ball arrival position in expert and novice soccer players. Attention, Perception & Psychophysics, 71, 515522.CrossRefGoogle ScholarPubMed
Dessing, J. C., & Craig, C. M. (2010). Bending it like Beckham: How to visually fool the goalkeeper. PloS One, 5, e13161.CrossRefGoogle ScholarPubMed
Fadiga, L., Craighero, L., & Olivier, E. (2005). Human motor cortex excitability during the perception of others’ action. Current Opinion in Neurobiology, 15, 213218.CrossRefGoogle ScholarPubMed
Farrow, D., & Abernethy, B. (2003). Do expertise and the degree of perception–action coupling affect natural anticipatory performance? Perception, 32, 11271139.CrossRefGoogle ScholarPubMed
Friston, K., Mattout, J., & Kilner, J. (2011). Action understanding and active inference. Biological Cybernetics, 104, 137160.CrossRefGoogle ScholarPubMed
Gangitano, M., Mottaghy, F. M., & Pascual-Leone, A. (2004). Modulation of premotor mirror neuron activity during observation of unpredictable grasping movements. European Journal of Neuroscience, 20, 21932202.CrossRefGoogle ScholarPubMed
Gibson, J. (1979). The ecological approach to human perception. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Giese, M. A, & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4, 179192.CrossRefGoogle ScholarPubMed
Graf, M., Reitzner, B., Corves, C., Casile, A., Giese, M., & Prinz, W. (2007). Predicting point-light actions in real-time. NeuroImage, 36(Suppl 2), T22T32.CrossRefGoogle ScholarPubMed
Grafton, S. T. (2009). Embodied cognition and the simulation of action to understand others. Annals of the New York Academy of Sciences, 1156, 97117.CrossRefGoogle ScholarPubMed
Gruetzmacher, N., Panzer, S., Blandin, Y., Shea, C. H., & Charles, H. (2011). Observation and physical practice: Coding of simple motor sequences. Quarterly Journal of Experimental Psychology, 64, 11111123.CrossRefGoogle ScholarPubMed
Handford, C., Davids, K., Bennett, S., & Button, C. (1997). Skill acquisition in sport: Some applications of an evolving practice ecology. Journal of Sports Sciences, 15, 621640.CrossRefGoogle ScholarPubMed
Hayes, S. J., Elliott, D., & Bennett, S. J. (2010). General motor representations are developed during action-observation. Experimental Brain Research, 204, 199206.CrossRefGoogle ScholarPubMed
Holmes, P., & Calmels, C. (2008). A neuroscientific review of imagery and observation use in sport. Journal of Motor Behavior, 40, 433445.CrossRefGoogle ScholarPubMed
Hubbard, T. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin & Review, 12, 822851.CrossRefGoogle ScholarPubMed
Jackson, R. C., Warren, S., & Abernethy, B. (2006). Anticipation skill and susceptibility to deceptive movement. Acta Psychologica, 123, 355371.CrossRefGoogle ScholarPubMed
Jellema, T., & Perrett, D. I. (2003). Perceptual history influences neural responses to face and body postures. Journal of Cognitive Neuroscience, 15, 961971.CrossRefGoogle ScholarPubMed
Keysers, C., & Gazzola, V. (2009). Expanding the mirror: Vicarious activity for actions, emotions, and sensations. Current Opinion in Neurobiology, 19, 666671.CrossRefGoogle ScholarPubMed
Kioumourtzoglou, E., Michalopoulou, M., Tzetzis, G., & Kourtessis, T. (2000). Ability profile of the elite volleyball player. Perceptual and Motor Skills, 90, 757770.CrossRefGoogle ScholarPubMed
Komatsu, H. (2006). The neural mechanisms of perceptual filling-in. Nature Reviews Neuroscience, 7, 220231.CrossRefGoogle ScholarPubMed
Makris, S., & Urgesi, C. (2015). Neural underpinnings of superior action prediction abilities in soccer players. Social Cognitive and Affective Neuroscience, 10(3), 342–351.Google ScholarPubMed
Mann, D. L., Abernethy, B., & Farrow, D. (2010). Visual information underpinning skilled anticipation: The effect of blur on a coupled and uncoupled in situ anticipatory response. Attention, Perception & Psychophysics, 72, 13171326.CrossRefGoogle ScholarPubMed
Mattar, A. A. G., & Gribble, P. L. (2005). Motor learning by observing. Neuron, 46, 153160.CrossRefGoogle ScholarPubMed
Milner, A. D., & Goodale, M. A. (2006). The visual brain in action. Oxford: Oxford University Press, 297.CrossRefGoogle Scholar
Milner, A. D., (2008). Two visual systems re-viewed. Neuropsychologia, 46, 774785.CrossRefGoogle ScholarPubMed
Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 10761083.Google ScholarPubMed
Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., et al. (2002). Early consolidation in human primary motor cortex. Nature, 415, 640644.CrossRefGoogle ScholarPubMed
Ong, N. T., & Hodges, N. J. (2010). Absence of after-effects for observers after watching a visuomotor adaptation. Experimental Brain Research, 205, 325334.CrossRefGoogle ScholarPubMed
Porro, C. A., Facchin, P., Fusi, S., Dri, G., & Fadiga, L. (2007). Enhancement of force after action observation: Behavioural and neurophysiological studies. Neuropsychologia, 45, 31143121.CrossRefGoogle ScholarPubMed
Ranganathan, R., & Carlton, L. G. (2007). Perception–action coupling and anticipatory performance in baseball batting. Journal of Motor Behavior, 39, 369380.CrossRefGoogle ScholarPubMed
Ripoll, H., Kerlirzin, Y., Stein, J. F., & Reine, B. (1995). Analysis of information processing, decision making, and visual strategies in complex problem solving sport situations. Human Movement Science, 14, 325349.CrossRefGoogle Scholar
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Romani, M., Cesari, P., Urgesi, C., Facchini, S., & Aglioti, S. M. (2005). Motor facilitation of the human cortico-spinal system during observation of bio-mechanically impossible movements. NeuroImage, 26, 755763.CrossRefGoogle ScholarPubMed
Savelsbergh, G. J. P., Williams, A. M., van der Kamp, J., & Ward, P. (2002). Visual search, anticipation and expertise in soccer goalkeepers. Journal of Sports Sciences, 20, 279287.CrossRefGoogle ScholarPubMed
Shea, C. H., Wright, D. L., Wulf, G., & Whitacre, C. (2000). Physical and observational practice afford unique learning opportunities. Journal of Motor Behavior, 32, 2736.CrossRefGoogle ScholarPubMed
Smeeton, N. J., & Huys, R. (2011). Anticipation of tennis-shot direction from whole-body movement: The role of movement amplitude and dynamics. Human Movement Science, 30(5), 957–965.CrossRefGoogle ScholarPubMed
Springer, A., Parkinson, J., & Prinz, W. (2013). Action simulation: Time course and representational mechanisms. Frontiers in Psychology, 4, 120.CrossRefGoogle ScholarPubMed
Stefan, K., Cohen, L. G., Duque, J., Mazzocchio, R., Celnik, P., et al. (2005). Formation of a motor memory by action observation. Journal of Neuroscience, 25, 93399346.CrossRefGoogle ScholarPubMed
Tomeo, E., Cesari, P., Aglioti, S. M., & Urgesi, C. (2013). Fooling the kickers but not the goalkeepers: Behavioral and neurophysiological correlates of fake action detection in soccer. Cerebral Cortex, 23, 27652778.CrossRefGoogle Scholar
Urgesi, C., Candidi, M., Fabbro, F., Romani, M., & Aglioti, S. M. (2006a). Motor facilitation during action observation: Topographic mapping of the target muscle and influence of the onlooker’s posture. European Journal of Neuroscience, 23, 25222530.CrossRefGoogle ScholarPubMed
Urgesi, C., Maieron, M., Avenanti, A., Tidoni, E., Fabbro, F., & Aglioti, S. M. (2010). Simulating the future of actions in the human corticospinal system. Cerebral Cortex, 20, 25112521.CrossRefGoogle ScholarPubMed
Urgesi, C., Moro, V., Candidi, M., & Aglioti, S. M. (2006b). Mapping implied body actions in the human motor system. Journal of Neuroscience, 26, 79427949.CrossRefGoogle ScholarPubMed
Urgesi, C., Savonitto, M., Fabbro, F., & Aglioti, S. (2012). Long- and short-term plastic modeling of action prediction abilities in volleyball. Psychological Research, 76, 540562.CrossRefGoogle ScholarPubMed
Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48, 564584.CrossRefGoogle ScholarPubMed
Vogt, S., & Thomaschke, R. (2007). From visuo-motor interactions to imitation learning: Behavioural and brain imaging studies. Journal of Sports Sciences, 25, 497517.CrossRefGoogle ScholarPubMed
Weissensteiner, J., Abernethy, B., Farrow, D., & Müller, S. (2008). The development of anticipation: A cross-sectional examination of the practice experiences contributing to skill in cricket batting. Journal of Sport & Exercise Psychology, 30, 663684.CrossRefGoogle ScholarPubMed
Williams, A. (2000). Perceptual skill in soccer: Implications for talent identification and development. Journal of Sports Sciences, 18(9), 737–750.Google ScholarPubMed
Williams, A., Davids, K., & Williams, J. (1999). Visual perception and action in sport. Abingdon: Taylor & Francis.Google Scholar
Wilson, M., & Knoblich, G. G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131, 460.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×