Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T20:34:24.586Z Has data issue: false hasContentIssue false

16 - Biological Tuning of Mirror Mechanisms

Evidence and Functional Implications

from Part IV - Understanding Others

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

Abstract

A range of behavioural and neuroimaging evidence demonstrates that we mirror observed human action in our motor systems to a greater extent than similar non-biological movement. This chapter reviews such evidence, considering the form and kinematic features of observed stimuli to which mirror mechanisms are sensitive. It subsequently considers the role of this biological tuning in our interactions with, and processing of, humans relative to inanimate devices, in the context of functions likely to be supported by mirror mechanisms. It notes that in contrast with common assumptions, biological tuning is unlikely to reflect increased inferential processing about mental states of observed humans. It considers that biological tuning is more likely to influence our imitation and perception of human and inanimate movements. The final section examines how biological tuning can be integrated with evidence that mirror mechanisms are part of a wider domain-general system adapted for action control, mapping motor codes onto observed events from both our social and inanimate environments.

Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 332 - 350
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bird, G., Leighton, J., Press, C., & Heyes, C. (2007). Intact automatic imitation of human and robot actions in autism spectrum disorders. Proceedings of the Royal Society B: Biological Sciences, 274, 30273031. doi: 10.1098/rspb.2007.1019.CrossRefGoogle ScholarPubMed
Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106, 322. doi: 10.1016/S0001-6918(00)00024-X.CrossRefGoogle Scholar
Brass, M., Schmitt, R. M., Spengler, S., & Gergely, G. (2007). Investigating action understanding: Inferential processes versus action simulation. Current Biology, 17, 21172121. doi: 10.1016/j.cub.2007.11.057.CrossRefGoogle ScholarPubMed
Candidi, M., Urgesi, C., Ionta, S., & Aglioti, S. M. (2008). Virtual lesion of ventral premotor cortex impairs visual perception of biomechanically possible but not impossible actions. Society for Neuroscience, 3, 388400. doi: 10.1080/17470910701676269.CrossRefGoogle Scholar
Casile, A., Dayan, E., Caggiano, V., Hendler, T., Flash, T., & Giese, M. A. (2010). Neuronal encoding of human kinematic invariants during action observation. Cerebral Cortex, 20, 16471655. doi: 10.1093/cercor/bhp229.CrossRefGoogle ScholarPubMed
Catmur, C., Walsh, V., & Heyes, C. (2009). Associative sequence learning: The role of experience in the development of imitation and the mirror system. Proceedings of the Royal Society B: Biological Sciences, 364, 23692380. doi: 10.1098/rstb.2009.0048.Google ScholarPubMed
Chaminade, T., & Cheng, G. (2009). Social cognitive neuroscience and humanoid robotics. Journal of Physiology – Paris 103, 286295. doi: 10.1016/j.jphysparis.2009.08.011.CrossRefGoogle ScholarPubMed
Chaminade, T., Franklin, D. W., Oztop, E., & Cheng, G. (2005). Motor interference between humans and humanoid robots: Effect of biological and artificial motion. In Proceedings of the 4th International Conference on Development and Learning, 96–101. doi: 10.1109/DEVLRN.2005.1490951.CrossRefGoogle Scholar
Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76, 893910. doi: 10.1037/0022-3514.76.6.893.CrossRefGoogle ScholarPubMed
Chong, T. T.-J., Cunnington, R., Williams, M. A., & Mattingley, J. B. (2009). The role of selective attention in matching observed and executed actions. Neuropsychologia, 47, 786795. doi:10.1016/j.neuropsychologia.2008.12.008CrossRefGoogle ScholarPubMed
Cisek, P., & Kalaska, J. F. (2004. Neural correlates of mental rehearsal in dorsal premotor cortex. Nature, 431, 993996. doi: 10.1038/nature03005.CrossRefGoogle ScholarPubMed
Coll, M. P., Bird, G., Catmur, C., & Press, C, (2015). Cross-modal repetition effects in the mu rhythm indicate tactile mirroring during action observation. Cortex, 63, 121131.CrossRefGoogle ScholarPubMed
Cook, J., Swapp, D., Pan, X., Bianchi-Berthouze, N., & Blakemore, S.-J. (2014). Atypical interference effect of action observation in autism spectrum conditions. Psychological Medicine, 44, 731740. doi: 10.1017/S0033291713001335.CrossRefGoogle ScholarPubMed
Cook, R., Bird, G., Catmur, C., Press, C., & Heyes, C. (2014). Mirror neurons: From origin to function. Behavioral and Brain Sciences, 37(02), 177192.CrossRefGoogle ScholarPubMed
Costantini, M., Galati, G., Ferretti, A., Caulo, M., Tartaro, A., et al. (2005). Neural systems underlying observation of humanly impossible movements: An fMRI study. Cerebral Cortex, 15, 17611767. doi: 10.1093/cercor/bhi053.CrossRefGoogle ScholarPubMed
Cross, E. S., Hamilton, A. F. de C., Kraemer, D. J. M., Kelley, W. M., & Grafton, S. T. (2009). Dissociable substrates for body motion and physical experience in the human action observation network. European Journal of Neuroscience, 30, 13831392. doi: 10.1111/j.1460-9568.2009.06941.x.CrossRefGoogle ScholarPubMed
Cross, E. S., Liepelt, R., Hamilton, A. F. de C., Parkinson, J., Ramsey, R., et al. (2012). Robotic movement preferentially engages the action observation network. Human Brain Mapping, 33, 22382254. doi: 10.1002/hbm.21361.CrossRefGoogle ScholarPubMed
Dayan, E., Casile, A., Levit-Binnun, N., Giese, M. A., Hendler, T., & Flash, T. (2007). Neural representations of kinematic laws of motion: Evidence for action–perception coupling. Proceedings of the National Academy of Sciences, 104, 2058220587. doi: 10.1073/pnas.0710033104.CrossRefGoogle ScholarPubMed
Di Dio, C., & Gallese, V. (2009). Neuroaesthetics: A review. Current Opinion in Neurobiology, 19, 682687.Google Scholar
Dushanova, J., & Donoghue, J. (2010). Neurons in primary motor cortex engaged during action observation. European Journal of Neuroscience, 31, 386398. doi: 10.1111/j.1460-9568.2009.07067.x.CrossRefGoogle ScholarPubMed
Engel, A., Burke, M., Fiehler, K., Bien, S., & Rösler, F. (2008. How moving objects become animated: The human mirror neuron system assimilates non-biological movement patterns. Society for Neuroscience, 3, 368387. doi: 10.1080/17470910701612793.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593609. doi: 10.1093/brain/119.2.593.CrossRefGoogle ScholarPubMed
Gallese, V., Gernsbacher, M.A., Heyes, C., Hickok, G., & Iacoboni, M. (2011). Mirror neuron forum. Perspectives on Psychological Science, 6, 369407. doi: 10.1177/1745691611413392.CrossRefGoogle ScholarPubMed
Gallese, V., & Sinigaglia, C. (2011). What is so special about embodied simulation? Trends in Cognitive Sciences, 15, 512–519. doi: 10.1016/j.tics.2011.09.003.Google Scholar
Gazzola, V., Rizzolatti, G., Wicker, B., & Keysers, C. (2007). The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. NeuroImage, 35, 16741684. doi: 10.1016/j.neuroimage.2007.02.003.CrossRefGoogle ScholarPubMed
Gobbini, M. I., Gentili, C., Ricciardi, E., Bellucci, C., Salvini, P., et al. (2011). Distinct neural systems involved in agency and animacy detection. Journal of Cognitive Neuroscience, 23, 19111920. doi: 10.1162/jocn.2010.21574.CrossRefGoogle ScholarPubMed
Goldenberg, G., & Karnath, H.-O. (2006). The neural basis of imitation is body part specific. Journal of Neuroscience, 26, 62826287. doi: 10.1523/jneurosci.0638-06.2006.CrossRefGoogle ScholarPubMed
Gowen, E., Bradshaw, C., Galpin, A., Lawrence, A., & Poliakoff, E. (2010). Exploring visuomotor priming following biological and non-biological stimuli. Brain and Cognition, 74, 288297. doi: 10.1016/j.bandc.2010.08.010.CrossRefGoogle ScholarPubMed
Gowen, E., Stanley, J., & Miall, R. C. (2008). Movement interference in autism-spectrum disorder. Neuropsychologia, 46, 10601068. doi: 10.1016/j.neuropsychologia.2007.11.004.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10, 1423. doi: 10.1016/j.tics.2005.11.006.CrossRefGoogle ScholarPubMed
Heiser, M., Iacoboni, M., Maeda, F., Marcus, J., & Mazziotta, J.C. (2003). The essential role of Broca’s area in imitation. European Journal of Neuroscience, 17, 11231128. doi: 10.1046/j.1460-9568.2003.02530.x.CrossRefGoogle ScholarPubMed
Heyes, C. M. (1993). Imitation, culture and cognition. Animal Behaviour, 46, 999–1010. doi: 10.1006/anbe.1993.1281.CrossRefGoogle Scholar
Hogan, N. (1984). An organizing principle for a class of voluntary movements. Journal of Neuroscience, 4, 27452754.CrossRefGoogle ScholarPubMed
Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3, e79. doi: 10.1371/journal.pbio.0030079.CrossRefGoogle ScholarPubMed
Kilner, J., Hamilton, A. F. de C., & Blakemore, S.-J. (2007). Interference effect of observed human movement on action is due to velocity profile of biological motion. Society for Neuroscience, 2, 158166. doi: 10.1080/17470910701428190.CrossRefGoogle ScholarPubMed
Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. Journal of Neuroscience, 29, 1015310159. doi: 10.1523/JNEUROSCI.2668-09.2009.CrossRefGoogle ScholarPubMed
Kilner, J. M., Paulignan, Y., & Blakemore, S. (2003). An interference effect of observed biological movement on action. Current Biology, 13, 522525. doi: 10.1016/S0960-9822(03)00165-9.CrossRefGoogle ScholarPubMed
Klapper, A., Ramsey, R., Wigboldus, D., & Cross, E. S. (2014). The control of automatic imitation based on bottom-up and top-down cues to animacy: Insights from brain and behavior. Journal of Cognitive Neuroscience, 111. doi: 10.1162/jocn_a_00651.Google ScholarPubMed
Kupferberg, A., Huber, M., Helfer, B., Lenz, C., Knoll, A., & Glasauer, S. (2012). Moving just like you: Motor interference depends on similar motility of agent and observer. PLoS One, 7, e39637. doi: 10.1371/journal.pone.0039637.CrossRefGoogle ScholarPubMed
Lacquaniti, F., Terzuolo, C., & Viviani, P. (1983). The law relating the kinematic and figural aspects of drawing movements. Acta Psychologica, 54, 115130. doi: 10.1016/0001-6918(83)90027-6.CrossRefGoogle ScholarPubMed
Lange, F. P. de, Spronk, M., Willems, R. M., Toni, I., & Bekkering, H. (2008). Complementary systems for understanding action intentions. Current Biology, 18, 454457. doi: 10.1016/j.cub.2008.02.057.CrossRefGoogle ScholarPubMed
Lhermitte, F., Pillon, B., & Serdaru, M. (1986). Human autonomy and the frontal lobes. Part I: Imitation and utilization behavior: A neuropsychological study of 75 patients. Annals of Neurology, 19, 326334. doi: 10.1002/ana.410190404.CrossRefGoogle ScholarPubMed
Liepelt, R., & Brass, M. (2010). Top-down modulation of motor priming by belief about animacy. Journal of Experimental Psychology: Human Perception and Performance, 57, 221227. doi: 10.1027/1618–3169/a000028.CrossRefGoogle ScholarPubMed
Lingnau, A., Gesierich, B., & Caramazza, A. (2009). Asymmetric fMRI adaptation reveals no evidence for mirror neurons in humans. Proceedings of the National Academy of Sciences, 106, 99259930. doi: 10.1073/pnas.0902262106.CrossRefGoogle ScholarPubMed
Longo, M. R., & Bertenthal, B. I. (2009). Attention modulates the specificity of automatic imitation to human actors. Experimental Brain Research, 192, 739744. doi: 10.1007/s00221-008-1649-5.CrossRefGoogle ScholarPubMed
Marin, L., Issartel, J., & Chaminade, T. (2009). Interpersonal motor coordination: From human–human to human–robot interactions. Interaction Studies, 10, 479504. doi: 10.1075/is.10.3.09mar.CrossRefGoogle Scholar
Miura, N., Sugiura, M., Takahashi, M., Sassa, Y., Miyamoto, A., et al. (2010). Effect of motion smoothness on brain activity while observing a dance: An fMRI study using a humanoid robot. Society for Neuroscience, 5, 4058. doi: 10.1080/17470910903083256.CrossRefGoogle ScholarPubMed
Newman-Norlund, R. D., Ondobaka, S., van Schie, H. T., van Elswijk, G., & Bekkering, H. (2010). Virtual lesions of the IFG abolish response facilitation for biological and non-biological cues. Frontiers in Behavioral Neuroscience, 4, 5. doi: 10.3389/neuro.08.005.2010.Google Scholar
Oberman, L. M., McCleery, J. P., Ramachandran, V. S., & Pineda, J. A. (2007). EEG evidence for mirror neuron activity during the observation of human and robot actions: Toward an analysis of the human qualities of interactive robots. Neurocomputing, 70, 21942203. doi: 10.1016/j.neucom.2006.02.024.CrossRefGoogle Scholar
Oosterhof, N. N., Tipper, S. P., & Downing, P. E. (2013). Crossmodal and action-specific: Neuroimaging the human mirror neuron system. Trends in Cognitive Sciences, 17, 311318. doi: 10.1016/j.tics.2013.04.012.CrossRefGoogle ScholarPubMed
Pearce, J. M. (1987. A model for stimulus generalization in Pavlovian conditioning. Psychological Review, 94, 6173. doi: 10.1037/0033-295X.94.1.61.CrossRefGoogle Scholar
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176180. doi: 10.1007/BF00230027.CrossRefGoogle ScholarPubMed
Press, C. (2011). Action observation and robotic agents: Learning and anthropomorphism. Neuroscience & Biobehavioral Reviews, 35, 14101418.CrossRefGoogle ScholarPubMed
Press, C., Bird, G., Flach, R., & Heyes, C. (2005). Robotic movement elicits automatic imitation. Cognitive Brain Research, 25, 632640. doi: 10.1016/j.cogbrainres.2005.08.020.CrossRefGoogle ScholarPubMed
Press, C., Catmur, C., Cook, R., Widmann, H., Heyes, C., & Bird, G. (2012a). fMRI evidence of ‘mirror’ responses to geometric shapes. PLoS One, 7, e51934. doi: 10.1371/journal.pone.0051934.CrossRefGoogle ScholarPubMed
Press, C., Cook, J., Blakemore, S.-J., & Kilner, J. (2011). Dynamic modulation of human motor activity when observing actions. Journal of Neuroscience, 31, 27922800. doi: 10.1523/JNEUROSCI.1595-10.2011.CrossRefGoogle ScholarPubMed
Press, C., Gillmeister, H., & Heyes, C. (2006). Bottom-up, not top-down, modulation of imitation by human and robotic models. European Journal of Neuroscience, 24, 24152419. doi: 10.1111/j.1460-9568.2006.05115.x.CrossRefGoogle Scholar
Press, C., Gillmeister, H., (2007). Sensorimotor experience enhances automatic imitation of robotic action. Proceedings of the Royal Society B: Biological Sciences, 274, 25092514. doi: 10.1098/rspb.2007.0774.CrossRefGoogle ScholarPubMed
Press, C., Weiskopf, N., & Kilner, J. M. (2012b). Dissociable roles of human inferior frontal gyrus during action execution and observation. NeuroImage, 60, 16711677. doi: 10.1016/j.neuroimage.2012.01.118.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192. doi: 10.1146/annurev.neuro.27.070203.144230.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Fadiga, L. (1998). Grasping objects and grasping action meanings: The dual role of monkey rostroventral premotor cortex (area F5). Novartis Foundation Symposium, 218, 8195.Google ScholarPubMed
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131141. doi: 10.1016/0926-6410(95)00038-0.CrossRefGoogle ScholarPubMed
Saygin, A. P., Wilson, S. M., Hagler, D. J., Bates, E., & Sereno, M. I. (2004). Point-light biological motion perception activates human premotor cortex. Journal of Neuroscience, 24, 61816188. doi: 10.1523/jneurosci.0504-04.2004.CrossRefGoogle ScholarPubMed
Shimada, S. (2010). Deactivation in the sensorimotor area during observation of a human agent performing robotic actions. Brain and Cognition, 72, 394399. doi: 10.1016/j.bandc.2009.11.005.CrossRefGoogle ScholarPubMed
Stanley, J., Gowen, E., & Miall, R. C. (2007). Effects of agency on movement interference during observation of a moving dot stimulus. Journal of Experimental Psychology: Human Perception and Performance, 33, 915926. doi: 10.1037/0096-1523.33.4.915.Google Scholar
Stanley, J., Gowen, E., (2010). How instructions modify perception: An fMRI study investigating brain areas involved in attributing human agency. NeuroImage, 52, 389400. doi: 10.1016/j.neuroimage.2010.04.025.CrossRefGoogle ScholarPubMed
Stevens, J. A., Fonlupt, P., Shiffrar, M., & Decety, J. (2000). New aspects of motion perception: Selective neural encoding of apparent human movements. Neuroreport, 11, 109115.CrossRefGoogle ScholarPubMed
Tai, Y. F., Scherfler, C., Brooks, D. J., Sawamoto, N., & Castiello, U. (2004). The human premotor cortex is ‘mirror’ only for biological actions. Current Biology, 14, 117120. doi: 10.1016/j.cub.2004.01.005.CrossRefGoogle ScholarPubMed
Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24, 830846. doi: 10.1037/0096-1523.24.3.830.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×