Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T19:19:05.887Z Has data issue: false hasContentIssue false

29 - Musical Synchronization, Social Interaction and the Brain

from Part VI - Shared Representations in Applied Contexts

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

Abstract

Music production and perception and human social understanding are linked in many ways. Producing and enjoying music appears unique to humans, and debate surrounds the topic of music’s function, especially in relation to its evolutionary origins. Here, we discuss links between music and sociality, and how insights from the unique fields of music neuroscience and social neuroscience can be combined to understand this relationship.

Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 603 - 626
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aziz-Zadeh, L., Iacoboni, M., Zaidel, E., Wilson, S., & Mazziotta, J. (2004). Left hemisphere motor facilitation in response to manual action sounds. European Journal of Neuroscience, 19, 26092612.CrossRefGoogle ScholarPubMed
Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., et al. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage, 30, 917926.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a ‘theory of mind’? Cognition, 21, 3746.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., O’Riordan, M., Stone, V., Jones, R., & Plaisted, K. (1999). Recognition of faux pas by normally developing children and children with Asperger syndrome or high-functioning autism. Journal of Autism and Developmental Disorders, 29, 407418.CrossRefGoogle ScholarPubMed
Batson, C. D., & Powell, A. A. (2003). Altruism and prosocial behaviour. In Handbook of Psychology, 19, 463484. doi: 10.1002/0471264385.wei0519.CrossRefGoogle Scholar
Behrends, A., Muller, S., & Dziobek, I. (2012). Moving in and out of synchrony: A concept for a new intervention fostering empathy through interactional dance and movement. The Arts in Psychotherapy, 39, 107116.CrossRefGoogle Scholar
Bengtsson, S. L., Ullén, F., Henrik Ehrsson, H., Hashimoto, T., Kito, T., et al. (2009). Listening to rhythms activates motor and premotor cortices. Cortex, 45(1), 6271.CrossRefGoogle ScholarPubMed
Bernieri, F. J., & Rosenthal, R. (1991). Interpersonal coordination: Behaviour matching and interactional synchrony. In Feldman, R. S. & Rime, B. (Eds.), Fundamentals of nonverbal behaviour. Cambridge: Cambridge University Press, 401432.Google Scholar
Boecker, H., Dagher, A., Ceballos-Baumann, A. O., Passingham, R. E., Samuel, M., et al. (1998). Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: Investigations with H215O PET. Journal of Neurophysiology, 79(2), 10701080.CrossRefGoogle Scholar
Bregman, M. R., Iversen, J. R., Lichman, D., Reinhart, M., & Patel, A. D. (2012). A method for testing synchronization to a musical beat in domestic horses (Equus ferus caballus). Empirical Musicology Review, 7, 144156.CrossRefGoogle Scholar
Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., et al. (2004). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42, 323334.CrossRefGoogle ScholarPubMed
Carr, L., Iacoboni, M., Dubeau, M., Mazziotta, J. C., & Lenzi, G. L. (2003). Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Sciences, 100, 54975502.CrossRefGoogle ScholarPubMed
Catalan, M. J., Honda, M., Weeks, R. A., Cohen, L. G., & Hallett, M. (1998). The functional neuroanatomy of simple and complex sequential finger movements. Brain, 121, 253264.CrossRefGoogle ScholarPubMed
Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76, 893910.CrossRefGoogle ScholarPubMed
Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18(12), 28442854.CrossRefGoogle ScholarPubMed
Cohen, E. E. A., Ejsmond-Frey, R., Knight, N., & Dunbar, R. I. M. (2010). Rowers’ high: Behavioural synchrony is correlated with elevated pain thresholds. Biology Letters, 6, 106108.CrossRefGoogle ScholarPubMed
Cook, P., Rouse, A., Wilson, M. & Reichmuth, C. (2013). A California sea lion (Zalophus californianus) can keep the beat: Motor entrainment to rhythmic auditory stimuli in a non vocal mimic. Journal of Comparative Psychology, 127(4), 412427.CrossRefGoogle Scholar
Cross, I. (2001). Music, cognition, culture, and evolution. Annals of the New York Academy of Sciences, 930, 2842.CrossRefGoogle ScholarPubMed
Cross, I. (2005). Music and meaning, ambiguity and evolution. In Miell, D., MacDonald, R., & Hargreaves, D. (Eds.), Musical communication. Oxford: Oxford University Press, 27–43.Google Scholar
Cross, I. (2009). The evolutionary nature of musical meaning. Musicae Scientiae, 13, 179200.CrossRefGoogle Scholar
Curley, J. P., & Keverne, E. B. (2005). Genes, brain and mammalian social bonds. Trends in Ecology and Evolution, 20, 561567.CrossRefGoogle ScholarPubMed
Diedrichsen, J., Criscimagna-Hemminger, S. E., & Shadmehr, R. (2007). Dissociating timing and coordination as functions of the cerebellum. Journal of Neuroscience, 27(23), 62916301.CrossRefGoogle ScholarPubMed
Downey, L. E., Blezat, A., Nicholas, J., Omar, R., Golden, H. L., et al. (2013). Mentalising music in frontotemporal dementia. Cortex, 49, 18441855.CrossRefGoogle ScholarPubMed
Dunbar, R. I. M. (2010). The social role of touch in humans and primates: Behavioural function and neurobiological mechanisms. Neuroscience and Biobehavioural Reviews, 34, 260268.CrossRefGoogle ScholarPubMed
Dunbar, R. I. M., Kaskatis, K., MacDonald, I., & Barra, V. (2012). Performance of music elevates pain threshold and positive affect: Implications for the evolutionary function of music. Evolutionary Psychology, 10, 688702.CrossRefGoogle ScholarPubMed
Emery, N. J., & Clayton, N. S. (2005). Evolution of the avian brain and intelligence. Current Biology, 15, 946950.CrossRefGoogle ScholarPubMed
Falk, D. (2004). Prelinguistic evolution in early hominins: Whence motherese? Behavioral and Brain Sciences, 27, 491541.CrossRefGoogle ScholarPubMed
Frith, C. D., & Frith, U. (2006). How we predict what other people are going to do. Brain Research, 1079, 3646.CrossRefGoogle ScholarPubMed
Frith, U., & Frith, C. D. (2003). Development and neurophysiology of mentalizing. Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 459473.CrossRefGoogle ScholarPubMed
Gallese, V. (2001). The ‘shared manifold’ hypothesis: From mirror neurons to empathy. Journal of Consciousness Studies, 8, 3350.Google Scholar
Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2, 493501.CrossRefGoogle ScholarPubMed
Gao, J. H., Parsons, L. M., Bower, J. M., Xiong, J., Li, J., & Fox, P. T. (1996). Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science, 272(5261), 545547.CrossRefGoogle ScholarPubMed
Gelder, B. de. (2006). Towards the neurobiology of emotional body language. Nature Reviews Neuroscience, 7, 242249.CrossRefGoogle ScholarPubMed
Gerloff, C., Corwell, B., Chen, R., Hallett, M., & Cohen, L. G. (1998). The role of the human motor cortex in the control of complex and simple finger movement sequences. Brain, 121, 16951709.CrossRefGoogle ScholarPubMed
Glenberg, A. M., & Jona, M. (1991). Temporal coding in rhythm tasks revealed by modality effects. Memory & Cognition, 19(5), 514522.CrossRefGoogle ScholarPubMed
Glenberg, A. M., Mann, S., Altman, L., Forman, T., & Procise, S. (1989). Modality effects in the coding reproduction of rhythms. Memory & Cognition, 17(4), 373383.CrossRefGoogle ScholarPubMed
Grafton, S. T., Fagg, A. H., & Arbib, M. A. (1998). Dorsal premotor cortex and conditional movement selection: A PET functional mapping study. Journal of Neurophysiology, 79(2), 10921097.CrossRefGoogle ScholarPubMed
Grahn, J. A. (2012). See what I hear? Beat perception in auditory and visual rhythms. Experimental Brain Research, 220, 5161.CrossRefGoogle ScholarPubMed
Grahn, J. A., & Brett, M. (2007). Rhythm perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19(5), 893906.CrossRefGoogle ScholarPubMed
Grahn, J. A., (2009). Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex, 45(1), 5461.CrossRefGoogle ScholarPubMed
Grahn, J. A., & McAuley, J. D. (2009). Neural bases of individual differences in beat perception. NeuroImage, 47, 18941903.CrossRefGoogle ScholarPubMed
Grahn, J. A., & Rowe, J. B. (2009). Feeling the beat: Premotor and striatal interactions in musicians and non-musicians during beat perception. Journal of Neuroscience, 29(23), 75407548.CrossRefGoogle Scholar
Grahn, J. A., (2012). Finding and feeling the musical beat: Striatal dissociations between detection and prediction of regularity. Cerebral Cortex, 23(4), 912921.Google ScholarPubMed
Grahn, J. A., & Schuit, D. (2012). Individual differences in rhythmic ability: Behavioral and neuroimaging investigations. Psychomusicology: Music, Mind, and Brain, 22(2),105–21.Google Scholar
Graybiel, A. M. (2005). The basal ganglia: Learning new tricks and loving it. Current Opinion in Neurobiology,15, 638644.CrossRefGoogle Scholar
Graybiel, A. M., Aosaki, T., Flaherty, A. W., & Kimura, M. (1994). The basal ganglia and adaptive motor control. Science, 5180, 18261831.CrossRefGoogle Scholar
Guttman, S. E., Gilroy, L. A., & Blake, R. (2005). Hearing what the eyes see: Auditory encoding of visual temporal sequences. Psychological Science, 16, 228265.CrossRefGoogle ScholarPubMed
Handel, S., & Buffardi, L. (1969). Using several modalities to perceive one temporal pattern. Journal of Experimental Psychology, 21, 3741.Google ScholarPubMed
Hanna, J. L. (1977). African dance and the warrior tradition. Journal of Asian and African Studies, 12, 111133.CrossRefGoogle Scholar
Hannon, E. E., & Trainor, L. J. (2007). Music acquisition: Effects of enculturation and formal training on development. Trends in Cognitive Sciences, 11, 466472.CrossRefGoogle ScholarPubMed
Hannon, E. E., & Trehub, S. (2005). Metrical categories in infancy and adulthood. Psychological Science, 16, 4855.CrossRefGoogle ScholarPubMed
Hasegawa, A., Okanoya, K., Hasegawa, T., & Seki, Y. (2011). Rhythmic synchronization tapping to an audio-visual metronome in budgerigars. Scientific Reports, 1, 18.CrossRefGoogle Scholar
Haslinger, B., Erhard, P., Altenmuller, E., Schroeder, U., Boecker, H., & Ceballos-Baumann, A. O. (2005). Transmodal sensorimotor networks during action observation in professional pianists. Journal of Cognitive Neuroscience, 17, 282293.CrossRefGoogle ScholarPubMed
Haueisen, J., & Knosche, T. R. (2001). Involuntary motor activity in pianists evoked by music perception. Journal of Cognitive Neuroscience, 13, 786792.CrossRefGoogle ScholarPubMed
Heaton, P., Allen, R., Williams, K., Cummins, O., & Happé, F. (2008). Do social and cognitive deficits curtail musical understanding? Evidence from autism and Down syndrome. British Journal of Developmental Psychology, 26, 171182.CrossRefGoogle Scholar
Heaton, P., Hermelin, B., & Pring, L. (1999). Can children with autistic spectrum disorders perceive affect in music? An experimental investigation. Psychological Medicine, 29, 14051410.CrossRefGoogle ScholarPubMed
Hove, M. J. (2008). Shared circuits, shared time, and interpersonal synchrony. Behavioural and Brain Sciences, 31, 2930.CrossRefGoogle Scholar
Hove, M. J., & Risen, J. L. (2009). It’s all in the timing: Interpersonal synchrony increases affiliation. Social Cognition, 27, 949960.CrossRefGoogle Scholar
Hsieh, S., Hornberger, M., Piguet, O., & Hodges, J. R. (2012). Brain correlates of musical and facial emotion recognition: Evidence from the dementias. Neuropsychologia, 50, 18141822.CrossRefGoogle ScholarPubMed
Huron, D. (2006). Is music an evolutionary adaptation? Annals of the New York Academy of Sciences, 930, 4361.Google Scholar
Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PloS Biology, 3, e79.CrossRefGoogle ScholarPubMed
Izuma, K., Saito, D. N., & Sadato, N. (2008). Processing of social and monetary rewards in the human striatum. Neuron, 58, 284294.CrossRefGoogle ScholarPubMed
Kilner, J. M., Baker, S. N., Salenius, S., Hari, R., & Lemon, R. N. (2000). Human cortical muscle coherence is directly related to specific motor parameters. Journal of Neuroscience, 20, 88388845.CrossRefGoogle ScholarPubMed
King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2005). Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308, 7883.CrossRefGoogle Scholar
Kirschner, S., & Tomasello, M. (2010). Joint music making promotes prosocial behavior in 4-year-old children. Evolution and Human Behaviour, 31, 354364.CrossRefGoogle Scholar
Knutsson, E. (1972). An analysis of Parkinsonian gait. Brain, 95, 475486.CrossRefGoogle ScholarPubMed
Koelsch, S., Fritz, T., Schulze, K., Aslop, D., & Schlaug, G. (2005). Adults and children processing music: An fMRI study. NeuroImage, 25, 10681076.CrossRefGoogle ScholarPubMed
Kogan, N. (1997). Reflections on aesthetics and evolution. Critical Review: A Journal of Politics and Society, 11, 193210.CrossRefGoogle Scholar
Kohler, E., Keysers, C., Umilta, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons. Science, 297, 846848.CrossRefGoogle ScholarPubMed
Kokal, I., Engel, A., Kirschner, S., & Keysers, C. (2011). Synchronized drumming enhances activity in the caudate and facilitates prosocial commitment – if the rhythm comes easily. PLoS One, 6, e27272.CrossRefGoogle ScholarPubMed
Leslie, K. R., Johnson-Frey, S. H., & Grafton, S. T. (2004). Functional imaging of face and hand imitation: Towards a motor theory of empathy. NeuroImage, 21, 601607.CrossRefGoogle ScholarPubMed
Lindenberger, U., Li, S., Gruber, W., & Muller, V. (2009). Brains swinging in concert: cortical phase synchronization while playing guitar. BMC Neuroscience, 10(22). doi: 10.1186/1471-2202-10-22.CrossRefGoogle Scholar
Lotze, M., Scheler, G., Tan, H.-R. M., Braun, C., & Birbaumer, N. (2003). The musician’s brain: Functional imaging of amateurs and professionals during performance and imagery. NeuroImage, 20, 18171829.CrossRefGoogle ScholarPubMed
Lynch, M. P., Eilers, R. E., Oller, D. K., & Urbano, R. C. (1990). Innateness, experience, and music perception. Psychological Science, 1, 272276.CrossRefGoogle Scholar
Macrae, C. N., Duffy, O. K., Miles, L. K., & Lawrence, J. (2008). A case of hand waving: Action synchrony and person perception. Cognition, 109, 152156.CrossRefGoogle ScholarPubMed
McAuley, J. D., & Henry, M. J. (2010). Modality effects in rhythm processing: Auditory encoding of visual rhythms is neither obligatory nor automatic. Attention, Perception & Psychophysics, 72(5), 13771389.CrossRefGoogle ScholarPubMed
McIntosh, A. R., Cabeza, R. E., & Lobaugh, N. J. (1998). Analysis of neural interactions explains the activation of occipital cortex by an auditory stimulus. Journal of Neurophysiology, 80, 27902796.CrossRefGoogle ScholarPubMed
McNeill, W. H. (1995). Keeping together in time: Dance and drill in human history. Cambridge, MA: Harvard University Press.Google Scholar
Merker, B. (2000). Synchronous chorusing and the origins of music. Musicae Scientiae, 3, 5973.CrossRefGoogle Scholar
Miller, G. F. (1997). Protean primates: The evolution of adaptive unpredictability in competition and courtship. In Whiten, A. & Byrne, R. W. (Eds.), Machiavellian intelligence II: Extensions and evaluations. Cambridge: Cambridge University Press, 312–340.Google Scholar
Mink, J. (1996). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50(4), 381425.CrossRefGoogle ScholarPubMed
Molnar-Szakacs, I., & Overy, K. (2006). Music and mirror neurons: From motion to ‘e’motion. SCAN, 1, 235241.Google ScholarPubMed
Morris, M. E., Iansek, R., Matyas, T. A., & Summers, J. J. (1996). Stride length regulation in Parkinson’s disease: Normalization strategies and underlying mechanisms. Brain, 119 (Pt 2), 551568.CrossRefGoogle ScholarPubMed
Nombela, C., Hughes, L. E., Owen, A. M., & Grahn, J. A. (2013). Into the groove: Can rhythm influence Parkinson’s disease? Neuroscience and Biobehavioural Reviews, 37(10), 25642570.CrossRefGoogle ScholarPubMed
Nutt, J. G., & Wooten, G. F. (2005). Clinical practice: Diagnosis and initial management of Parkinson’s disease. New England Journal of Medicine, 353, 10211027.CrossRefGoogle ScholarPubMed
Omar, R., Henley, S. M. D., Bartlett, J. W., Hailstone, J. C., Gordon, E., et al. (2011). The structural neuroanatomy of music emotion recognition: Evidence from frontotemporal lobar degeneration. NeuroImage, 56, 18141821.CrossRefGoogle ScholarPubMed
Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press.Google Scholar
Patel, A. D. & Iversen, J. R. (2006) A non-human animal can drum a steady beat on a musical instrument. In Baroni, M., Addessi, A. R., Caterina, R., & Costa, M. (Eds.), Proceedings of the 9th International Conference on Music Perception & Cognition (ICMPC9), 477.Google Scholar
Patel, A. D., Iversen, J. R., Bregman, M. R., & Schulz, I. (2009). Experimental evidence for synchronization to a musical beat in a nonhuman animal. Current Biology, 19, 827830.CrossRefGoogle Scholar
Patel, A. D., Iversen, J. R., Chen, Y., & Repp, B. H. (2005). The influence of metricality and modality on synchronization with a beat. Experimental Brain Research, 163, 226238.CrossRefGoogle ScholarPubMed
Pellegrino, G. de, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176180.CrossRefGoogle ScholarPubMed
Phillips-Silver, J., Toiviainen, P., Gosselin, N., Piche, O., Nozaradan, S., Palmer, C., & Peretz, I. (2011). Born to dance but beat deaf: A new form of congenital amusia. Neuropsychologia, 49(5), 961969.CrossRefGoogle Scholar
Picard, N., & Strick, P. (1996). Motor areas of the medial wall: A review of their location and functional activation. Cerebral Cortex, 6(3), 342353.CrossRefGoogle Scholar
Pinker, S. (1997). How the mind works. New York: W.W. Norton and Company.Google Scholar
Phillips-Silver, J., & Trainor, L. J. (2005). Feeling the beat: Movement influences infant rhythm perception. Science, 308(5727), 1430.CrossRefGoogle ScholarPubMed
Rabinowitch, T. Cross, I., & Burnard, P. (2012). Long-term musical group interaction has a positive influence on empathy in children. Psychology of Music, 41, 484498.CrossRefGoogle Scholar
Reddish, P., Bulbulia, J., & Fischer, R. (2014). Does synchrony promote generalized prosociality? Religion, Brain and Behaviour, 4, 319.CrossRefGoogle Scholar
Redgrave, P., Prescott, T., & Gurney, K. N. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89, 10091023.CrossRefGoogle Scholar
Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin and Review, 12, 969992.CrossRefGoogle ScholarPubMed
Repp, B. H., & Penel, A. (2002). Auditory dominance in temporal processing: New evidence from synchronization with simultanious visual and auditory sequences. Journal of Experimental Psychology: Human Perception and Performance, 28(5), 10851099.Google Scholar
Repp, B. H., & Penel, A. (2004). Rhythmic movement is attracted more strongly to auditory than to visual rhythms. Psychological Research, 68, 252270.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661670.CrossRefGoogle ScholarPubMed
Roelfsema, P. R., Engel, A. K., Konig, P., & Singer, W. (1997). Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature, 385, 157161.CrossRefGoogle ScholarPubMed
Schachner, A., Brady, T. F., Pepperberg, I. M., & Hauser, M. D. (2009). Spontaneous motor entrainment to music in multiple vocal mimicking species. Current Biology, 19(10), 831836.CrossRefGoogle ScholarPubMed
Schonberg, T., Daw, N. D., Joel, D., & O’Doherty, J. P. (2007). Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making. Journal of Neuroscience, 27, 1286012867.CrossRefGoogle ScholarPubMed
Schwartze, M., Keller, P. E., Patel, A. D., & Kotz, S. A. (2011). The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo changes. Behavioural Brain Research, 216, 685691.CrossRefGoogle ScholarPubMed
Soley, G., & Hannon, E. E. (2010). Infants prefer the musical meter of their own culture: A cross-cultural comparison. Developmental Psychology, 46(1), 286292.CrossRefGoogle ScholarPubMed
Sowinski, J., & Dalla Bella, S. (2013). Poor synchronization to the beat may result from deficient auditory-motor mapping. Neuropsychologia, 51, 19521963.CrossRefGoogle Scholar
Steinbeis, N., & Koelsch, S. (2009). Understanding the intentions behind man-made products elicits neural activity in areas dedicated to mental state attribution. Cerebral Cortex, 19, 619623.CrossRefGoogle ScholarPubMed
Teki, S., Grube, M., Kumar, S., & Griffiths, T. D. (2011). Distinct neural substrates of duration-based and beat-based auditory timing. Journal of Neuroscience, 31, 38053812.CrossRefGoogle ScholarPubMed
Thach, W. T. (1998). What is the role of the cerebellum in motor learning and cognition? Trends in Cognitive Sciences, 2(9), 331337.CrossRefGoogle ScholarPubMed
Tognoli, E., Lagarde, J., DeBuzman, G. C., & Kelso, J. A. S. (2007). The phi complex as a neuromarker of human social coordination. Proceedings of the National Academy of Sciences, 104, 81908195.CrossRefGoogle ScholarPubMed
Trehub, S. E. (2003). The developmental origins of musicality. Nature Neuroscience, 6, 669673.CrossRefGoogle ScholarPubMed
Uddin, L. Q., Kaplan, J. T., Molnar-Szakacs, I., Zaidel, E., & Iacoboni, M. (2005). Self-face recognition activates a frontoparietal ‘mirror’ network in the right hemisphere: An event-related fMRI study. NeuroImage, 25, 926935.CrossRefGoogle ScholarPubMed
Uddin, L. Q., Molnar-Szakacs, I., Zaidel, E., & Iacoboni, M. (2006). rTMS to the right inferior parietal lobule disrupts self–other discrimination. SCAN, 1, 6571.Google Scholar
Valdesolo, P., & DeSteno, D. (2011). Synchrony and the social tuning of compassion. Emotions, 11, 262266.CrossRefGoogle ScholarPubMed
Waal, F. B. M. de. (2008). Putting the altruism back into altruism: The evolution of empathy. Annual Review of Psychology, 59, 279300.CrossRefGoogle ScholarPubMed
Williams, J. H. G., Waiter, G. D., Gilchrist, A., Perrett, D. I., Murray, A. D., & Whiten, A. (2006). Neural mechanisms of imitation and ‘mirror neuron’ functioning in autistic spectrum disorder. Neuropsychologia, 44, 610621.CrossRefGoogle ScholarPubMed
Williams, J. H. G., Whiten, A., Suddendorf, T., & Perrett, D. I. (2001). Imitation, mirror neurons and autism. Neuroscience and Biobehavioral Reviews, 25, 287295.CrossRefGoogle ScholarPubMed
Wiltermuth, S. S. (2012). Synchronous activity boosts compliance with requests to aggress. Journal of Experimental Social Psychology, 48, 453456.CrossRefGoogle Scholar
Wiltermuth, S. S., & Heath, C. (2009). Synchrony and cooperation. Psychological Science, 20, 15.CrossRefGoogle ScholarPubMed
Woolhouse, M., & Tidhar, D. (2010). Group dancing leads to increased person perception. Proceedings of the 11th ICMPC, Seattle, 605–608.Google Scholar
Zarco, W., Merchant, H., Prado, L., & Mendez, J. C. (2009). Subsecond timing in primates: Comparison of interval production between human subjects and rhesus monkeys. Journal of Neurophysiology, 102, 31913202.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×