Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-03T01:49:15.078Z Has data issue: false hasContentIssue false

8 - The Control of Shared Representations and Social Cognition

from Part II - Imitation and Mimicry

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

Abstract

Evidence from cognitive psychology and neuroscience has been accumulated suggesting that perception and execution of action are tightly linked. The observation of an action leads to a direct activation of the corresponding motor representation in the observer, suggesting that perception and action rely on a ‘shared representational system’. Moreover, the observation of an action can lead to automatic imitation. However, if perception and action can lead to the concurrent activation of different motor plans, a fundamental problem is how we are able to distinguish between motor representations that have been internally generated by our own intention and those that have been triggered by observing others’ actions. In other words, how can we avoid automatic imitation? In the present chapter, we will report recent evidence suggesting that a crucial component of such shared representation systems is self–other distinction and that the control of shared representations involves brain areas that constitute key nodes in high-level socio-cognitive processes such as agency attribution, perspective taking and mentalizing.

Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 151 - 170
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7, 268277.CrossRefGoogle ScholarPubMed
Apperly, I. A., & Butterfill, S. A. (2009). Do humans have two systems to track beliefs and belief-like states? Psychological Review, 116, 753970.Google ScholarPubMed
Baaren, R. B. van, Holland, R. W., Kawakami, K., & van Knippenberg, A. (2004). Mimicry and prosocial behavior. Psychological Science, 15, 7174.CrossRefGoogle ScholarPubMed
Bailenson, J., & Yee, N. (2005). Digital chameleons: Automatic assimilation of nonverbal gestures in immersive virtual environments. Psychological Science, 16, 814819.CrossRefGoogle ScholarPubMed
Bardi, L., & Brass, M. (submitted). TPJ-M1 interaction in the control of shared representations: new insights from tDCS and TMS combined.Google Scholar
Bastiaansen, J. A, Thioux, M., & Keysers, C. (2009). Evidence for mirror systems in emotions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1528), 2391–404.CrossRefGoogle ScholarPubMed
Bavelas, J. B., Black, A., Lemery, C. R., & Mullett, J. (1986). I show how you feel: Motor mimicry as a communicative act. Journal of Personality and Social Psychology, 50, 322329.CrossRefGoogle Scholar
Bird, G., Leighton, J., Press, C., & Heyes, C. (2007). Intact automatic imitation of human and robot actions in autism spectrum disorders. Philosophical Transactions of the Royal Society B: Biological Sciences, 1628, 30273031.Google Scholar
Blakemore, S. J., & Frith, C. (2005). The role of motor contagion in the prediction of action. Neuropsychologia, 43(2), 260267.CrossRefGoogle ScholarPubMed
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 12, 539546.CrossRefGoogle Scholar
Brass, M., Bekkering, H., Wohlschläger, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: Comparing symbolic, spatial, and imitative cues. Brain & Cognition, 44(2), 124143.CrossRefGoogle ScholarPubMed
Brass, M., Derrfuss, J., & von Cramon, D. Y. (2005). The inhibition of imitative and overlearned responses: A functional double dissociation. Neuropsychologia, 43(1), 8998.CrossRefGoogle ScholarPubMed
Brass, M., Derrfuss, J., Matthes-von Cramon, G., & von Cramon, D. Y. (2003). Imitative response tendencies in patients with frontal brain lesions. Neuropsychology, 17, 265271.CrossRefGoogle ScholarPubMed
Brass, M., & Heyes, C. (2005). Imitation: Is cognitive neuroscience solving the correspondence problem? Trends in Cognitive Sciences, 9(10), 489495.Google Scholar
Brass, M., Ruby, P., & Spengler, S. (2009). Inhibition of imitative behaviour and social cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 23592367.CrossRefGoogle ScholarPubMed
Brass, M., Zysset, S., & von Cramon, D. Y. (2001). The inhibition of imitative response tendencies. NeuroImage, 14(6), 14161423.CrossRefGoogle ScholarPubMed
Castelli, F., Frith, C., Happe, F., & Frith, U. (2002). Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain, 125, 18391849.CrossRefGoogle ScholarPubMed
Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893910.CrossRefGoogle ScholarPubMed
Chartrand, T. L., & Lakin, J. L. (2013). The antecedents and consequences of human behavioral mimicry. Annual Review of Psychology, 64, 285308.CrossRefGoogle ScholarPubMed
Chartrand, T. L., & van Baaren, R. (2009). Human mimicry. Advances in Experimental Social Psychology, 41, 219–274.Google Scholar
Cook, J., & Bird, G. (2011). Social attitudes modulate imitation in adolescents and adults. Experimental Brain Research, 211(34), 10451051.CrossRefGoogle ScholarPubMed
Cook, J. L. & Bird, G. (2012). Atypical social modulation of imitation in autism spectrum conditions. Journal of Autism and Developmental Disorders, 42(6), 10451051.CrossRefGoogle ScholarPubMed
Cook, R., Bird, G., Catmur, C., Press, C., & Heyes, C. (2014). Mirror neurons: From origin to function. Behavioral Brain Science, 37(2), 177192.CrossRefGoogle ScholarPubMed
Costa, A., Torriero, S., Olivieri, M., & Caltagirone, C. (2008). Prefrontal and temporo-parietal involvement in taking others’ perspective: TMS evidence. Behavioural Neurology, 19, 7172.CrossRefGoogle ScholarPubMed
Craighero, L., Bello, A., Fadiga, L., & Rizzolatti, G. (2002). Hand action preparation influences the responses to hand pictures. Neuropsychologia, 40(5), 492502.CrossRefGoogle ScholarPubMed
Damasio, A., & Meyer, K. (2008). Behind the looking-glass. Nature, 454, 167168.CrossRefGoogle ScholarPubMed
Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., et al. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9, 2830.CrossRefGoogle ScholarPubMed
Decety, J., & Grèzes, J. (2006). The power of simulation: Imagining one’s own and other’s behavior. Brain Research, 1079(1), 414.CrossRefGoogle Scholar
De Coster, L., Verschuere, B., Goubert, L., Tsakiris, M., & Brass, M. (2013). I suffer more from your pain when you act like me: Being imitated enhances affective responses to seeing someone else in pain. Cognitive and Affective Behavioral Neuroscience, 13(3), 519532.CrossRefGoogle ScholarPubMed
De Renzi, E., Cavalleri, F., & Facchini, S. (1996). Imitation and utilisation behaviour. Journal of Neurology, Neurosurgery and Psychiatry, 61(4), 396400.CrossRefGoogle ScholarPubMed
Dimberg, U., Thunberg, M., & Elmenhed, K. (2000). Unconscious facial reactions to emotional facial expressions. Psychological Science, 11, 8689.CrossRefGoogle ScholarPubMed
Dinstein, I., Thomas, C., Behrmann, M., & Heeger, D. J. (2008). A mirror up to nature. Current Biology, 18, R13R18.CrossRefGoogle ScholarPubMed
Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73, 26082611.CrossRefGoogle ScholarPubMed
Farrer, C., Franck, N., Georgieff, N., Frith, C. D., Decety, J., & Jeannerod, M. (2003). Modulating the experience of agency: A positron emission tomography study. NeuroImage, 18(2), 324333.CrossRefGoogle ScholarPubMed
Frith, C. (2003). What do imaging studies tell us about the neural basis of autism? Novartis Foundation Symposium, Discussion 166–176, 281197.Google ScholarPubMed
Frith, C. (2004). Is autism a disconnection disorder? The Lancet: Neurology, 10, 577.CrossRefGoogle Scholar
Frith, C. D., Blakemore, S. J., & Wolpert, D. M. (2000). Abnormalities in the awareness and control of action. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 1404, 17711788.Google Scholar
Frith, C. D., & Frith, U. (1999). Interacting minds: Biological basis. Science, 286, 16921695.CrossRefGoogle ScholarPubMed
Frith, C. D., (2006). The neural basis of mentalizing. Neuron, 50(4), 531534.CrossRefGoogle ScholarPubMed
Frith, C. D., (2008). Implicit and explicit processes in social cognition. Neuron, 6, 503510.CrossRefGoogle Scholar
Gallese, V. (2003). The manifold nature of interpersonal relations: The quest for a common mechanism. Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 517528.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593609.CrossRefGoogle ScholarPubMed
Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493501.CrossRefGoogle ScholarPubMed
Gazzola, V., & Keysers, C. (2009). The observation and execution of actions share motor and somatosensory voxels in all tested subjects: Single-subject analyses of unsmoothed fMRI data. Cerebral Cortex, 19(6), 12391255.CrossRefGoogle ScholarPubMed
Geng, J., & Vossel, S. (2013). Re-evaluating the role of TPJ in attentional control: Contextual updating? Neuroscience Behavioral Review, 37(10), 26082620.CrossRefGoogle ScholarPubMed
Genschow, O., & Brass, M. (2015). The predictive chameleon: Evidence for anticipated social action. Journal of Experimental Psychology: Human Perception and Performance, 2, 265268.Google Scholar
Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12(1), 119.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Hamilton, A. F. (2008). Emulation and mimicry for social interaction: A theoretical approach to imitation in autism. Quarterly Journal of Experimental Psychology, 61, 101115.CrossRefGoogle ScholarPubMed
Harleß, E. (1861). Der Apparat des Willens [The apparatus of will]. Zeitschrift für Philosophie und philosophische Kritik, 38(2), 5073.Google Scholar
Helt, M. S., Eigsti, I. M., Snyder, P. J., & Fein, D. A. (2010). Contagious yawning in autistic and typical development. Child Development, 81(5), 16201631.CrossRefGoogle ScholarPubMed
Heyes, C. (2010). Where do mirror neurons come from? Neuroscience Behavioral Review, 34, 575583.CrossRefGoogle ScholarPubMed
Heyes, C. (2011). Automatic imitation. Psychological Bulletin, 137(3), 463483.CrossRefGoogle ScholarPubMed
Hurley, S. (2008). The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioural Brain Research, 31(1), 122.Google ScholarPubMed
James, W. (1890). The principles of psychology. New York: Macmillan.Google Scholar
Jeannerod, M. (1999). To act or not to act: Perspectives on the representation of actions. Quarterly Journal of Experimental Psychology, 52, 129.CrossRefGoogle ScholarPubMed
Jeannerod, M. (2004). Visual and action cues contribute to the self–other distinction. Nature Neuroscience, 7(5), 422423.CrossRefGoogle Scholar
Keysers, C., & Gazzola, V. (2010). Social neuroscience: Mirror neurons recorded in humans. Current Biology, 20(8), R354.CrossRefGoogle ScholarPubMed
Keysers, C., & Perrett, D. I. (2004). Demystifying social cognition: A Hebbian perspective. Trends in Cognitive Sciences, 8(11), 501507.CrossRefGoogle ScholarPubMed
Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13(6), 522525.CrossRefGoogle ScholarPubMed
Kovács, A. M., Téglas, E., & Endress, A. D. (2010). The social sense: Susceptibility to others’ beliefs in human infants and adults. Science, 330, 18301834.CrossRefGoogle ScholarPubMed
Lakin, J. L., & Chartrand, T. L. (2003). Using nonconscious behavioral mimicry to create affiliation and rapport. Psychological Science, 14, 334339.CrossRefGoogle ScholarPubMed
Lhermitte, F., Pillon, B., & Serdaru, M. (1986). Human autonomy and the frontal lobes. Part I. Imitation and utilization behavior: A neuropsychological study of 75 patients. Annals of Neurology, 19(4), 326334.CrossRefGoogle ScholarPubMed
Leighton, J., Bird, G., & Heyes, C. M. (2010). ‘Goals’ are not an integral component of imitation. Cognition, 114, 423435.CrossRefGoogle Scholar
Liepelt, R., von Cramon, D. Y., & Brass, M. (2008). What is matched in direct matching? Intention attribution modulates motor priming. Journal of Experimental Psychology: Human Perception and Performance, 34(3), 578591.Google ScholarPubMed
Lotze, R. H. (1852). Medicinische psychologie oder physiologie der seele Weidmann. Leipzig: Weidmann.Google Scholar
Low, J., & Watts, J. (2013). Attributing false beliefs about object identity reveals a signature blind spot in humans’ efficient mind-reading system. Psychological Science, 24(3), 305411.CrossRefGoogle Scholar
Massen, C., & Prinz, W. (2009). Movements, actions and tool-use actions: An ideomotor approach to imitation. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1528), 23492358.CrossRefGoogle ScholarPubMed
Meltzoff, A. N., & Decety, J. (2003). What imitation tells us about social cognition: A rapprochement between developmental psychology and cognitive neuroscience. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1431), 491500.CrossRefGoogle ScholarPubMed
Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2006). Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron, 50, 655663.CrossRefGoogle ScholarPubMed
Northoff, G., & Bermpohl, F. (2004). Cortical midline structures and the self. Trends in Cognitive Sciences, 8(3), 102107.CrossRefGoogle ScholarPubMed
Onishi, K. H., & Baillargeon, R. (2005). Do 15-month-old infants understand false beliefs? Science, 308, 255258.CrossRefGoogle ScholarPubMed
Perner, J., & Lang, B. (1999). Development of theory of mind and executive control. Trends in Cognitive Sciences, 3(9), 337344.CrossRefGoogle ScholarPubMed
Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129154.CrossRefGoogle Scholar
Prinz, W. (2002). Experimental approaches to imitation. In Meltzoff, A. N. & Prinz, W. (Eds.), In The imitative mind: Development, evolution, and brain bases. Cambridge: Cambridge University Press, 143163.CrossRefGoogle Scholar
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Fogassi, L., & Gallese, V. (1996). Premotor cortex and the recognition of motor actions. Brain Research: Cognitive Brain Research, 3, 131141.Google ScholarPubMed
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2(9), 661670.CrossRefGoogle ScholarPubMed
Ruby, P., & Decety, J. (2003). What you believe versus what you think they believe: A neuroimagi ng study of conceptual perspective-taking. European Journal of Neuroscience, 17(11), 24752480.CrossRefGoogle Scholar
Russell, J. (1997). Autism as an executive disorder. New York: Oxford University Press.Google Scholar
Rutter, M. (1974). The development of infantile autism. Psychological Medicine, 4, 147163.CrossRefGoogle ScholarPubMed
Samson, D., Apperly, I. A., Braithwaite, J. J., Andrews, B. J., & Bodley Scott, S. E. (2010). Seeing it their way: Evidence for rapid and involuntary computation of what other people see. Journal of Experimental Psychology: Human Perception and Performance, 36, 12551266.Google ScholarPubMed
Santiesteban, I., Banissy, M. J., Catmur, C., & Bird, G. (2012a). Enhancing social ability by stimulating right temporoparietal junction. Current Biology, 22(23), 22742277.CrossRefGoogle ScholarPubMed
Santiesteban, I., White, S., Cook, J., Gilbert, S. J., Heyes, C., & Bird, G. (2012b). Training social cognition: From imitation to theory of mind. Cognition, 122(2), 228235.CrossRefGoogle ScholarPubMed
Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people: fMRI investigations of theory of mind. NeuroImage, 9, 18351842.CrossRefGoogle Scholar
Schurz, M., Radua, J., Aichorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience and Biobehavioral Reviews, 42, 934.CrossRefGoogle ScholarPubMed
Southgate, V., & Hamilton, A. F. (2008). Unbroken mirrors: Challenging a theory of autism. Trends in Cognitive Sciences, 12, 225229.CrossRefGoogle ScholarPubMed
Southgate, V., Senju, A., & Csibra, G. (2007). Action anticipation through attribution of false belief by 2-year-olds. Psychological Science, 18, 587592.CrossRefGoogle ScholarPubMed
Sowden, S., & Catmur, C. (2013). The role of the right temporoparietal junction in the control of imitation. Cerebral Cortex, 4, 1107–1113.Google ScholarPubMed
Spengler, S., von Cramon, D.Y., & Brass, M. (2009a). Control of shared representations relies on key processes involved in mental state attribution. Human Brain Mapping, 30(11), 37043718.CrossRefGoogle ScholarPubMed
Spengler, S., von Cramon, D.Y., & Brass, M. (2009b). Was it me or was it you? How the sense of agency originates from ideomotor learning revealed by fMRI. NeuroImage, 46(1), 290298.CrossRefGoogle ScholarPubMed
Spengler, S., von Cramon, D. Y., (2010). Resisting motor mimicry: Control of imitation involves processes central to social cognition in patients with frontal and temporo-parietal lesions. Social Neuroscience, 5(4), 401416.CrossRefGoogle ScholarPubMed
Sperduti, M., Fossati, P., Delaveau, P., & Nadel, J. (2011). Different brain structures related to self- and external-agency attribution: A brief review and meta-analysis. Brain Structure and Function, 216, 151157.CrossRefGoogle ScholarPubMed
Surian, L., Caldi, S., & Sperber, D. (2007). Attribution of beliefs to 13-month-old infants. Psychological Science, 18, 580586.CrossRefGoogle ScholarPubMed
Tiedens, L. Z., & Fragale, A. R. (2003). Power moves: Complementarity in dominant and submissive nonverbal behavior. Journal of Personality and Social Psychology, 84, 558568.CrossRefGoogle ScholarPubMed
Wang, Y., & Hamilton, A. F de C. (2012). Social top-down response modulation (STORM): A model of the control of mimicry in social interaction. Frontiers in Human Neroscience, 6, 153.CrossRefGoogle Scholar
Williams, J. H., Waiter, G. D., Gilchrist, A., Perrett, D. I., Murray, A. D., & Whiten, A. (2006). Neural mechanisms of imitation and ‘mirror neuron’ functioning in autistic spectrum disorder. Neuropsychologia, 44, 610621.CrossRefGoogle ScholarPubMed
Williams, J. H., Whiten, A., & Singh, T. (2004). A systematic review of action imitation in autistic spectrum disorder. Journal of Autism and Developmental Disorders, 3, 285299.CrossRefGoogle Scholar
Williams, J. H., Whiten, A., Suddendorf, T., & Perrett, D. I. (2001). Imitation, mirror neurons and autism. Neuroscience and Biobehavioral Reviews, 25(4), 287229.CrossRefGoogle ScholarPubMed
Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representations and constraining function of wrong beliefs in young children’s understanding of deception. Cognition, 13, 103128.CrossRefGoogle ScholarPubMed
Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269, 18801882.CrossRefGoogle ScholarPubMed
Young, L., Camprodon, J. A., Hauser, M., Pasqual-Leone, A., & Saxe, R. (2010). Disruption of the right temporoparietal junction with transcranial magnetic stimulation reduces the role of beliefs in moral judgments. Proceedings of the National Academy of Sciences of the United States of America, 107(15), 67526758.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×