Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T20:07:31.141Z Has data issue: false hasContentIssue false

Part I - Foundations

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 1 - 106
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aron, A., Aron, E. N., Tudor, M., & Nelson, G. (1991). Close relationships as including other in the self. Journal of Personality and Social Psychology, 60, 241253.CrossRefGoogle Scholar
Avenanti, A., Sirigu, A., & Aglioti, S. M. (2010). Racial bias reduces empathic sensorimotor resonance with other-race pain. Current Biology, 20, 10181022.CrossRefGoogle ScholarPubMed
Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106, 322.CrossRefGoogle Scholar
Brewer, M. B. (1979). In-group bias in the minimal intergroup situation: A cognitive motivational analysis. Psychological Bulletin, 86, 307324.CrossRefGoogle Scholar
Clark, H. H. (1996). Using language. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Colzato, L. S., de Bruijn, E. R. A., & Hommel, B. (2012a). Up to ‘me’ or to ‘us’? The impact of self-construal priming on cognitive self–other integration. Frontiers in Psychology, 3, 341. doi: 10.3389/fpsyg.2012.00341.CrossRefGoogle ScholarPubMed
Colzato, L. S., Zech, H., Hommel, B., Verdonschot, R., van den Wildenberg, W., & Hsieh, S. (2012b). Loving-kindness brings loving-kindness: The impact of Buddhism on cognitive self–other integration. Psychonomic Bulletin & Review, 19, 541545.CrossRefGoogle ScholarPubMed
Davis, M. H., Conklin, L., Smith, A., & Luce, C. (1996). Effects of perspective taking on the cognitive representation of persons: A merging of self and other. Journal of Personality and Social Psychology, 70, 713726.CrossRefGoogle Scholar
De Maeght, S., & Prinz, W. (2004). Action induction through action observation. Psychological Research, 68, 97114.CrossRefGoogle ScholarPubMed
Dittrich, K., Dolk, T., Rothe-Wulf, A., Klauer, K. C., & Prinz, W. (2013). Keys and seats: Spatial response coding underlying the joint spatial compatibility effect. Attention, Perception & Psychophysics, 75, 17251736.CrossRefGoogle ScholarPubMed
Dolk, T., Hommel, B., Colzato, L. S., Schütz-Bosbach, S., Prinz, W., & Liepelt, R. (2011). How ‘social’ is the social Simon effect? Frontiers in Psychology, 2, 84. doi: 10.3389/fpsyg.2011.00084.CrossRefGoogle ScholarPubMed
Dolk, T., Hommel, B., Prinz, W., & Liepelt, R. (2013). The (not so) social Simon effect: A referential coding account. Journal of Experimental Psychology: Human Perception and Performance, 39, 12481260.Google ScholarPubMed
Dolk, T., Liepelt, R., Villringer, A., Prinz, W., & Ragert, P. (2012). Morphometric gray matter differences of the medial frontal cortex influence the social Simon effect. NeuroImage, 61, 12491254.CrossRefGoogle ScholarPubMed
Echterhoff, G., & Higgins, E. T. (2010). How communication shapes memory: Shared reality and implications for culture. In Semin, G. R. & Echterhoff, G. (Eds.), Grounding sociality: Neurons, mind, and culture. New York: Psychology Press, 115148.Google Scholar
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a non-search task. Perception & Psychophysics, 16, 143149.CrossRefGoogle Scholar
Galinsky, A. D., Ku, G., & Wang, C. S. (2005). Perspective-taking and self–other overlap: Fostering social bonds and facilitating social coordination. Group Processes and Intergroup Relations, 8, 109124.CrossRefGoogle Scholar
Galinsky, A. D., & Moskowitz, G. B. (2000). Perspective-taking: Decreasing stereotype expression, stereotype accessibility, and in-group favoritism. Journal of Personality and Social Psychology, 78, 708724.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593609.CrossRefGoogle ScholarPubMed
Guagnano, D., Rusconi, E., & Umiltà, C. A. (2010). Sharing a task or sharing space? On the effect of the confederate in action coding in a detection task. Cognition, 114, 348355.CrossRefGoogle ScholarPubMed
Harleß, E. (1861). Der Apparat des Willens [The apparatus of will]. Zeitschrift für Philosophie und philosophische Kritik, 38, 5073.Google Scholar
Haslam, N. (2006). Dehumanization: An integrative review. Personality and Social Psychology Review, 10, 252264.CrossRefGoogle ScholarPubMed
Heider, F. (1958). The psychology of interpersonal relations. New York: Wiley.CrossRefGoogle Scholar
Herbart, J. F. (1825). Psychologie als Wissenschaft neu gegründet auf Erfahrung, Metaphysik und Mathematik [Psychology as a science newly based on experience, metaphysics, and mathematics]. Königsberg: August Wilhelm Unzer.Google Scholar
Heyes, C. (2014). Submentalizing: I am not really reading your mind. Perspectives on Psychological Science, 9, 131143.CrossRefGoogle Scholar
Higgins, E. T. (1981). The ‘communication game’: Implications for social cognition and persuasion. In Higgins, E. T., Herman, C. P. & Zanna, M. P. (Eds.), Social cognition: The Ontario symposium (Vol. I). Hillsdale, NJ: Lawrence Erlbaum, 343392.Google Scholar
Higgins, E. T. (1992). Achieving ‘shared reality’ in the communication game: A social action that creates meaning. Journal of Language and Social Psychology, 11, 107131.CrossRefGoogle Scholar
Hommel, B. (1996). S–R compatibility effects without response uncertainty. Quarterly Journal of Experimental Psychology, 49A, 546571.CrossRefGoogle Scholar
Hommel, B. (1997). Toward an action-concept model of stimulus–response compatibility. In Hommel, B. & Prinz, W. (Eds.), Theoretical issues in stimulus–response compatibility. Amsterdam: North-Holland, 281320.CrossRefGoogle Scholar
Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in Cognitive Sciences, 8, 494500.CrossRefGoogle ScholarPubMed
Hommel, B. (2009). Action control according to TEC (theory of event coding). Psychological Research, 73, 512526.CrossRefGoogle ScholarPubMed
Hommel, B. (2010). Grounding attention in action control: The intentional control of selection. In Bruya, B. J. (Ed.), Effortless attention: A new perspective in the cognitive science of attention and action. Cambridge, MA: MIT Press, 121140.CrossRefGoogle Scholar
Hommel, B. (2011). The Simon effect as tool and heuristic. Acta Psychologica, 136, 189202.CrossRefGoogle ScholarPubMed
Hommel, B. (2013). Ideomotor action control: On the perceptual grounding of voluntary actions and agents. In Prinz, W., Beisert, M. & Herwig, A. (Eds.), Action science: Foundations of an emerging discipline. Cambridge, MA: MIT Press, 113136.CrossRefGoogle Scholar
Hommel, B., Colzato, L. S., & van den Wildenberg, W. P. M. (2009). How social are task representations? Psychological Science, 20, 794798.CrossRefGoogle ScholarPubMed
Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849878.CrossRefGoogle ScholarPubMed
Humphrey, G. W., & Bedford, J. (2011). The relations between joint action and theory of mind: A neuropsychological analysis. Experimental Brain Research, 211, 357369.CrossRefGoogle Scholar
James, W. (1890). The principles of psychology (Vol. II). New York: Holt.Google Scholar
Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17, 187202.CrossRefGoogle Scholar
Knoblich, G., Butterfill, S., & Sebanz, N. (2011). Psychological research on joint action: Theory and data. In Ross, B. H. (Ed.), The psychology of learning and motivation (Vol. LIV). San Diego, CA: Academic Press, 59101.Google Scholar
Knoblich, G., & Sebanz, N. (2006). The social nature of perception and action. Current Directions in Psychological Science, 15, 99104.Google Scholar
Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus–response compatibility – a model and taxonomy. Psychological Review, 97, 253270.CrossRefGoogle Scholar
Kuhbandner, C., Pekrun, R., & Maier, M. A. (2010). The role of positive and negative affect in the ‘mirroring’ of other persons’ actions. Cognition & Emotion, 24, 11821190.CrossRefGoogle Scholar
Lam, M. Y., & Chua, R. (2009). Influence of stimulus–response assignment on the joint-action correspondence effect. Psychological Research, 74, 476480.CrossRefGoogle ScholarPubMed
Liepelt, R., Schneider, J., Aichert, D. S., Wöstmann, N., Dehning, S., et al. (2012). Action blind: Disturbed self–other integration in schizophrenia. Neuropsychologia, 50, 37753780.CrossRefGoogle ScholarPubMed
Liepelt, R., Wenke, D., Fischer, R., & Prinz, W. (2011). Trial-to-trial sequential dependencies in a social and non-social Simon task. Psychological Research, 75, 366375.CrossRefGoogle Scholar
Lotze, R. H. (1852). Medicinische Psychologie oder die Physiologie der Seele [Medical psychology or the physiology of the soul]. Leipzig: Weidmann’sche Buchhandlung.Google Scholar
Memelink, J., & Hommel, B. (2013). Intentional weighting: A basic principle in cognitive control. Psychological Research, 77, 249259.CrossRefGoogle ScholarPubMed
Mikulincer, M., Orbach, I., & Iavnieli, D. (1998). Adult attachment style and affect regulation: Strategic variations in subjective self–other similarity. Journal of Personality and Social Psychology, 75, 436448.CrossRefGoogle ScholarPubMed
Milanese, N., Iani, C., Sebanz, N., & Rubichi, S. (2011). Contextual determinants of the socialtransfer-of-learning effect. Experimental Brain Research, 211, 415422.CrossRefGoogle ScholarPubMed
Miller, J. (1991). The flanker compatibility effect as a function of visual angle, attentional focus, visual transients, and perceptual load: A search for boundary conditions. Perception & Psychophysics, 49, 270288.CrossRefGoogle ScholarPubMed
Müller, B. C. N., Brass, M., Kühn, S., Tsai, C. C., Nieuwboer, W., et al. (2011a). When Pinocchio acts like a human, a wooden hand becomes embodied: Action co-representation for non-biological agents. Neuropsychologia, 49, 13731377.CrossRefGoogle Scholar
Müller, B. C. N., Kühn, S., van Baaren, R. B., Dotsch, R., Brass, M., & Dijksterhuis, A. (2011b). Perspective taking eliminates differences in co-representation of out-group members’ actions. Experimental Brain Research, 211, 423428.CrossRefGoogle ScholarPubMed
Müsseler, J., & Hommel, B. (1997). Blindness to response-compatible stimuli. Journal of Experimental Psychology: Human Perception and Performance, 23, 861872.Google ScholarPubMed
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176180.CrossRefGoogle ScholarPubMed
Philipp, A. M., & Prinz, W. (2010). Evidence for a role of the responding agent in the joint compatibility effect. Quarterly Journal of Experimental Psychology, 63, 21592171.CrossRefGoogle ScholarPubMed
Prinz, W. (1987). Ideo-motor action. In Heuer, H. & Sanders, A. F. (Eds.), Perspectives on perception and action. Hillsdale, NJ: Lawrence Erlbaum, 4776.Google Scholar
Prinz, W. (1990). A common coding approach to perception and action. In Neumann, O. & Prinz, W. (Eds.), Relationships between perception and action. Berlin: Springer, 167201.CrossRefGoogle Scholar
Prinz, W. (2012). Open minds: The social making of agency and intentionality. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131141.CrossRefGoogle ScholarPubMed
Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: Action-induced modulation of perception. Trends in Cognitive Sciences, 11, 349355.CrossRefGoogle ScholarPubMed
Sebanz, N., & Knoblich, G. (2009). Prediction in joint action: What, when, and where. Topics in Cognitive Science, 1, 353367.CrossRefGoogle ScholarPubMed
Sebanz, N., Knoblich, G., & Prinz, W. (2003). Representing others’ actions: Just like one’s own? Cognition, 88(3), B11B21.CrossRefGoogle ScholarPubMed
Prinz, W. (2005). How two share a task: Corepresenting stimulus–response mappings. Journal of Experimental Psychology: Human Perception and Performance, 6, 12341246.Google Scholar
Sellaro, R., Dolk, T., Colzato, L. S., Liepelt, R., & Hommel, B. (2015). Referential coding does not rely on location features: Evidence for a non-spatial joint Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 41, 186–195.Google Scholar
Sommerville, J. A., & Decety, J. (2006). Weaving the fabric of social interaction: Articulating developmental psychology and cognitive neuroscience in the domain of motor cognition. Psychonomic Bulletin and Review, 13, 179200.CrossRefGoogle ScholarPubMed
Stenzel, A., Chinellato, E., Tirado Bou, M. A., del Pobil, Á. P., Lappe, M., & Liepelt, R. (2012). When humanoid robots become human-like interaction partners: Co-representation of robotic actions. Journal of Experimental Psychology: Human Perception and Performance, 38, 10731077.Google Scholar
Stock, A., & Stock, C. (2004). A short history of ideo-motor action. Psychological Research, 68, 176188.CrossRefGoogle Scholar
Sundstrom, E., & Altman, I. (1976). Interpersonal relationships and personal space: Research review and theoretical model. Human Ecology, 4, 4767.CrossRefGoogle Scholar
Tomasello, M. (2009). Why we cooperate. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28, 675735.CrossRefGoogle ScholarPubMed
Tsai, C. C., & Brass, M. (2007). Does the human motor system simulate Pinocchio’s actions? Coacting with a human hand versus a wooden hand in a dyadic interaction. Psychological Science, 18, 10581062.CrossRefGoogle Scholar
Tsai, C. C., Kuo, W. J., Hung, D. L., & Tzeng, O. J. (2008). Action co-representation is tuned to other humans. Journal of Cognitive Neuroscience, 20, 20152024.CrossRefGoogle ScholarPubMed
Vlainic, E., Liepelt, R., Colzato, L. S., Prinz, W., & Hommel, B. (2010). The virtual co-actor: The social Simon effect does not rely on online feedback from the other. Frontiers in Psychology, 1, 208. doi: 10.3389/fpsyg.2010.00208.CrossRefGoogle Scholar
Welsh, T. N. (2009). When 1+1=1: The unification of independent actors revealed through joint Simon effects in crossed and uncrossed effector conditions. Human Movement Science, 28, 726737.CrossRefGoogle Scholar
Welsh, T. N., Kiernan, D., Neyedli, H. F., Ray, M., Pratt, J., et al. (2013). Joint Simon effects in extrapersonal space. Journal of Motor Behavior, 45, 15.CrossRefGoogle ScholarPubMed
Wenke, D., Atmaca, S., Holländer, A., Liepelt, R., Baess, P., & Prinz, W. (2011). What is shared in joint action? Issues of co-representation, response conflict, and agent identification. Review of Philosophy and Psychology, 2, 147172.CrossRefGoogle Scholar

References

Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268–277. doi: 10.1038/nrn1884.CrossRefGoogle ScholarPubMed
Avenanti, A., Bueti, D., Galati, G., & Aglioti, S. M. (2005). Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain. Nature Neuroscience, 8(7), 955960. doi: 10.1038/nn1481.CrossRefGoogle ScholarPubMed
Bandura, A. (1977). Social learning theory. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Bernhardt, B. C., & Singer, T. (2012). The neural basis of empathy. Annual Review of Neuroscience, 35, 123. doi: 10.1146/annurev-neuro-062111-150536.CrossRefGoogle ScholarPubMed
Caggiano, V., Fogassi, L., Rizzolatti, G., Thier, P., & Casile, A. (2009). Mirror neurons differentially encode the peripersonal and extrapersonal space of monkeys. Science, 324(5925), 403406. doi: 10.1126/science.1166818.CrossRefGoogle ScholarPubMed
Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893910.CrossRefGoogle ScholarPubMed
Christov Moore, L., & Iacoboni, M. (2014). Emotions in interaction: Towards a supraindividual study of empathy. In Martinovsky, B. (Ed.), Advances in group decision and negotiation: Emotion in group decision and negotiation. New York: Springer, pp. 1–32.Google Scholar
Cross, K. A., & Iacoboni, M. (2014a). Neural systems for preparatory control of imitation. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1644). doi: 10.1098/rstb.2013.0176.CrossRefGoogle ScholarPubMed
Cross, K. A., (2014b). To imitate or not: Avoiding imitation involves preparatory inhibition of motor resonance. NeuroImage. doi: 10.1016/j.neuroimage.2014.01.027.CrossRefGoogle Scholar
Cross, K. A., Torrisi, S., Losin, E. A., & Iacoboni, M. (2013). Controlling automatic imitative tendencies: Interactions between mirror neuron and cognitive control systems. NeuroImage. doi: 10.1016/j.neuroimage.2013.06.060.CrossRefGoogle Scholar
Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73(6), 26082611.CrossRefGoogle ScholarPubMed
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308(5722), 662667. doi: 10.1126/science.1106138.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593.CrossRefGoogle ScholarPubMed
Goldman, A. I. (2008). Simulating minds: The philosophy, psychology, and neuroscience of mindreading. Oxford and New York: Oxford University Press.Google Scholar
Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27(3), 377396.CrossRefGoogle ScholarPubMed
Hurley, S. (2008). The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences, 31(1), 122; discussion 22–58. doi: 10.1017/S0140525X07003123.CrossRefGoogle ScholarPubMed
Hurley, S. L., & Chater, N. (2005). Perspectives on imitation: From neuroscience to social science. Cambridge, MA: MIT Press.Google Scholar
Iacoboni, M. (2009). Imitation, empathy, and mirror neurons. Annual Review of Psychology, 60, 653670. doi: 10.1146/annurev.psych.60.110707.163604.CrossRefGoogle ScholarPubMed
Ishida, H., Nakajima, K., Inase, M., & Murata, A. (2010). Shared mapping of own and others’ bodies in visuotactile bimodal area of monkey parietal cortex. Journal of Cognitive Neuroscience, 22(1), 8396. doi:10.1162/jocn.2009.21185CrossRefGoogle ScholarPubMed
Kahneman, D. (2013). Thinking, fast and slow. New York: Farrar, Straus and Giroux.Google Scholar
Kraskov, A., Dancause, N., Quallo, M. M., Shepherd, S., & Lemon, R. N. (2009). Corticospinal neurons in macaque ventral premotor cortex with mirror properties: A potential mechanism for action suppression? Neuron, 64(6), 922930. doi: 10.1016/j.neuron.2009.12.010.CrossRefGoogle ScholarPubMed
Losin, E. A., Cross, K. A., Iacoboni, M., & Dapretto, M. (2013). Neural processing of race during imitation: Self-similarity versus social status. Human Brain Mapping. doi: 10.1002/hbm.22287.CrossRefGoogle Scholar
Losin, E. A., Iacoboni, M., Martin, A., Cross, K. A., & Dapretto, M. (2012a). Race modulates neural activity during imitation. NeuroImage, 59(4), 35943603. doi: 10.1016/j.neuroimage.2011.10.074.CrossRefGoogle ScholarPubMed
Losin, E. A., Iacoboni, M., Martin, A., & Dapretto, M. (2012b). Own-gender imitation activates the brain’s reward circuitry. Social Cognitive and Affective Neuroscience. doi: 10.1093/scan/nsr055.CrossRefGoogle Scholar
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology: CB, 20, 750756. doi: 10.1016/j.cub.2010.02.045.CrossRefGoogle ScholarPubMed
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176180.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Experimental Brain Research, 71(3), 491507.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131141.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11 (4), 264274. doi: 10.1038/nrn2805.CrossRefGoogle ScholarPubMed
Shepherd, S. V., Klein, J. T., Deaner, R. O., & Platt, M. L. (2009). Mirroring of attention by neurons in macaque parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 94899494. doi: 10.1073/pnas.0900419106.CrossRefGoogle ScholarPubMed
Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 11571162. doi: 10.1126/science.1093535.CrossRefGoogle Scholar
Stephan, K. E., Penny, W. D., Moran, R. J., den Ouden, H. E., Daunizeau, J., & Friston, K. J. (2010). Ten simple rules for dynamic causal modeling. NeuroImage, 49(4), 30993109. doi: 10.1016/j.neuroimage.2009.11.015.CrossRefGoogle ScholarPubMed

References

Aflalo, T. N., & Graziano, M. S. A. (2006a). Partial tuning of motor cortex neurons to final posture in a free-moving paradigm. Proceedings of the National Academy of Sciences, 103, 29092914.CrossRefGoogle Scholar
Aflalo, T. N., (2006b). Possible origins of the complex topographic organization of motor cortex: Reduction of a multidimensional space onto a two-dimensional array. Journal of Neuroscience, 26, 62886297.CrossRefGoogle ScholarPubMed
Aflalo, T. N., (2007). Relationship between unconstrained arm movement and single neuron firing in the macaque motor cortex. Journal of Neuroscience, 27, 27602780.CrossRefGoogle ScholarPubMed
Andrew, R. J. (1962). The origin and evolution of the calls and facial expressions of the primates. Behaviour, 20, 1107.CrossRefGoogle Scholar
Asanuma, H. (1975). Recent developments in the study of the columnar arrangement of neurons within the motor cortex. Physiological Reviews, 55, 143156.CrossRefGoogle Scholar
Bonazzi, L., Viaro, R., Lodi, E., Canto, R., Bonifazzi, C., & Franchi, G. (2013). Complex movement topography and extrinsic space representation in the rat forelimb motor cortex as defined by long-duration intracortical microstimulation. Journal of Neuroscience, 33, 20972107.CrossRefGoogle ScholarPubMed
Brozzoli, C., Gentile, G., Bergouignan, L., & Ehrsson, H. H. (2013). A shared representation of the space near oneself and others in the human premotor cortex. Current Biology, 23, 17641768.CrossRefGoogle ScholarPubMed
Bruce, C. J., Goldberg, M. E., Bushnell, M.C., & Stanton, G. B. (1985). Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. Journal of Neurophysiology, 54, 714734.CrossRefGoogle ScholarPubMed
Caggiula, A. R., & Hoebel, B. G. (1966). ‘Copulation-reward site’ in the posterior hypothalamus. Science, 153, 12841285.CrossRefGoogle ScholarPubMed
Caruana, F., Jezzini, A., Sbriscia-Fioretti, B., Rizzolatti, G., & Gallese, V (2011). Emotional and social behaviors elicited by electrical stimulation of the insula in the macaque monkey. Current Biology, 21, 195199.CrossRefGoogle ScholarPubMed
Chakrabarty, S., & Martin, J. H. (2000). Postnatal development of the motor representation in primary motor cortex. Journal of Neurophysiology, 84, 25822594.CrossRefGoogle ScholarPubMed
Cheney, P. D., & Fetz, E. E. (1985). Comparable patterns of muscle facilitation evoked by individual corticomotoneuronal (CM) cells and by single intracortical microstimuli in primates: Evidence for functional groups of CM cells. Journal of Neurophysiology, 53, 786804.CrossRefGoogle ScholarPubMed
Churchland, M. M., & Shenoy, K. V. (2007). Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex. Journal of Neurophysiology, 97, 42354257.CrossRefGoogle ScholarPubMed
Cooke, D. F., & Graziano, M. S. A. (2003). Defensive movements evoked by air puff in monkeys. Journal of Neurophysiology, 90, 33173329.CrossRefGoogle ScholarPubMed
Cooke, D. F., (2004a). Sensorimotor integration in the precentral gyrus: Polysensory neurons and defensive movements. Journal of Neurophysiology, 91, 16481650.CrossRefGoogle ScholarPubMed
Cooke, D. F., (2004b). Super-flinchers and nerves of steel: Defensive movements altered by chemical manipulation of a cortical motor area. Neuron, 43, 585593.CrossRefGoogle ScholarPubMed
Cooke, D. F., Taylor, C. S. R., Moore, T., & Graziano, M. S. A. (2003). Complex movements evoked by microstimulation of Area VIP. Proceedings of the National Academy of Sciences, 100, 61636168.CrossRefGoogle Scholar
Darwin, C. (1872). The expression of emotions in man and animals. London: John Murray.CrossRefGoogle Scholar
Desmurget, M., Song, Z., Mottolese, C., & Sirigu, A. (2013). Re-establishing the merits of electrical brain stimulation. Trends in Cognitive Sciences, 17, 442449.CrossRefGoogle ScholarPubMed
Donoghue, J. P., Leibovic, S., & Sanes, J. N. (1992). Organization of the forelimb area in squirrel monkey motor cortex: representation of digit, wrist, and elbow muscles. Experimental Brain Research, 89, 119.CrossRefGoogle ScholarPubMed
Dosey, M. A., & Meisels, M. (1969). Personal space and self-protection. Journal of Personality and Social Psychology, 11, 9397.CrossRefGoogle ScholarPubMed
Ferrier, D. (1874). Experiments on the brain of monkeys – No. 1. Proceedings of the Royal Society of London, 23, 409430.Google Scholar
Foerster, O. (1936). The motor cortex of man in the light of Hughlings Jackson’s doctrines. Brain, 59, 135159.CrossRefGoogle Scholar
Fogassi, L., Gallese, V., Fadiga, L., Luppino, G., Matelli, M., & Rizzolatti, G. (1996). Coding of peripersonal space in inferior premotor cortex (area F4). Journal of Neurophysiology, 76, 141157.CrossRefGoogle ScholarPubMed
Fritsch, G., & Hitzig, E. (1870 [1960]). Uber die elektrishe Erregbarkeit des Grosshirns [On the electrical excitability of the cerebrum]. In G. von Bonin (Ed./transl.), Some papers on the cerebral cortex. Springfield, IL: Charles C Thomas Publisher, 7396.Google Scholar
Fulton, J. F. (1938). Physiology of the nervous system. New York: Oxford University Press, 399457.Google Scholar
Gentilucci, M., Fogassi, L., Luppino, G., Matelli, M., Camarda, R., & Rizzolatti, G. (1988). Functional organization of inferior area 6 in the macaque monkey.I. Somatotopy and the control of proximal movements. Experiments in Brain Research, 71, 475490.CrossRefGoogle ScholarPubMed
Georgopoulos, A. P., Ashe, J., Smyrnis, N., & Taira, M. (1992). The motor cortex and the coding of force. Science, 256, 16921695.CrossRefGoogle ScholarPubMed
Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., & Massey, J. T. (1982). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neuroscience, 2, 15271537.CrossRefGoogle ScholarPubMed
Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233, 14161419.CrossRefGoogle ScholarPubMed
Gould, H. J. III, Cusick, C. G., Pons, T. P., & Kaas, J. H. (1986). The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys. Journal of Comparative Neurology, 247, 297325.CrossRefGoogle ScholarPubMed
Graziano, M. S. A. (2006). The organization of behavioral repertoire in motor cortex. Annual Review of Neuroscience, 29, 105134.CrossRefGoogle ScholarPubMed
Graziano, M. S. A. (2008). The intelligent movement machine: An ethological perspective on the primate motor system. Oxford: Oxford University Press.Google Scholar
Graziano, M. S. A., & Aflalo, T. N. (2007). Mapping behavioral repertoire onto the cortex. Neuron, 56, 239251.CrossRefGoogle ScholarPubMed
Graziano, M. S. A., Aflalo, T. N. S., & Cooke, D. F. (2005). Arm movements evoked by electrical stimulation in the motor cortex of monkeys. Journal of Neurophysiology, 94, 42094223CrossRefGoogle ScholarPubMed
Graziano, M. S. A., & Cooke, D. F. (2006). Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia, 44, 845859.CrossRefGoogle ScholarPubMed
Graziano, M. S. A., Cooke, D. F., Taylor, C. S. R., & Moore, T. (2004). Distribution of hand location in monkeys during spontaneous behavior. Experiments in Brain Research, 155, 3036.CrossRefGoogle ScholarPubMed
Graziano, M. S. A., & Gandhi, S. (2000). Location of the polysensory zone in the precentral gyrus of anesthetized monkeys. Experiments in Brain Research, 135, 259266.CrossRefGoogle ScholarPubMed
Graziano, M. S. A., Hu, X. T., & Gross, C. G. (1997). Visuo-spatial properties of ventral premotor cortex. Journal of Neurophysiology, 77, 22682292.CrossRefGoogle Scholar
Graziano, M. S. A., Taylor, C. S. R., & Moore, T. (2002). Complex movements evoked by microstimulation of precentral cortex. Neuron, 34, 841851.CrossRefGoogle ScholarPubMed
Graziano, M. S. A., Yap, G. S., & Gross, C. G. (1994). Coding of visual space by pre-motor neurons. Science, 266, 10541057.CrossRefGoogle Scholar
Haiss, F., & Schwarz, C. (2005). Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex. Journal of Neuroscience, 25, 15791587.CrossRefGoogle ScholarPubMed
Hall, E. T. (1966). The hidden dimension. Garden City, New York: Anchor Books.Google Scholar
Harrison, T. C., Ayling, O. G., & Murphy, T. H. (2012). Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography. Neuron, 74, 397409.CrossRefGoogle ScholarPubMed
Hediger, H. (1955). Studies of the psychology and behavior of captive animals in zoos and circuses. New York: Criterion Books.Google Scholar
Hess, W. R. (1957). Functional organization of the diencephalons. New York: Grune and Stratton.Google Scholar
Hoebel, B. G. (1969). Feeding and self-stimulation. Annals of the New York Academy of Sciences, 157, 758778.CrossRefGoogle ScholarPubMed
Holdefer, R. N., & Miller, L. E. (2002). Primary motor cortical neurons encode functional muscle synergies. Experiments in Brain Research, 146, 233243.CrossRefGoogle ScholarPubMed
Holt, D. J., Cassidy, B. S., Yue, X., Rauch, S. L., Boeke, E. A., et al. (2014). Neural correlates of personal space intrusion. Journal of Neuroscience, 34, 41234134.CrossRefGoogle ScholarPubMed
Hooff, J. van (1962). Facial expression in higher primates. Symposia of the Zoological Society of London, 8, 97125.Google Scholar
Hooff, J. van (1972). A comparative approach to the phylogeny of laughter and smiling. In Hind, R. A. (Ed.), Non-verbal communication. Cambridge: Cambridge University Press, 209241.Google Scholar
Horowitz, M. J., Duff, D. F., & Stratton, L. O. (1964). Body-buffer zone: Exploration of personal space. Archives of General Psychiatry, 11, 651656.CrossRefGoogle ScholarPubMed
Kakei, S., Hoffman, D., & Strick, P. (1999). Muscle and movemet representations in the primary motor cortex. Science, 285, 21362139.CrossRefGoogle ScholarPubMed
King, M. B., & Hoebel, B. G. (1968). Killing elicited by brain stimulation in rats. Communications in Behavioral Biology, 2, 173177.Google Scholar
Kwan, H. C., MacKay, W. A., Murphy, J. T., & Wong, Y. C. (1978). Spatial organization of precentral cortex in awake primates. II. Motor outputs. Journal of Neurophysiology, 41, 11201131.CrossRefGoogle ScholarPubMed
Macfarlane, N. B. W., & Graziano, M. S. A. (2009). Diversity of grip in Macaca mulatta. Experiments in Brain Research, 197, 255268.CrossRefGoogle ScholarPubMed
Martin, J. H., Engber, D., & Meng, Z. (2005). Effect of forelimb use on postnatal development of the forelimb motor representation in primary motor cortex of the cat. Journal of Neurophysiology, 93, 28222831.CrossRefGoogle ScholarPubMed
Meier, J. D., Aflalo, T. N., Kastner, S., & Graziano, M. S. A. (2008). Complex organization of human primary motor cortex: A high-resolution fMRI study. Journal of Neurophysiology, 100, 18001812.CrossRefGoogle ScholarPubMed
Moran, D. W., & Schwartz, A. B. (1999). Motor cortical representation of speed and direction during reaching. Journal of Neurophysiology, 82, 26762692.CrossRefGoogle ScholarPubMed
Nudo, R. J., Milliken, G. W., Jenkins, W. M., & Merzenich, M. M. (1996). Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. Journal of Neurosciences, 16, 785807.CrossRefGoogle ScholarPubMed
Overduin, S. A., d’Avella, A., Carmena, J. M., & Bizzi, E. (2012). Microstimulation activates a handful of muscle synergies. Neuron, 76, 10711077.CrossRefGoogle ScholarPubMed
Paninski, L., Fellows, M. R., Hatsopoulos, N. G., & Donoghue, J. P. (2004). Spatiotemporal tuning of motor cortical neurons for hand position and velocity. Journal of Neurophysiology, 91, 515532.CrossRefGoogle ScholarPubMed
Park, M. C., Belhaj-Saif, A., Gordon, M., & Cheney, P. D. (2001). Consistent features in the forelimb representation of primary motor cortex in rhesus macaques. Journal of Neuroscience, 21, 27842792.CrossRefGoogle ScholarPubMed
Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60, 389443.CrossRefGoogle Scholar
Penfield, W., & Rasmussen, T. (1950). The cerebral cortex of man: A clinical study of localization of function. New York: Macmillan.Google Scholar
Preuschoft, S. (1992). ‘Laughter’ and ‘smile’ in Barbary macaques (Macaca sylvanus). Ethology, 91, 220236.CrossRefGoogle Scholar
Ramanathan, D., Conner, J. M., & Tuszynski, M. H. (2006). A form of motor cortical plasticity that correlates with recovery of function after brain injury. Proceedings of the National Academy of Sciences USA, 103, 1137011375.CrossRefGoogle ScholarPubMed
Rathelot, J. A., & Strick, P. L. (2006). Muscle representation in the macaque motor cortex: An anatomical perspective. Proceedings of the National Academy of Sciences USA, 103, 82578262.CrossRefGoogle ScholarPubMed
Reina, G. A., Moran, D. W., & Schwartz, A. B. (2001). On the relationship between joint angular velocity and motor cortical discharge during reaching. Journal of Neurophysiology, 85, 25762589.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Scandolara, C., Matelli, M., & Gentilucci, M. (1981). Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behavioural Brain Research, 2, 147163.CrossRefGoogle ScholarPubMed
Robinson, D. A. (1972). Eye movements evoked by collicular stimulation in the alert monkey. Vision Research, 12, 17951808.CrossRefGoogle ScholarPubMed
Robinson, D. A., & Fuchs, A. F. (1969). Eye movements evoked by stimulation of the frontal eye fields. Journal of Neurophysiology, 32, 637648.CrossRefGoogle ScholarPubMed
Romo, R., Hernandez, A., Zainos, A., & Salinas, E. (1998). Somatosensory discrimination based on cortical microstimulation. Nature, 392, 387390.CrossRefGoogle ScholarPubMed
Ross, M. D., Owren, M. J., & Zimmermann, E. (2010). The evolution of laughter in great apes and humans. Communicative and Integrative Biology, 3, 191194.CrossRefGoogle ScholarPubMed
Salzman, C. D., Britten, K. H., & Newsome, W. T. (1990). Cortical microstimulation influences perceptual judgements of motion direction. Nature, 346, 174177.CrossRefGoogle ScholarPubMed
Sambo, C. F., & Iannetti, G. D. (2013). Better safe than sorry? The safety margin surrounding the body is increased by anxiety. Journal of Neuroscience, 33, 1422514230.CrossRefGoogle ScholarPubMed
Sanes, J. N., Donoghue, J. P., Thangaraj, V., Edelman, R. R., & Warach, S. (1995). Shared neural substrates controlling hand movements in human motor cortex. Science, 268, 17751777.CrossRefGoogle ScholarPubMed
Schieber, M. H., & Hibbard, L. S. (1993). How somatotopic is the motor cortex hand area? Science, 261, 489492.CrossRefGoogle ScholarPubMed
Schiller, P. H., & Stryker, M. (1972). Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. Journal of Neurophysiology, 35, 915924.CrossRefGoogle ScholarPubMed
Scott, S. H., & Kalaska, J. F. (1997). Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex. Journal of Neurophysiology, 77, 826852.CrossRefGoogle ScholarPubMed
Sergio, L. E., & Kalaska, J. F. (2003). Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation. Journal of Neurophysiology, 89, 212228.CrossRefGoogle ScholarPubMed
Sherrington, C. S. (1939). On the motor area of the cerebral cortex. In Denny-Brown, D. (Ed.), Selected writings of Sir Charles Sherrington. London: Hamish Hamilton Medical Books, 397439.Google Scholar
Sommer, R. (1959). Studies in personal space. Sociometry, 22, 247260.CrossRefGoogle Scholar
Stepniewska, I., Fang, P. C., & Kaas, J. H. (2005). Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos. Proceedings of the National Academy of Sciences USA, 102, 48784883.CrossRefGoogle ScholarPubMed
Stepniewska, I., Fang, P. C., (2009). Organization of the posterior parietal cortex in galagos: I. Functional zones identified by microstimulation. Journal of Comparative Neurology, 517, 765782.CrossRefGoogle ScholarPubMed
Strick, P. L., & Preston, J. B. (1978). Multiple representation in the primate motor cortex. Brain Research, 154, 366370.CrossRefGoogle ScholarPubMed
Teneggi, C., Canzoneri, E., di Pellegrino, G., & Serino, A. (2013). Social modulation of peripersonal space boundaries. Current Biology, 23, 406411.CrossRefGoogle ScholarPubMed
Todorov, E. (2000). Direct cortical control of muscle activation in voluntary arm movements: A model. Nature Neuroscience, 3, 391398.CrossRefGoogle ScholarPubMed
Townsend, B. R., Paninski, L., & Lemon, R. N. (2006). Linear encoding of muscle activity in primary motor cortex and cerebellum. Journal of Neurophysiology, 96, 25782592.CrossRefGoogle ScholarPubMed
Van Acker, G. M. III, Amundsen, S. L., Messamore, W. G., Zhang, H. Y., et al. (2013). Effective intracortical microstimulation parameters for evoking forelimb movements to stable spatial end-points from primary motor cortex. Journal of Neurophysiology, 110, 11801189.CrossRefGoogle ScholarPubMed
Woolsey, C. N., Settlage, P. H., Meyer, D. R., Sencer, W., Hamuy, T. P., & Travis, A. M. (1952). Pattern of localization in precentral and ‘supplementary’ motor areas and their relation to the concept of a premotor area. In Association for Research in Nervous and Mental Disease, Vol. 30. New York: Raven Press, 238264.Google Scholar

References

Akitsuki, Y., & Decety, J. (2009). Social context and perceived agency affects empathy for pain: An event-related fMRI investigation. NeuroImage, 47(2), 722734.CrossRefGoogle ScholarPubMed
Arnstein, D., Cui, F., Keysers, C., Maurits, N. M., & Gazzola, V. (2011). μ-suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices. Journal of Neuroscience, 31(40), 1424314249.CrossRefGoogle ScholarPubMed
Avenanti, A., Bueti, D., Galati, G., & Aglioti, S. M. (2005). Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain. Nature Neuroscience, 8(7), 955960.CrossRefGoogle ScholarPubMed
Avenanti, A., Minio-Paluello, I., Bufalari, I., & Aglioti, S. M. (2009). The pain of a model in the personality of an onlooker: Influence of state-reactivity and personality traits on embodied empathy for pain. NeuroImage, 44(1), 275283.CrossRefGoogle Scholar
Avenanti, A., Sirigu, A., & Aglioti, S. M. (2010). Racial bias reduces empathic sensorimotor resonance with other-race pain. Current Biology, 20(11), 10181022.CrossRefGoogle ScholarPubMed
Azevedo, R. T., Macaluso, E., & Avenanti, A. (2013). Their pain is not our pain: Brain and autonomic correlates of empathic resonance with the pain of same and different race individuals. Human Brain Mapping, 34(12), 31683181.CrossRefGoogle Scholar
Baldissera, F., Cavallari, P., Craighero, L., & Fadiga, L. (2001). Modulation of spinal excitability during observation of hand actions in humans. European Journal of Neuroscience, 13(1), 190194.CrossRefGoogle ScholarPubMed
Banissy, M. J., Kadosh, R. C., Maus, G. W., Walsh, V., & Ward, J. (2009). Prevalence, characteristics and a neurocognitive model of mirror–touch synaesthesia. Experimental Brain Research, 198(2–3), 261272.CrossRefGoogle Scholar
Banissy, M. J., & Ward, J. (2007). Mirror–touch synesthesia is linked with empathy. Nature Neuroscience, 10(7), 815816.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: An investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34(2), 163175.CrossRefGoogle ScholarPubMed
Bartz, J. A., Zaki, J., Bolger, N., & Ochsner, K. N. (2011). Social effects of oxytocin in humans: Context and person matter. Trends in Cognitive Sciences, 7, 301309.Google Scholar
Bird, G., Silani, G., Brindley, R., White, S., Frith, U., & Singer, T. (2010). Empathic brain responses in insula are modulated by levels of alexithymia but not autism. Brain, 133(5), 15151525.CrossRefGoogle Scholar
Björnsdotter, M., Löken, L., Olausson, H., Vallbo, A., & Wessberg, J. (2009). Somatotopic organization of gentle touch processing in the posterior insular cortex. Journal of Neuroscience, 29(29), 93149320.CrossRefGoogle ScholarPubMed
Blakemore, S. J., Bristow, D., Bird, G., Frith, C., & Ward, J. (2005). Somatosensory activations during the observation of touch and a case of vision–touch synaesthesia. Brain, 128(7), 15711583.CrossRefGoogle Scholar
Blumenstiel, K., Gerhardt, A., Rolke, R., Bieber, C., Tesarz, J., et al. (2011). Quantitative sensory testing profiles in chronic back pain are distinct from those in fibromyalgia. Clinical Journal of Pain, 27(8), 682690.CrossRefGoogle ScholarPubMed
Bolognini, N., Miniussi, C., Gallo, S., & Vallar, G. (2013). Induction of mirror–touch synaesthesia by increasing somatosensory cortical excitability. Current Biology, 23(10), R436R437.CrossRefGoogle ScholarPubMed
Borsook, D., & Becerra, L. (2009). Emotional pain without sensory pain: Dream on? Neuron, 61(2), 153155.CrossRefGoogle ScholarPubMed
Botvinick, M., Jha, A. P., Bylsma, L. M., Fabian, S. A., Solomon, P. E., & Prkachin, K. M. (2005). Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain. NeuroImage, 25(1), 312319.CrossRefGoogle ScholarPubMed
Bromm, B., & Treede, R. D. (1980). Withdrawal reflex, skin resistance reaction and pain ratings due to electrical stimuli in man. Pain, 9(3), 339354.CrossRefGoogle ScholarPubMed
Budell, L., Jackson, P., & Rainville, P. (2010). Brain responses to facial expressions of pain: Emotional or motor mirroring? NeuroImage, 53(1), 355363.CrossRefGoogle ScholarPubMed
Bufalari, I., Aprile, T., Avenanti, A., Di Russo, F., & Aglioti, S. M. (2007). Empathy for pain and touch in the human somatosensory cortex. Cerebral Cortex, 17(11), 25532561.CrossRefGoogle ScholarPubMed
Bushnell, M. C., & Apkarian, A. V. (2006). Representation of pain in the brain. In McMahon, S. B. & Koltzenburg, M. (Eds.), Wall and Melzack’s textbook of pain. Philadelphia, PA: Elsevier, 107124.CrossRefGoogle Scholar
Cacioppo, S., Frum, C., Asp, E., Weiss, R. M., Lewis, J. W., & Cacioppo, J. T. (2013). A quantitative meta-analysis of functional imaging studies of social rejection. Scientific Reports, 3, 2027.CrossRefGoogle ScholarPubMed
Cheng, Y., Lin, C.-P., Liu, H.-L., Hsu, Y.-Y., Lim, K.-E., et al. (2007). Expertise modulates the perception of pain in others. Current Biology, 17(19), 17081713.CrossRefGoogle ScholarPubMed
Cheng, Y., Yang, C. Y., Lin, C. P., Lee, P. L., & Decety, J. (2008). The perception of pain in others suppresses somatosensory oscillations: A magnetoencephalography study. NeuroImage, 40(4), 18331840.CrossRefGoogle ScholarPubMed
Cheyne, D., Gaetz, W., Garnero, L., Lachaux, J.-P., Ducorps, A., et al. (2003). Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation. Cognitive Brain Research, 17(3), 599611.CrossRefGoogle ScholarPubMed
Chong, T. T. J., Cunnington, R., Williams, M. A., Kanwisher, N., & Mattingley, J. B. (2008). fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Current Biology, 18(20), 15761580.CrossRefGoogle ScholarPubMed
Coll, M.-P., Budell, L., Rainville, P., Decety, J., & Jackson, P. L. (2012). The role of gender in the interaction between self-pain and the perception of pain in others. Journal of Pain, 13(7), 695703.CrossRefGoogle ScholarPubMed
Coll, M.-P., Grégoire, M., Latimer, M., Eugène, F., & Jackson, P. L. (2011). Perception of pain in others: Implication for caregivers. Pain Management, 1(3), 257265.CrossRefGoogle ScholarPubMed
Corradi-Dell’Acqua, C., Hofstetter, C., & Vuilleumier, P. (2011). Felt and seen pain evoke the same local patterns of cortical activity in insular and cingulate cortex. Journal of Neuroscience, 31(49), 1799618006.CrossRefGoogle ScholarPubMed
Costantini, M., Galati, G., Romani, G. L., & Aglioti, S. M. (2008). Empathic neural reactivity to noxious stimuli delivered to body parts and non-corporeal objects. European Journal of Neuroscience, 28(6), 12221230.CrossRefGoogle ScholarPubMed
Danziger, N., Faillenot, I., & Peyron, R. (2009). Can we share a pain we never felt? Neural correlates of empathy in patients with congenital insensitivity to pain. Neuron, 61(2), 203212.CrossRefGoogle Scholar
Danziger, N., Prkachin, K. M., & Willer, J. C. (2006). Is pain the price of empathy? The perception of others’ pain in patients with congenital insensitivity to pain. Brain, 129(9), 24942507.CrossRefGoogle Scholar
Davis, M. H. (1980). A multidimensional approach to individual differences in empathy. JSAS Catalog of Selected Documents in Psychology, 10, 85.Google Scholar
Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a multidimensional approach. Journal of Personality and Social Psychology, 44(1), 113126.CrossRefGoogle Scholar
Davis, M. H. (1996). Empathy: A social psychological approach. Madison, WI: Westview Press.Google Scholar
Decety, J. (2004). The functional architecture of human empathy. Behavioral and Cognitive Neuroscience Reviews, 3(2), 71100.CrossRefGoogle ScholarPubMed
Decety, J. (2010). To what extent is the experience of empathy mediated by shared neural circuits? Emotion Review, 2(3), 204207.CrossRefGoogle Scholar
Decety, J., & Sommerville, J. A. (2003). Shared representations between self and other: A social cognitive neuroscience view. Trends in Cognitive Sciences, 7(12), 527533.CrossRefGoogle Scholar
Decety, J., Yang, C.-Y., & Cheng, Y. (2010). Physicians down-regulate their pain empathy response: An event-related brain potential study. NeuroImage, 50(4), 16761682.CrossRefGoogle ScholarPubMed
Drwecki, B. B., Moore, C. F., Ward, S. E., & Prkachin, K. M. (2011). Reducing racial disparities in pain treatment: The role of empathy and perspective-taking. Pain, 152(5), 10011006.CrossRefGoogle ScholarPubMed
Ebisch, S. J. H., Ferri, F., Salone, A., Perrucci, M. G., D’Amico, L., et al. (2011). Differential involvement of somatosensory and interoceptive cortices during the observation of affective touch. Journal of Cognitive Neuroscience, 23(7), 18081822.CrossRefGoogle ScholarPubMed
Ebisch, S. J. H., Perrucci, M. G., Ferretti, A., Del Gratta, C., Romani, G. L., & Gallese, V. (2008). The sense of touch: Embodied simulation in a visuotactile mirroring mechanism for observed animate or inanimate touch. Journal of Cognitive Neuroscience, 20(9), 16111623.CrossRefGoogle ScholarPubMed
Eisenberger, N. I. (2012). The neural bases of social pain: Evidence for shared representations with physical pain. Psychosomatic Medicine, 74(2), 126135.CrossRefGoogle ScholarPubMed
Eisenberger, N. I., & Cole, S. W. (2012). Social neuroscience and health: Neurophysiological mechanisms linking social ties with physical health. Nature Neuroscience, 15(5), 669674.CrossRefGoogle ScholarPubMed
Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302(5643), 290292.CrossRefGoogle ScholarPubMed
Fecteau, S., Pascual-Leone, A., & Théoret, H. (2008). Psychopathy and the mirror neuron system: Preliminary findings from a non-psychiatric sample. Psychiatry Research, 160(2), 137144.CrossRefGoogle ScholarPubMed
Fitzgibbon, B. M., Enticott, P. G., Rich, A. N., Giummarra, M. J., Georgiou-Karistianis, N., & Bradshaw, J. L. (2012). Mirror-sensory synaesthesia: Exploring ‘shared’ sensory experiences as synaesthesia. Neuroscience & Biobehavioral Reviews, 36(1), 645657.CrossRefGoogle ScholarPubMed
Fitzgibbon, B. M., Enticott, P. G., Rich, A. N., Giummarra, M. J., Georgiou-Karistianis, N., (2010a). High incidence of ‘synaesthesia for pain’ in amputees. Neuropsychologia, 48(12), 36753678.CrossRefGoogle ScholarPubMed
Fitzgibbon, B. M., Giummarra, M. J., Georgiou-Karistianis, N., Enticott, P. G., & Bradshaw, J. L. (2010b). Shared pain: From empathy to synaesthesia. Neuroscience & Biobehavioral Reviews, 34(4), 500512.CrossRefGoogle ScholarPubMed
Gaetz, W., & Cheyne, D. (2006). Localization of sensorimotor cortical rhythms induced by tactile stimulation using spatially filtered MEG. NeuroImage, 30(3), 899908.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593609.CrossRefGoogle ScholarPubMed
Garcia-Larrea, L., Frot, M., & Valeriani, M. (2003). Brain generators of laser-evoked potentials: From dipoles to functional significance. Neurophysiologie clinique/Clinical Neurophysiology, 33(6), 279292 .CrossRefGoogle ScholarPubMed
Garcia-Larrea, L., & Peyron, R. (2013). Pain matrices and neuropathic pain matrices: A review. Pain, 154, S29S43.CrossRefGoogle ScholarPubMed
Gazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16(18), 18241829.CrossRefGoogle ScholarPubMed
Gazzola, V., Spezio, M. L., Etzel, J. A., Castelli, F., Adolphs, R., & Keysers, C. (2012). Primary somatosensory cortex discriminates affective significance in social touch. Proceedings of the National Academy of Sciences, 109(25), E1657E1666.CrossRefGoogle ScholarPubMed
Godinho, F., Faillenot, I., Perchet, C., Frot, M., Magnin, M., & Garcia-Larrea, L. (2011). How the pain of others enhances our pain: Searching the cerebral correlates of ‘compassional hyperalgesia’. European Journal of Pain, 16(5), 748759.CrossRefGoogle ScholarPubMed
Godinho, F., Magnin, M., Frot, M., Perchet, C., & Garcia-Larrea, L. (2006). Emotional modulation of pain: Is it the sensation or what we recall? Journal of Neuroscience, 26(44), 1145411461.CrossRefGoogle ScholarPubMed
Gracely, R. H., Geisser, M. E., Giesecke, T., Grant, M. A. B., Petzke, F., et al. (2004). Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain, 127(4), 835843.CrossRefGoogle Scholar
Hari, R., Forss, N., Avikainen, S., Kirveskari, E., Salenius, S., & Rizzolatti, G. (1998). Activation of human primary motor cortex during action observation: A neuromagnetic study. Proceedings of the National Academy of Sciences, 95(25), 1506115065.CrossRefGoogle ScholarPubMed
Hein, G., Silani, G., Preuschoff, K., Batson, C. D., & Singer, T. (2010). Neural responses to ingroup and outgroup members’ suffering predict individual differences in costly helping. Neuron, 68(1), 149160.CrossRefGoogle ScholarPubMed
Hétu, S., Taschereau-Dumouchel, V., & Jackson, P. L. (2012). Stimulating the brain to study social interactions and empathy. Brain Stimulation, 5(2), 95102.CrossRefGoogle ScholarPubMed
Höfle, M., Pomper, U., Hauck, M., & Engel, A. K. (2013). Spectral signatures of viewing a needle approaching one’s body when anticipating pain. European Journal of Neuroscience, 38(7), 30893098.CrossRefGoogle ScholarPubMed
Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7(12), 942951.CrossRefGoogle ScholarPubMed
Iannetti, G. D., & Mouraux, A. (2010). From the neuromatrix to the pain matrix (and back). Experimental Brain Research, 205(1), 112.CrossRefGoogle Scholar
Iannetti, G. D., Salomons, T. V., Moayedi, M., Mouraux, A., & Davis, K. D. (2013). Beyond metaphor: Contrasting mechanisms of social and physical pain. Trends in Cognitive Sciences, 17(8), 371378.CrossRefGoogle ScholarPubMed
International Association for the Study of Pain. (1994). Classification of chronic pain, 2nd edition. Seattle: IASP Press.Google Scholar
Jackson, P. L., Brunet, E., Meltzoff, A. N., & Decety, J. (2006). Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain. Neuropsychologia, 44(5), 752761.CrossRefGoogle Scholar
Jackson, P. L., Meltzoff, A. N., & Decety, J. (2005). How do we perceive the pain of others? A window into the neural processes involved in empathy. NeuroImage, 24(3), 771779.CrossRefGoogle ScholarPubMed
Jensen, K. B., Petrovic, P., Kerr, C. E., Kirsch, I., Raicek, J., et al. (2013). Sharing pain and relief: Neural correlates of physicians during treatment of patients. Molecular Psychiatry, 1–7, 392398.Google Scholar
Keysers, C., Kaas, J. H., & Gazzola, V. (2010). Somatosensation in social perception. Nature Reviews Neuroscience, 11(6), 417428.CrossRefGoogle ScholarPubMed
Keysers, C., Wicker, B., Gazzola, V., Anton, J.-L., Fogassi, L., & Gallese, V. (2004). A touching sight. Neuron, 42(2), 335346.CrossRefGoogle ScholarPubMed
Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. Journal of Neuroscience, 29(32), 1015310159.CrossRefGoogle ScholarPubMed
Krishnan, A., Woo, CW., Chang, L. J., Ruzic, L., Gu, X., López-Solà, M., et al. (2016). Somatic and vicarious pain are represented by dissociable multivariate brain patterns. Elife, Jun 14(5), pii: e15166.Google Scholar
Kross, E., Berman, M. G., Mischel, W., Smith, E. E., & Wager, T. D. (2011). Social rejection shares somatosensory representations with physical pain. Proceedings of the National Academy of Sciences, 108(15), 62706275.CrossRefGoogle ScholarPubMed
Kuehn, E., Mueller, K., Turner, R., & Schütz-Bosbach, S. (2014). The functional architecture of S1 during touch observation described with 7 T fMRI. Brain Structure & Function, 219(1), 119140.CrossRefGoogle ScholarPubMed
Kuehn, E., Trampel, R., Mueller, K., Turner, R., & Schütz-Bosbach, S. (2013). Judging roughness by sight: A 7-tesla fMRI study on responsivity of the primary somatosensory cortex during observed touch of self and others. Human Brain Mapping, 34(8), 18821895.CrossRefGoogle Scholar
Lamm, C., Batson, C. D., & Decety, J. (2007). The neural substrate of human empathy: Effects of perspective-taking and cognitive appraisal. Journal of Cognitive Neuroscience, 19(1), 4258.CrossRefGoogle ScholarPubMed
Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54(3), 24922502.CrossRefGoogle ScholarPubMed
Lawrence, E. J., Shaw, P., Giampietro, V. P., & Surguladze, S. (2006). The role of ‘shared representations’ in social perception and empathy: An fMRI study. NeuroImage, 29(4), 11731184.CrossRefGoogle ScholarPubMed
Lee, S. J., Song, H. J., Decety, J., Seo, J., Kim, S. H., et al. (2013). Do patients with fibromyalgia show abnormal neural responses to the observation of pain in others? Neuroscience Research, 4, 305315.CrossRefGoogle Scholar
Loggia, M. L., Juneau, M., & Bushnell, M. C. (2011). Autonomic responses to heat pain: Heart rate, skin conductance, and their relation to verbal ratings and stimulus intensity. Pain, 152(3), 592598.CrossRefGoogle Scholar
Loggia, M. L., Mogil, J. S., & Bushnell, M. C. (2008). Empathy hurts: Compassion for another increases both sensory and affective components of pain perception. Pain, 136(1–2), 168176.CrossRefGoogle ScholarPubMed
Lucy, P., Cohn, J. F., Prkachin, K. M., Solomon, P., & Matthrews, I. (2011). Painful data: The UNBC-McMaster Shoulder Pain Expression Archive Database. IEEE International Conference on Automatic Face and Gesture Recognition (FG2011).CrossRefGoogle Scholar
Mailhot, J. P., Vachon-Presseau, E., Jackson, P. L., & Rainville, P. (2012). Dispositional empathy modulates vicarious effects of dynamic pain expressions on spinal nociception, facial responses and acute pain. European Journal of Neuroscience, 35(2), 271278.CrossRefGoogle ScholarPubMed
Malinen, S., Renvall, V., & Hari, R. (2014). Functional parcellation of the human primary somatosensory cortex to natural touch. European Journal of Neuroscience, 5, 738743.CrossRefGoogle Scholar
Marcoux, L. A., Michon, P. E., Voisin, J. I., Lemelin, S., Vachon-Presseau, E., & Jackson, P. L. (2013). The modulation of somatosensory resonance by psychopathic traits and empathy. Frontiers in Human Neuroscience, 7, 113.CrossRefGoogle ScholarPubMed
Martínez-Jauand, M., González-Roldán, A. M., Muñoz, M. A., Sitges, C., Cifre, I., & Montoya, P. (2012). Somatosensory activity modulation during observation of other’s pain and touch. Brain Research, 1467, 4855.CrossRefGoogle ScholarPubMed
Masten, C. L., Morelli, S. A., & Eisenberger, N. I. (2011). An fMRI investigation of empathy for ‘social pain’ and subsequent prosocial behavior. NeuroImage, 55(1), 381388.CrossRefGoogle ScholarPubMed
Mathur, V. A., Harada, T., & Chiao, J. Y. (2011). Racial identification modulates default network activity for same and other races. Human Brain Mapping, 33(8), 18831893.CrossRefGoogle ScholarPubMed
Melzack, R., & Casey, K. L. (1968). Sensory, motivational and central control determinants of pain: A new conceptual model. In Kenshalo, D. (Ed.), The skin senses. Springfield, IL: Charles C Thomas, 423439.Google Scholar
Meng, J., Hu, L., Shen, L., Yang, Z., Chen, H., et al. (2012). Emotional primes modulate the responses to others’ pain: An ERP study. Experimental Brain Research, 220(3–4), 277286.CrossRefGoogle ScholarPubMed
Meng, J., Jackson, T., Chen, H., Hu, L., Yang, Z., et al. (2013). Pain perception in the self and observation of others: An ERP investigation. NeuroImage, 72, 164173.CrossRefGoogle ScholarPubMed
Morrison, I., Bjornsdotter, M., & Olausson, H. (2011a). Vicarious responses to social touch in posterior insular cortex are tuned to pleasant caressing speeds. Journal of Neuroscience, 31(26), 95549562.CrossRefGoogle ScholarPubMed
Morrison, I., Löken, L. S., Minde, J., Wessberg, J., Perini, I., et al. (2011b). Reduced C-afferent fibre density affects perceived pleasantness and empathy for touch. Brain, 134(4), 11161126.CrossRefGoogle ScholarPubMed
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20(8), 750756.CrossRefGoogle ScholarPubMed
Muthukumaraswamy, S. D., & Johnson, B. W. (2004). Changes in rolandic mu rhythm during observation of a precision grip. Psychophysiology, 41(1), 152156.CrossRefGoogle ScholarPubMed
Novembre, G., Zanon, M., & Silani, G. (2014). Empathy for social exclusion involves the sensory-discriminative component of pain: A within-subject fMRI study. Social Cognitive and Affective Neuroscience. doi: 10.1093/scan/nsu038.CrossRefGoogle Scholar
Oosterhof, N. N., Tipper, S. P., & Downing, P. E. (2013). Crossmodal and action-specific: Neuroimaging the human mirror neuron system. Trends in Cognitive Sciences, 17(7), 311318.CrossRefGoogle ScholarPubMed
Osborn, J., & Derbyshire, S. W. G. (2010). Pain sensation evoked by observing injury in others. Pain, 148(2), 268274.CrossRefGoogle Scholar
Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176–180.CrossRefGoogle ScholarPubMed
Perry, A., Bentin, S., Bartal, I. B.-A., Lamm, C., & Decety, J. (2010). ‘Feeling’ the pain of those who are different from us: Modulation of EEG in the mu/alpha range. Cognitive, Affective & Behavioral Neuroscience, 10(4), 493504.CrossRefGoogle ScholarPubMed
Pihko, E., Nangini, C., Jousmäki, V., & Hari, R. (2010). Observing touch activates human primary somatosensory cortex. European Journal of Neuroscience, 31(10), 18361843.CrossRefGoogle ScholarPubMed
Pineda, J. A. (2005). The functional significance of mu rhythms: Translating ‘seeing’ and ‘hearing’ into ‘doing’. Brain Research Reviews, 50(1), 5768.CrossRefGoogle ScholarPubMed
Press, C., Weiskopf, N., & Kilner, J. M. (2012). Dissociable roles of human inferior frontal gyrus during action execution and observation. NeuroImage, 60(3), 16711677.CrossRefGoogle ScholarPubMed
Price, D. D. (2000). Psychological and neural mechanisms of the affective dimension of pain. Science, 288(5472), 17691772.CrossRefGoogle ScholarPubMed
Rainville, P. (1997). Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science, 277(5328), 968971.CrossRefGoogle Scholar
Rainville, P. (2002). Brain mechanisms of pain affect and pain modulation. Current Opinion in Neurobiology, 12(2), 195204.CrossRefGoogle ScholarPubMed
Ritter, P., Moosmann, M., & Villringer, A. (2009). Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Human Brain Mapping, 30(4), 11681187.CrossRefGoogle ScholarPubMed
Rossetti, A., Miniussi, C., Maravita, A., & Bolognini, N. (2012). Visual perception of bodily interactions in the primary somatosensory cortex. European Journal of Neuroscience, 36(3), 23172323.CrossRefGoogle ScholarPubMed
Rossi, S., Tecchio, F., Pasqualetti, P., Ulivelli, M., Pizzella, V., et al. (2002). Somatosensory processing during movement observation in humans. Clinical Neurophysiology, 113(1), 1624.CrossRefGoogle ScholarPubMed
Saarela, M. V., Hlushchuk, Y., Williams, A. C., Schürmann, M., Kalso, E., & Hari, R. (2007). The compassionate brain: Humans detect intensity of pain from another’s face. Cerebral Cortex, 17(1), 230237.CrossRefGoogle ScholarPubMed
Schaefer, M., Heinze, H. J., & Rotte, M. (2012). Embodied empathy for tactile events: Interindividual differences and vicarious somatosensory responses during touch observation. NeuroImage, 60(2), 952957.CrossRefGoogle ScholarPubMed
Schaefer, M., Xu, B., Flor, H., & Cohen, L. G. (2009). Effects of different viewing perspectives on somatosensory activations during observation of touch. Human Brain Mapping, 30(9), 27222730.CrossRefGoogle ScholarPubMed
Shamay-Tsoory, S. G., Abu-Akel, A., Palgi, S., Sulieman, R., Fischer-Shofty, M., et al. (2013). Giving peace a chance: Oxytocin increases empathy to pain in the context of the Israeli–Palestinian conflict. Psychoneuroendocrinology, 38(12), 31393144.CrossRefGoogle Scholar
Simon, D., Craig, K. D., Miltner, W. H. R., & Rainville, P. (2006). Brain responses to dynamic facial expressions of pain. Pain, 126(1–3), 309318.CrossRefGoogle ScholarPubMed
Singer, T. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 11571162.CrossRefGoogle Scholar
Singer, T., Seymour, B., O’Doherty, J. P., Stephan, K. E., Dolan, R. J., & Frith, C. D. (2006). Empathic neural responses are modulated by the perceived fairness of others. Nature, 439(7075), 466469.CrossRefGoogle ScholarPubMed
Sperry, R. W. (1952). Neurology and the mind–body problem. American Scientist, 40, 291312.Google Scholar
Strafella, A. P., & Paus, T. (2000). Modulation of cortical excitability during action observation: A transcranial magnetic stimulation study. NeuroReport, 11(10), 22892292.CrossRefGoogle ScholarPubMed
Streltsova, A., & McCleery, J. P. (2014). Neural time-course of the observation of human and non-human object touch. Social Cognitive and Affective Neuroscience, 9(3), 333341.CrossRefGoogle ScholarPubMed
Vachon-Presseau, E., Martel, M. O., Roy, M., Caron, E., Jackson, P. L., & Rainville, P. (2011). The multilevel organization of vicarious pain responses: Effects of pain cues and empathy traits on spinal nociception and acute pain. Pain, 152(7), 15251531.CrossRefGoogle ScholarPubMed
Vachon-Presseau, E., Roy, M., Martel, M. O., Albouy, G., Chen, J., et al. (2012). Neural processing of sensory and emotional-communicative information associated with the perception of vicarious pain. NeuroImage, 63(1), 5462.CrossRefGoogle ScholarPubMed
Valeriani, M., Betti, V., Le Pera, D., De Armas, L., & Miliucci, R. (2008). Seeing the pain of others while being in pain: A laser-evoked potentials study. NeuroImage, 40(3), 14191428.CrossRefGoogle Scholar
Voisin, J. I. A., Marcoux, L.-A., Canizales, D. L., Mercier, C., & Jackson, P. L. (2011). I am touched by your pain: Limb-specific modulation of the cortical response to a tactile stimulation during pain observation. Journal of Pain, 12(11), 11821189.CrossRefGoogle ScholarPubMed
Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C. W., & Kross, E. (2013). An fMRI-based neurologic signature of physical pain. New England Journal of Medicine, 368(15), 13881397.CrossRefGoogle ScholarPubMed
Wied, M. de, & Verbaten, M. N. (2001). Affective pictures processing, attention, and pain tolerance. Pain, 90(1–2), 163172.CrossRefGoogle ScholarPubMed
Xu, X., Zuo, X., Wang, X., & Han, S. (2009). Do you feel my pain? Racial group membership modulates empathic neural responses. Journal of Neuroscience, 29(26), 85258529.CrossRefGoogle Scholar
Yang, C. Y., Decety, J., Lee, S., Chen, C., & Cheng, Y. (2009). Gender differences in the mu rhythm during empathy for pain: An electroencephalographic study. Brain Research, 1251, 176184.CrossRefGoogle ScholarPubMed
Zaki, J., Ochsner, K. N., Hanelin, J., Wager, T. D., & Mackey, S. C. (2007). Different circuits for different pain: Patterns of functional connectivity reveal distinct networks for processing pain in self and others. Social Neuroscience, 2(3–4), 276291.CrossRefGoogle ScholarPubMed

References

Adolphs, , R. (2009). The social brain: Neural basis of social knowledge. Annual Review of Psychology, 60, 693716.CrossRefGoogle ScholarPubMed
Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 11091116.CrossRefGoogle ScholarPubMed
Babiloni, F., & Astolfi, L. (2012). Social neuroscience and hyperscanning techniques: Past, present and future. Neuroscience Behavioral Review, 44, 7693.CrossRefGoogle ScholarPubMed
Birbaumer, N., Lutzenberger, W., Elbert, T., Flor, H., & Rockstroh, B. (1993). Imagery and brain processes. In Birbaumer, N. & Öhmann, A. (Eds.), The structure of emotion. Toronto: Hogrefe and Huber, 298321.Google Scholar
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Review Neuroscience, 10, 186198. doi: 10.1038/nrn2575.CrossRefGoogle ScholarPubMed
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., & Flint, J., et al. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14, 365376.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., & Berntson, G. G. (1992). Social psychological contributions to the decade of the brain: Doctrine of multilevel analysis. American Psychologist, 47, 10191028.CrossRefGoogle Scholar
Cacioppo, J. T., Berntson, G. G., Lorig, T. S., Norris, C. J., Rickett, E., & Nusbaum, H. (2003). Just because you’re imaging the brain doesn’t mean you can stop using your head: A primer and set of first principles. Journal of Personality and Social Psychology, 85, 650661.CrossRefGoogle Scholar
Cacioppo, J. T., Cacioppo, S., Capitanio, J. P., & Cole, S. W. (2014a). The neuroendocrinology of social isolation. Annual Review of Psychology, 66, 733767.Google ScholarPubMed
Cacioppo, J. T., Cacioppo, S., Dulawa, S., & Palmer, A. (2014b). Social neuroscience and its potential contribution to psychiatry. World Psychiatry, 13(2),131139.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Crites, S. L. Jr., & Gardner, W. L. (1996). Attitudes to the right: Evaluative processing is associated with lateralized late positive event-related brain potentials. Personality and Social Psychology Bulletin, 22, 12051219.CrossRefGoogle Scholar
Cacioppo, J. T., & Ortigue, S. (2011). Social neuroscience: How a multidisciplinary field is uncovering the biology of human interactions. Cerebrum, 19, 17.Google Scholar
Cacioppo, J. T., & Petty, R. E. (1979). Attitudes and cognitive response: An electrophysiological approach. Journal of Personality and Social Psychology, 37, 21812199.CrossRefGoogle Scholar
Cacioppo, J. T., Petty, R. E., Losch, M. E., & Crites, S. L. (1994). Psychophysiological approaches to attitudes: Detecting affective dispositions when people won’t say, can’t say, or don’t even know. In Shavitt, S. & Brock, T. C. (Eds.), Persuasion: Psychological insights and perspectives. New York: Allyn & Bacon, 4369.Google Scholar
Cacioppo, J. T., Petty, R. E., & Quintanar, L. R. (1982). Individual differences in relative hemispheric alpha abundance and cognitive responses to persuasive communications. Journal of Personality and Social Psychology, 43, 623636.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Petty, R. E., & Snyder, C. W. (1979). Cognitive and affective response as a function of relative hemispheric involvement. International Journal of Neuroscience, 9, 8189.CrossRefGoogle Scholar
Cacioppo, J. T., & Tassinary, L. G. (1990). Principles of psychophysiology: Physical, social, and inferential elements. New York: Cambridge University Press.Google Scholar
Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (2000). Handbook of psychophysiology, 2nd edition. New York: Cambridge University Press.Google Scholar
Cacioppo, J. T., Tassinary, L. G., (2007). Handbook of psychophysiology, 3rd edition. New York: Cambridge University Press.Google Scholar
Cacioppo, S., Bianchi-Demicheli, F., Frum, C., Pfaus, J., & Lewis, J. W. (2012). The common neural bases between sexual desire and love: A multilevel kernel density fMRI analysis. Journal of Sexual Medicine, 9, 10481054. doi: 10.1111/j.1743-6109.2012.02651.x.CrossRefGoogle Scholar
Cacioppo, S., Frum, C., Asp, E., Weiss, R. M., Lewis, J. W., & Cacioppo, J. T. (2013). A quantitative meta-analysis of functional imaging studies of social rejection. Scientific Reports, 3, 2027. doi: 10.1038/srep02027.CrossRefGoogle ScholarPubMed
Cacioppo, S., Grafton, S. T., & Bianchi-Demicheli, F. (2012). The speed of passionate love, as a subliminal prime: A high-density electrical neuroimaging study. NeuroQuantology, 10, 715724.CrossRefGoogle Scholar
Cole, S. W. (2009). Social regulation of human gene expression. Current Directions in Psychological Science, 18, 132137.CrossRefGoogle ScholarPubMed
Cole, S. W., Hawkley, L. C., Arevalo, J. M., & Cacioppo, J. T. (2011). Transcript origin analysis identifies antigen-presenting cells as primary targets of socially regulated gene expression in leukocytes. Proceedings of the National Academy of Sciences of the United States of America, 7, 30803085.CrossRefGoogle Scholar
Cole, S. W., Hawkley, L. C., Arevalo, J. M., Sung, C. Y., Rose, R. M., & Cacioppo, J. T. (2007). Social regulation of gene expression in human leukocytes. Genome Biology, 8(9), R189. doi: 10.1186/gb.2007-8-9-r189.CrossRefGoogle ScholarPubMed
Crites, S. L. Jr., & Cacioppo, J. T. (1996). Electrocortical differentiation of evaluative and nonevaluative categorizations. Psychological Science, 7, 318321.CrossRefGoogle Scholar
Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31, 12571267.CrossRefGoogle ScholarPubMed
Davidson, R. J., & Cacioppo, J. T. (1992). New developments in the scientific study of emotion: An introduction to the special section. Psychological Science, 3, 2122.CrossRefGoogle Scholar
Davidson, R. J., Jackson, D. C., & Larson, C. L. (2000). Human electroencephalography. In Cacioppo, J. T., Tassinary, L.G., & Berntson, G. G. (Eds.), Handbook of psychophysiology, 2nd edition. Cambridge: Cambridge University Press, 76–93.Google Scholar
Decety, J., & Cacioppo, S. (2012). The speed of morality: A high-density electrical neuroimaging study. Journal of Neurophysiology, 108, 30683072. doi: 10.1152/jn.00473.2012.CrossRefGoogle ScholarPubMed
Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation revisited. NeuroImage, 59, 23492361.CrossRefGoogle ScholarPubMed
Ekman, P., Davidson, R. J., & Friesen, W. V. (1990). The Duchenne smile: Emotional expression and brain physiology II. Journal of Personality and Social Psychology, 58, 342353.CrossRefGoogle ScholarPubMed
Frith, C. D., & Wolpert, D. (2004). The neuroscience of social interaction: Decoding, influencing and imitating the actions of others. Oxford: Oxford University Press.CrossRefGoogle Scholar
Galton, F. (1884). Measurement of character. Psychometry, 36, 179185.Google Scholar
Grafton, S. T. (2009). Embodied cognition and the simulation of action to understand others. Annals of the New York Academy of Sciences, 1156, 97117. doi: 10.1111/j.1749-6632.2009.04425.x.CrossRefGoogle ScholarPubMed
Grafton, S. T., Arbib, M. A., Fadiga, L., & Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Experimental Brain Research, 112, 103111.CrossRefGoogle ScholarPubMed
Goossens, L., van Roekel, E., Verhagen, M., Cacioppo, J. T., Cacioppo, S., Maes, M., & Boomsma, D. I. (2015). The genetics of loneliness: Linking evolutionary theory to genomics, epigenomics, and social science. Perspective on Psychological Sciences, 10(2), 213226.CrossRefGoogle Scholar
Haber, S. N., & Barchas, P. R. (1983). The regulatory effect of social rank on behavior after amphetamine administration. In Barchas, P. R. (Ed.), Social hierarchies: Essays toward a socio-physiological perspective. Westport, CT: Greenwood, 119132.Google Scholar
Hari, R., & Kujala, M. V. (2009). Brain basis of human social interaction: From concepts to brain imaging. Physiological Reviews, 89, 453479.CrossRefGoogle Scholar
He, Y., & Evans, A. (2010). Graph theoretical modeling of brain connectivity. Current Opinion in Neurology, 23, 341350.CrossRefGoogle ScholarPubMed
Holt, J. (2005). Measure for measure: The strange science of Francis Galton. New Yorker, 7277.Google Scholar
Huettel, S. A., Song, A. W., & McCarthy, G. (2009). Functional magnetic resonance imaging, 2nd edition. Sunderland, MA: Sinauer.Google Scholar
Ibanez, A., Melloni, M., Huepe, D., Helgiu, E., Rivera-Rei, A., et al. (2012). What do event-related potentials (ERPs) bring to social neuroscience? Social Neuroscience, 7, 632649. doi: 10.1080/17470919.2012.691078.CrossRefGoogle ScholarPubMed
Jeannerod, M. (1981). The neural and behavioral organization of goal-directed movements. New York: Oxford Science Publishers.Google Scholar
Juan, E., Frum, C., Bianchi-Demicheli, F., Wang, Y., Lewis, J. W., & Cacioppo, S. (2013). Beyond human intentions and emotions. Frontiers in Human Neuroscience, 7, 99. doi: 10.3389/fnhum.2013.00099.CrossRefGoogle ScholarPubMed
Kanwisher, N. (2010). Functional specificity in the human brain: A window into the functional architecture of the mind. Proceedings of the National Academy of Sciences of the United States of America, 25, 1116311170.CrossRefGoogle Scholar
Kennedy, D. P., & Adolphs, R. (2012). The social brain in psychiatric and neurological disorders. Trends in Cognitive Sciences, 16, 559572. doi: 10.1016/j.tics.2012.09.006.CrossRefGoogle ScholarPubMed
Kiecolt-Glaser, J. K., Gouin, J. P., & Hantsoo, L. (2010). Close relationship, inflammation, and health. Neuroscience Biobehavioral Review, 35, 3338.CrossRefGoogle ScholarPubMed
Kumsta, R., Hummel, E., Chen, F. S., & Heinrichs, M. (2013). Epigenetic regulation of the oxytocin receptor gene: Implication for behavioral neuroscience. Frontiers in Neuroscience, 7, 83.CrossRefGoogle ScholarPubMed
Luck, S. J. An introduction to the event-related potential technique. Cambridge, MA: MIT Press.Google Scholar
Mather, M., Cacioppo, J. T., & Kanwisher, N. (2013a). How fMRI can inform cognitive theories. Perspectives on Psychological Science, 8, 108113.CrossRefGoogle ScholarPubMed
Mather, M., Cacioppo, J. T., (2013b). Introduction to the Special Section: 20 years of fMRI – what has it done for understanding cognition? Perspectives on Psychological Science, 8, 4143.CrossRefGoogle Scholar
Meloni, M. (2014). The social brain meets the reactive genome: Neuroscience, epigenetics and the new social biology. Frontiers in Human Neuroscience, 8, 112.CrossRefGoogle ScholarPubMed
Montague, P. R., Berns, G. S., Cohen, J. D., et al. (2002). Hyperscanning: Simultaneous fMRI during linked social interactions. NeuroImage, 16, 11591164.CrossRefGoogle ScholarPubMed
Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38, 2338.CrossRefGoogle ScholarPubMed
Niedenthal, P. M. (2007). Embodying emotion. Science, 316, 10021005.CrossRefGoogle ScholarPubMed
Niedenthal, P. M., Barsalou, L. W., Winkielman, P., Krauth-Gruber, S., & Ric, F. (2005). Embodiment in attitudes, social perception, and emotion. Personality and Social Psychology Review, 9, 184211.CrossRefGoogle ScholarPubMed
Ortigue, S., Michel, C. M., Murray, M. M., Mohr, C., Carbonnel, S., & Landis, T. (2004). Electrical neuroimaging reveals early generator modulation to emotional words. NeuroImage, 21, 12421251.CrossRefGoogle ScholarPubMed
Ortigue, S., Sinigaglia, C., Rizzolatti, G., & Grafton, S. T. (2010). Brain dynamics and topography of decoding intentions: A combined event-related EEG/FMRI study. PLoS ONE, 5, e12160.Google Scholar
Ortigue, S., Thompson, J. C., Parasuraman, R., & Grafton, S. T. (2009). Spatio-temporal dynamics of human intention understanding in temporo-parietal cortex: A combined EEG/fMRI repetition suppression paradigm. PLoS ONE, 4, e6962.CrossRefGoogle ScholarPubMed
Overwalle, F. van, & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48, 564584. doi: 10.1016/j.neuroimage.2009.06.009.CrossRefGoogle ScholarPubMed
Pinel, P., Lalanne, C., Bourgeon, T., Fauchereau, F., & Poupon, C. (2014). Genetic and environmental influences on the visual word form and fusiform face areas. Cerebral Cortex, 25(9), 2478–293.Google ScholarPubMed
Raichle, M. E. (2000). A brief history of human functional brain mapping. In Toga, A. W. & Mazziotta, J. C. (Eds.), Brain mapping: The systems. San Diego, CA: Academic Press, 3375.CrossRefGoogle Scholar
Riddihough, G., & Zahn, L. M. (2010). What is epigenetics? Science, 330, 611.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror–neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Ruscher, J. B., Santuzzi, A. M., & Hammer, E. Y. (2003). Shared impression formation in the cognitively interdependent dyad. British Journal of Social Psychology, 42, 411425.CrossRefGoogle ScholarPubMed
Sabatinelli, D., Fortune, E. E., Li, Q., Siddiqui, A., & Krafft, C. (2011). Emotional perception: Meta-analyses of face and natural scene processing. NeuroImage, 54, 25242533. doi: 10.1016/j.neuroimage.2010.10.011.CrossRefGoogle ScholarPubMed
Sandrone, S., Bacigaluppi, M., Galloni, M. R., & Martino, G. (2012). Angelo Mosso (1846–1910). Journal of Neurology, 259, 25132514. doi: 10.1007/s00415-012-6632-1. PMID 23010944.CrossRefGoogle ScholarPubMed
Sanger, J., Lindenberger, U., & Muller, V. (2011). Interactive brains, social minds. Communicative and Integrative Biology, 4, 655663.CrossRefGoogle ScholarPubMed
Scholkmann, F., Holper, L., Wolf, U., & Wolf, M. (2013). A new methodical approach in neuroscience: Assessing inter-personal brain coupling using functional near-infrared imaging (fNIRI) hyperscanning. Frontiers in Human Neuroscience, 7, 813.CrossRefGoogle ScholarPubMed
Seghier, M. L. (2013). The angular gyrus: Multiple functions and multiple subdivisions. Neuroscientist, 19, 4361. doi: 10.1177/1073858412440596.CrossRefGoogle ScholarPubMed
Stanley, D. A., & Adolphs, R. (2013). Towards a neural basis for social behavior. Neuron, 80, 816826. doi: 10.1016/j.neuron.2013.10.038.CrossRefGoogle Scholar
Sweatt, J. D., Meaney, M. J., Nestler, E. J., & Akbarian, S. (Eds.) Epigenetic regulation in the nervous system: Basic mechanisms and clinical impact. London: Academic Press.Google Scholar
Wager, T. D., Lindquist, M. A., & Kaplan, L. (2007). Meta-analysis of functional neuroimaging data: Current and future directions. Social, Cognitive, and Affective Neuroscience, 2, 150158.CrossRefGoogle ScholarPubMed
Wager, T. D., Lindquist, M. A., Nichols, T. E., Kober, H., & Van Snellenberg, J. X. (2009). Evaluating the consistency and specificity of neuroimaging data using meta-analysis. NeuroImage, 45, S210S221.CrossRefGoogle ScholarPubMed
Wegner, D. M., Giuliano, T., & Hertel, P. (1985). Cognitive interdependence in close relationships. In Ickes, W. J. (Ed.), Compatible and incompatible relationships. New York: Springer-Verlag, 253276.CrossRefGoogle Scholar
Wu, W., Yamura, T., Murakami, K., Murata, J., Matsumoto, K., et al. (2000). Social isolation stress enhanced liver metastasis of murine colon 26-L5 carcinoma cells by suppressing immuneresponses in mice. Life Science, 66, 18271838.CrossRefGoogle Scholar
Zhang, T. Y., & Meaney, M. J. (2010). Epigenetics and the environmental regulation of the genome and its function. Annual Review of Psychology, 61, 439466.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×